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Abstract. This research paper presents a preliminary study aimed at closing the resilience gap in Indonesia 
through the establishment of a national fragility curve catalog for multi-hazard assessment. Indonesia is 
located in a high-risk hazard area, yet it currently lacks a comprehensive fragility curve catalog, which 
hinders effective risk assessment and mitigation strategies. By developing this database, the study aims to 
improve the understanding of structural vulnerability and enhance resilience planning across various 
hazards, such as earthquake, tsunami, wind, and flood. The research methodology involves collecting and 
analyzing data on the performance of different building types, exposed to multiple hazards. This includes 
considering various factors such as construction materials, design standards, and geographical 
characteristics. Statistical techniques and analytical modeling will be utilized to derive fragility curves that 
depict the probability of exceeding different damage levels or performance states given a specific hazard 
intensity. The findings of this study will provide valuable insights into the vulnerability of infrastructure and 
communities in Indonesia, enabling more informed decision-making for disaster risk reduction and 
resilience planning. The fragility curve database will facilitate quantitative risk assessments, support the 
development of appropriate building codes and standards, and inform the prioritization of mitigation 
measures. Ultimately, the establishment of a national fragility curve database will contribute to enhancing 
Indonesia's resilience to multi-hazard events and improving disaster preparedness at various scales.
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1 Introduction

Indonesia is ranked 12th out of 35 nations facing a 
relatively high mortality risk from multiple natural 
hazard [1]. Another source mentions that Indonesia is 
ranked the third position globally, in terms of disaster 
risk [2]. It is worth noting that the geographical location 
of Indonesia in the Pacific Ring of Fire exposes the 
nation to substantial threats from natural hazards, 
including earthquakes, tsunamis, and volcanic 
eruptions. Moreover, some studies indicate that 
Tsunami pose a particularly a high threat to Indonesia, 
secondly at risk after Japan [3], and [4]. Meanwhile, 
Indonesia falls within the top-third of countries affected 
by climate risk [1], resulting in recurrent floods that 
ravage various regions, leading to economic losses and 
serving as a catalyst for other natural hazards, such as 
landslides. In light of these challenges, it is crucial for 
Indonesia to prioritize comprehensive disaster 
mitigation strategies and climate resilience initiatives to 
reduce the risk posed by natural hazards through hazard 
and risk mapping. 

This work is part of a larger, holistic study aimed at 
establishing a national-scale framework for loss 
estimation, incorporating multi-hazard risk assessment. 
In the context of risk assessment, vulnerability functions 
play a crucial role in determining the potential economic 
loss resulting from exposure to natural hazards, 
specifically buildings and infrastructure. These 
functions also serve to demonstrate the subtle 
correlation between the intensity of a particular hazard 
and the probable loss or damage experienced by the 
exposed assets. By utilizing vulnerability functions, a 
comprehensive understanding of the susceptibility of 
exposure to harm can be obtained. 

Furthermore, fragility functions are required as a 
component to establish vulnerability. Fragility functions 
focus specifically on quantifying the probability of 
damage or failure of an asset under the influence of a 
hazard. They provide essential input to the overall 
vulnerability assessment, complementing the broader 
perspective that vulnerability encompasses. While 
fragility and vulnerability are terms that are sometimes 
used interchangeably, their distinct definitions and roles 
have been broadly clarified [5].  
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Fragility functions are often presented graphically as 
curves, illustrating the probability of damage in relation 
to hazard intensity. Extensive research has produced 
numerous earthquake fragility curves. With the field's 
maturity, a global database of seismic fragility curves 
has developed, incorporating distinct classifications 
based on building taxonomy [6]. This standardized 
framework enhances our understanding of building 
vulnerability, facilitating risk comparisons and 
assessments, while promoting global knowledge sharing 
and collaboration. 
 

Besides earthquake fragility functions, there is a 
notable emergence of studies aiming to develop fragility 
functions for various other hazards. For instance, in the 
literature, researchers have explored different 
approaches to establish tsunami fragility curves, 
including empirical-based [7,8] and analytical-based 
methods [9]. Similarly, there are also analytical-based 
wind fragility curves available in selected sources, 
specifically for assessing building exposure [10,11]. 
However, in contrast to these hazards, there is a relative 
scarcity of fragility curves with limited variations 
pertaining to flood [12], landslides [13], and volcano 
[14] hazards.  
 

Unlike building assessment, which involves detailed 
inspection and structural analysis to assess the 
performance of an existing building for countermeasure 
actions (such as targeted retrofitting or maintenance 
efforts), fragility analysis provides a probabilistic 
framework to quantify the risk and potential damage for 
a building stock with a similar taxonomy. While 
building assessment practices are reasonably effective in 
evaluating individual buildings, fragility analysis is 
particularly efficient in evaluating large exposure 
databases of buildings with a consistent taxonomy. 
Therefore, utilizing a suitable fragility curve and 
properly identifying building taxonomy is crucial in the 
computation of loss estimation, by virtue of the unique 
characteristic of building taxonomy and its response to 
the specific hazards that serve as the applied loading on 
the structure. 

 
This study aims to assess a range of fragility functions 
for various natural hazards found in existing literature, 
with a specific focus on their compatibility with 
Indonesia's building taxonomy. The six natural hazards 
considered include earthquakes, tsunamis, floods, and 
winds. By conducting a comprehensive evaluation of 
these fragility functions, the research aims to determine 
their suitability in quantifying the vulnerability and risk 
of Indonesia's diverse building stock, providing valuable 
insights for future efforts in conducting risk assessment 
and developing mitigation strategies, particularly in 
estimating economic losses resulting from multiple 
natural hazards.  
 
 
 
 

2  Building taxonomy 

The first step involves creating Indonesia's building 
taxonomy, which is crucial for assessing the 
compatibility of fragility functions. Field surveys are 
conducted in multiple cities across Indonesia, including 
Aceh, West Kalimantan, Riau Islands, Nias, and South 
Sumatera. These surveys collect data on different 
building typologies, materials used, and construction 
practices prevalent in different regions of Indonesia. 
This compiled information serves as the foundation for 
creating building taxonomy specific to Indonesia. The 
surveyed building data, comprised of 825 entries and 
aggregated to illustrate trends in Indonesia's building 
taxonomy, are depicted in Fig. 1. 

 

 
 

 
Fig. 1 Compiled surveyed data of Indonesia’s building 

taxonomy trends 
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3 Introduction to Fragility Functions 

3.1 Key concepts in fragility function 

A fragility function addresses the damage probability of 
a building subjected to an extreme event set, typically 
natural hazards. Graphically, it is presented on an x-y 
diagram. The y-axis refers to the damage probability 
(represented as a percentage or a value bounded between 
0 and 1), while the x-axis refers to the Intensity Measure 
(IM). The IM denotes the severity of a hazard event, 
measuring the correlation between the event's intensity 
and the degree of structural damage. Another 
fundamental element of the fragility function is known 
as 'damage states'. These classify specific ranges of 
damage, such as slight, moderate, extensive, and 
complete damage or collapse of the structure. 

 
Generally, the fragility function can be expressed as 

a lognormal Cumulative Distribution Function (CDF), 
which can be written as per Eq. 1. It is worth mentioning 
that this lognormal CDF model is widely employed in 
existing fragility studies [15–18]. 

 

𝑃𝑃(𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑠𝑠𝑖𝑖|𝐼𝐼𝐼𝐼 = 𝑥𝑥) = Φ(
𝑙𝑙𝑙𝑙 (𝑥𝑥𝜇𝜇)
𝛽𝛽 ) Eq. 1 

 
In the equation above, 𝑃𝑃(𝐷𝐷𝐷𝐷 ≥ 𝑑𝑑𝑠𝑠𝑖𝑖|𝐼𝐼𝐼𝐼 = 𝑥𝑥) 

represents the probability of a building reaching or 
exceeding a specific damage state (𝑑𝑑𝑠𝑠𝑖𝑖) when subjected 
to an intensity measure (IM) of value x. Φ symbolizes 
the cumulative standard normal distribution function. 𝜇𝜇 
is the median IM value at which the building is expected 
to reach or exceed the damage state 𝑑𝑑𝑠𝑠𝑖𝑖, and 𝛽𝛽 
represents the logarithmic standard deviation, indicating 
the dispersion or uncertainty in the IM at a given damage 
state. The parameters 𝜇𝜇 and 𝛽𝛽 define the shape and 
location of the fragility curve. 

 
To date, there are three critical features in a fragility 

function: Damage States (DS), Intensity Measures (IM), 
and Probability. Firstly, DS represent various potential 
degrees of damage that a system or structure may 
experience under a specific hazard event. Each DS 
classifies the damage, distinguishing the probability 
most likely associated with each category of damage. 
Secondly, the IM serves as an indicator of the hazard 
intensity. For instance, in seismic events, it could be 
Peak Ground Acceleration (PGA) or Spectral 
Acceleration (Sa); in floods and tsunamis, it could be 
water depth or flow velocity; and in hurricanes, it can be 
wind speed. These factors are critical in determining the 
force exerted on the structure or system. Lastly, 
Probability quantifies the likelihood of a system or 
building reaching or exceeding a specific damage state 
given a certain level of IM. This probability can be 
determined using statistical techniques based on 
observed damage data or results from structural 
analysis. 

3.2 Derivation method of fragility function 

Several techniques can be adopted to derive the fragility 
function. There are four approaches that are available in 
the literatures, include the empirical-based, analytical-
based, heuristic-based, and hybrid-based [19,20]. 

 
Empirical-based is an approach of fragility function 

to observe damage data from past disaster events. It 
involves collecting detailed data about the damage states 
of structures after an event, as well as the intensity of the 
event at each location. This data is then statistically 
analysed to derive the fragility function. This approach 
is highly reliable as it is based on actual observations, 
but it requires a robust and demanding taskforce to 
collect the observational data upon the assessment from 
post-disaster event. Two example studies for the 
derivation of empirical-based fragility curve can be 
referring to the 2009 L’Aquila earthquake [16] and the 
2011 great east Japan tsunami [8]. 

 
The analytical-based relies on structural analysis to 

estimate the response of a structure to a hazard event. 
This approach is particularly useful when sufficient 
empirical damage data is not available, or for predicting 
the behavior of new structures or designs that have not 
yet been exposed to hazard events. In the context of 
structural engineering, the implementation of analytical-
based of fragility function is often referred to as 
Probabilistic Performance Based Design, which 
represents the next generation of Performance Based 
Design. Since the analytical-based relies on structural 
analysis, it requires Engineering Demand Parameters 
(EDPs) to formulate the interpretation of fragility 
functions. These parameters are computed through 
robust numerical simulations, and generally prefer 
measures like maximum inter-story drift [21,22] or base 
shear [9], or any pertinent measures, depending on the 
hazard type and the specific structural system of 
building under consideration. 
 

Beside empirical and analytical approach, the 
fragility functions can also be derived through expert 
judgment. It is often employed when there is a lack of 
sufficient analytical models or empirical data. Experts 
with substantial experience and knowledge on the 
performance of structures under different hazard levels 
provide estimates, which are then used to construct the 
fragility function. Although this approach may have 
drawbacks that could result in bias or subjective 
outcomes, it remains one of the most commonly 
employed methods [23]. 
 

The last approach is called hybrid-based. This 
method combines the other three approaches to leverage 
their advantages and mitigate their drawbacks. For 
instance, it may involve using a heuristic approach to 
initially define the fragility function, followed by an 
empirical approach to calibrate it based on observed 
data, and an analytical approach to fine-tune it based on 
numerical simulations. Some of research works can be 
found in literatures, adopting hybrid approach [24,25]. 

3

E3S Web of Conferences 447, 01002 (2023)	 https://doi.org/10.1051/e3sconf/202344701002
The 15th AIWEST-DR 2023



3.3 Statistical procedures for fitting fragility  

One of the dubious issues in developing fragility curve 
is in how to generate the continuous fragility function 
from the observed data by using suitable statistical 
approaches. Although the fragility function relationship 
can be presented as damage probability matrices, the 
most typical representation is in form of continuous 
curve, particularly the lognormal CDF fragility curve, 
which is illustrated in Fig. 2. A study [26] suggested that 
this form offers mathematical convenience by 
maintaining the lognormal distribution when a 
lognormally distributed random variable is multiplied or 
divided by uncertain and lognormally distributed 
factors, such as safety factors.  

 

 
Fig. 2 Lognormal CDF fragility curve 

 
In addition, data points are crucial for generating a 

reliable fragility function, particularly when using 
empirical-based methods. Some studies [27] suggest 
that a minimum of at least 200 data points of observed 
damage is needed, along with a minimum of 20 
observations per intensity measure (IM) bin, for at least 
10 bins. 

3.3.1 Moment Method 

The MM is often used to derive fragility curve by 
adopting analytical-based approach, by performing 
Incremental Dynamic Analysis (IDA) [28]. By 
modifying Eq. 1 into Eq. 2, the resulting collapse 
fragility curve can be obtained by solving both mean, 
and standard deviation with Eq. 3 and Eq. 4. However, 
it is important to acknowledge that the MM approach 
has limitations [20], particularly when it comes to 
handling empirical data and scenarios with limited 
intensity measures (truncated IDA). 

 

𝑃𝑃(𝐶𝐶|𝐼𝐼𝐼𝐼 = 𝐼𝐼𝑀𝑀𝑖𝑖) = Φ(𝑙𝑙𝑙𝑙
(𝐼𝐼𝑀𝑀𝑖𝑖 − 𝜇̅𝜇)

𝛽̅𝛽 ) Eq. 2 

 
𝜇̅𝜇 = 𝐸𝐸[𝑙𝑙𝑙𝑙(𝐼𝐼𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)] Eq. 3 

 

𝛽̅𝛽 = √𝑉𝑉𝑉𝑉𝑉𝑉 (𝑙𝑙𝑙𝑙(𝐼𝐼𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)) Eq. 4 

3.3.2 Least Square Regression to minimize 
Weighted Sum of Squared Error (SSE) 

Another prevalent method is by using the least 
square regression technique to minimize the weighted 
sum squared error (SSE). The method of least squares is 
employed to calculate the values of 𝜇̅𝜇 and 𝛽̅𝛽  parameters, 
which aim to minimize the sum of squared errors (SSE) 
between the predicted probabilities derived from the 
fragility function and the observed fractions obtained 
from the dataset. The errors can further be weighted by 
the number of observed data at each IM. Furthermore, 
the SSE can measure the discrepancy between the data 
and estimation model, finding the best fit of the fragility 
curve to the observed data. As such, in the context of 
fragility function, the SSE parameters can be expressed 
such as Eq. 5. 

 

{𝜇̅𝜇, 𝛽̅𝛽} = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜇𝜇, 𝛽𝛽 ∑𝑁𝑁𝑖𝑖 (

𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖

− Φ(𝑙𝑙𝑙𝑙
(𝐼𝐼𝑀𝑀𝑖𝑖 − 𝜇𝜇)

𝛽𝛽 ))
2

𝑖𝑖=1
 Eq. 5 

 
Please note that 𝑛𝑛𝑖𝑖 𝑁𝑁𝑖𝑖⁄ is the ratio of observed data at 

the corresponding intensity measure (IM).  
 
It must be underscored that while some studies 

suggest the SSE (Sum of Squared Errors) approach often 
yields results nearly comparable to the MLE (Maximum 
Likelihood Estimation), there are, however, inherent 
limitations that make MLE generally more favorable 
[16,20,29]. This preference is primarily due to the SSE 
method's inherent inability to account for the non-
constant variance observed in the fraction of collapsed 
data. To illustrate this point, consider a scenario where 
no collapses are observed at a specific Intensity Measure 
(IM) level, and the fitted collapse probability is 0.1. The 
resulting error in this situation is significantly larger 
compared to when a collapse probability of 0.6 is fitted 
at an IM level where 50% of motions result in collapse. 
This discrepancy stems from the fact that the least 
squares method treats all errors uniformly and assumes 
constant variance, a practice which fails to accurately 
capture the varying magnitudes of error associated with 
different observed collapse fractions. 

 

3.3.3 Maximum Likelihood Estimation (MLE) 

To date, the maximum likelihood estimation (MLE) 
method is widely used and applicable for both analytical 
and empirical fitting approaches of the lognormal 
cumulative distribution function (CDF) in fragility 
curve analysis. The key principle of the MLE is that it 
estimates the parameters that extent the probability of 
occurrence of the observed collapsed data. Unlike the 
Sum of Squared Errors (SSE) method that aims for the 
most accurate data description, MLE seeks the 
parameters most likely to have yielded the data [16]. In 
this context, for the creation of an analytical-based 
fragility curve using Incremental Dynamic Analysis 
(IDA), to a certain extent (i.e., when adopting multiple 
stripe analyses), MLE does not require high Intensity 
Measure (IM) amplitudes where ground motion causes 
a building to collapse in a numerical simulation [29]. 

4

E3S Web of Conferences 447, 01002 (2023)	 https://doi.org/10.1051/e3sconf/202344701002
The 15th AIWEST-DR 2023



3.3 Statistical procedures for fitting fragility  

One of the dubious issues in developing fragility curve 
is in how to generate the continuous fragility function 
from the observed data by using suitable statistical 
approaches. Although the fragility function relationship 
can be presented as damage probability matrices, the 
most typical representation is in form of continuous 
curve, particularly the lognormal CDF fragility curve, 
which is illustrated in Fig. 2. A study [26] suggested that 
this form offers mathematical convenience by 
maintaining the lognormal distribution when a 
lognormally distributed random variable is multiplied or 
divided by uncertain and lognormally distributed 
factors, such as safety factors.  

 

 
Fig. 2 Lognormal CDF fragility curve 

 
In addition, data points are crucial for generating a 

reliable fragility function, particularly when using 
empirical-based methods. Some studies [27] suggest 
that a minimum of at least 200 data points of observed 
damage is needed, along with a minimum of 20 
observations per intensity measure (IM) bin, for at least 
10 bins. 

3.3.1 Moment Method 

The MM is often used to derive fragility curve by 
adopting analytical-based approach, by performing 
Incremental Dynamic Analysis (IDA) [28]. By 
modifying Eq. 1 into Eq. 2, the resulting collapse 
fragility curve can be obtained by solving both mean, 
and standard deviation with Eq. 3 and Eq. 4. However, 
it is important to acknowledge that the MM approach 
has limitations [20], particularly when it comes to 
handling empirical data and scenarios with limited 
intensity measures (truncated IDA). 

 

𝑃𝑃(𝐶𝐶|𝐼𝐼𝐼𝐼 = 𝐼𝐼𝑀𝑀𝑖𝑖) = Φ(𝑙𝑙𝑙𝑙
(𝐼𝐼𝑀𝑀𝑖𝑖 − 𝜇̅𝜇)

𝛽̅𝛽 ) Eq. 2 

 
𝜇̅𝜇 = 𝐸𝐸[𝑙𝑙𝑙𝑙(𝐼𝐼𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)] Eq. 3 

 

𝛽̅𝛽 = √𝑉𝑉𝑉𝑉𝑉𝑉 (𝑙𝑙𝑙𝑙(𝐼𝐼𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)) Eq. 4 

3.3.2 Least Square Regression to minimize 
Weighted Sum of Squared Error (SSE) 

Another prevalent method is by using the least 
square regression technique to minimize the weighted 
sum squared error (SSE). The method of least squares is 
employed to calculate the values of 𝜇̅𝜇 and 𝛽̅𝛽  parameters, 
which aim to minimize the sum of squared errors (SSE) 
between the predicted probabilities derived from the 
fragility function and the observed fractions obtained 
from the dataset. The errors can further be weighted by 
the number of observed data at each IM. Furthermore, 
the SSE can measure the discrepancy between the data 
and estimation model, finding the best fit of the fragility 
curve to the observed data. As such, in the context of 
fragility function, the SSE parameters can be expressed 
such as Eq. 5. 

 

{𝜇̅𝜇, 𝛽̅𝛽} = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
𝜇𝜇, 𝛽𝛽 ∑𝑁𝑁𝑖𝑖 (

𝑛𝑛𝑖𝑖
𝑁𝑁𝑖𝑖

− Φ(𝑙𝑙𝑙𝑙
(𝐼𝐼𝑀𝑀𝑖𝑖 − 𝜇𝜇)

𝛽𝛽 ))
2

𝑖𝑖=1
 Eq. 5 

 
Please note that 𝑛𝑛𝑖𝑖 𝑁𝑁𝑖𝑖⁄ is the ratio of observed data at 

the corresponding intensity measure (IM).  
 
It must be underscored that while some studies 

suggest the SSE (Sum of Squared Errors) approach often 
yields results nearly comparable to the MLE (Maximum 
Likelihood Estimation), there are, however, inherent 
limitations that make MLE generally more favorable 
[16,20,29]. This preference is primarily due to the SSE 
method's inherent inability to account for the non-
constant variance observed in the fraction of collapsed 
data. To illustrate this point, consider a scenario where 
no collapses are observed at a specific Intensity Measure 
(IM) level, and the fitted collapse probability is 0.1. The 
resulting error in this situation is significantly larger 
compared to when a collapse probability of 0.6 is fitted 
at an IM level where 50% of motions result in collapse. 
This discrepancy stems from the fact that the least 
squares method treats all errors uniformly and assumes 
constant variance, a practice which fails to accurately 
capture the varying magnitudes of error associated with 
different observed collapse fractions. 

 

3.3.3 Maximum Likelihood Estimation (MLE) 

To date, the maximum likelihood estimation (MLE) 
method is widely used and applicable for both analytical 
and empirical fitting approaches of the lognormal 
cumulative distribution function (CDF) in fragility 
curve analysis. The key principle of the MLE is that it 
estimates the parameters that extent the probability of 
occurrence of the observed collapsed data. Unlike the 
Sum of Squared Errors (SSE) method that aims for the 
most accurate data description, MLE seeks the 
parameters most likely to have yielded the data [16]. In 
this context, for the creation of an analytical-based 
fragility curve using Incremental Dynamic Analysis 
(IDA), to a certain extent (i.e., when adopting multiple 
stripe analyses), MLE does not require high Intensity 
Measure (IM) amplitudes where ground motion causes 
a building to collapse in a numerical simulation [29]. 

Processing the post-event damage data for instance, 
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buildings, 𝑛𝑛𝑖𝑖 out of the total buildings, 𝑁𝑁𝑖𝑖 at the IM of 
interest, which can be represented by the binomial 
distribution as Eq. 6. 

 
𝑃𝑃(𝑛𝑛𝑖𝑖 𝑖𝑖𝑖𝑖 𝑁𝑁𝑖𝑖 |𝐼𝐼𝐼𝐼 = 𝐼𝐼𝑀𝑀𝑖𝑖) = (𝑁𝑁𝑖𝑖

𝑛𝑛𝑖𝑖
) 𝑝𝑝𝑖𝑖𝑛𝑛𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖−𝑛𝑛𝑖𝑖  Eq. 6 

 
In Eq. 6, 𝑝𝑝𝑖𝑖  is the probability that an event with IM 

of interest will cause damage to the building. To date, 
the MLE method is used to identify the highest 
probability of observed damage data at each IM level to 
get the likelihood of the whole dataset. This idea can be 
expressed in Eq. 7. 

 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ𝑜𝑜𝑜𝑜𝑜𝑜 = ∏ (𝑁𝑁𝑖𝑖
𝑛𝑛𝑖𝑖

) 𝑝𝑝𝑖𝑖
𝑛𝑛𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)𝑁𝑁𝑖𝑖−𝑛𝑛𝑖𝑖

𝑚𝑚

𝑖𝑖=1
 Eq. 7 

 
In the context of applying the MLE into the 

lognormal CDF, the MLE can be pretty useful to 
estimate the statistical parameters of 𝜇𝜇 useful 𝛽𝛽. These 
values can be computed accordingly as in  Eq. 8. 

 
{𝜇̅𝜇, 𝛽̅𝛽} = arg 𝑚𝑚𝑚𝑚𝑚𝑚

𝜇𝜇, 𝛽𝛽 ∑[𝐴𝐴 + 𝐵𝐵]
𝑖𝑖=1

 

𝐴𝐴 = 𝑛𝑛𝑖𝑖ln (Φ (𝑙𝑙𝑙𝑙(𝐼𝐼𝑀𝑀𝑖𝑖 − 𝜇𝜇)
𝛽𝛽

)) 

𝐵𝐵 = (𝑁𝑁𝑖𝑖 − 𝑛𝑛𝑖𝑖) ln (1 − Φ (𝑙𝑙𝑙𝑙(𝐼𝐼𝑀𝑀𝑖𝑖 − 𝜇𝜇)
𝛽𝛽

)) 

Eq. 8 

 
Referring to Eq. 8, the parameters of 𝜇̅𝜇 and 𝛽̅𝛽 are the 

estimates of 𝜇𝜇, 𝛽𝛽, so thus it will maximize the likelihood 
function. This equation is written as a summation over 
all IM levels. Simply put, for each IM level, this 
equation enables the computation of log-likelihood for 
the observed damage fraction one by one, and then 
summing all of it, to obtain the total likelihood for the 
entire dataset. 

3.3.4 Other fitting strategies 

Many research studies have referenced the notable 
works of Shinozuka [18] to develop fragility functions. 
Over time, numerous variants of fitting approaches have 
been proposed for constructing these fragility functions.  
 
Rossetto et al. [30] suggested the use of Generalized 
Additive Models (GAM) to develop empirical-based 
fragility curves, particularly when the relationship 
between the IM and the damage probability is not well 
understood or known to be linear. Conversely, Rossetto 
et al. [21] utilized Generalized Linear Model (GLM) 
with the probit link to develop the analytical-based 
fragility curve. Giordano et al. [31] highlighted the 
benefits of Bayesian updating, given its flexibility in 
handling inhomogeneous data and enabling ease of 
updating existing datasets. In addition, some researcher 
pointed out the premise of neural networks (machine 
learning) to estimate the vulnerability function with 
limited datasets [32]. 

4 Fragility Curve of buildings for 
Natural Hazards 

4.1 Seismic fragility  

There is abundance of literature on the seismic fragility 
of buildings, with this function being the most 
established globally compared to other hazards. 
Numerous empirical seismic fragility functions have 
been developed based on past earthquake events. For 
instance, the fragility function for Nepali residential 
building stock was established from data collected 
during severe earthquakes, including the 2015 Gorkha 
earthquake [33], The fragility function for Nepalese 
school buildings also leverages data from the 2015 
Gorkha earthquake [31], Other examples include 
fragility functions for Reinforced Concrete (RC) 
buildings based on the 2009 L’Aquila earthquake [16], 
RC residential buildings based on the 2017 Iran 
earthquake [34], churches following the 2016 Central 
Italy earthquake [35], and both engineered and non-
engineered buildings based on the 2014 Thailand 
earthquake [36]. 

 
In addition, tools for crafting analytical-based 

fragility curves are also enumerated. For example, 
Rossetto et al. [21] proposed a fragility curve via the 
capacity spectrum method integrating record-to-record 
variability, known as FRACAS. Baltzopoulos et al. [22] 
expanded the applicability of static pushover results to 
Incremental Dynamic Analysis (IDA) for fragility curve 
creation, termed SPO2FRAG. Meanwhile, Martins et al. 
[37] created the Vulnerability Modeller's ToolKit 
(VMTK), which encapsulates not only the fragility 
function but also the vulnerability function. 

 
Large-scale building taxonomies, along with 

fragility and vulnerability function databases, have been 
developed by the Global Earthquake Model (GEM) 
[38]. The aim of these resources is to create an 
established yet collaborative platform for conducting 
earthquake risk assessments. Other successful initiatives 
include the Global Program for Safer Schools (GPSS) 
[39], which focuses on school buildings globally. In 
addition, HAZUS 5.1 framework [40] also provides a 
comprehensive library of structural fragilities for 
various types of buildings, infrastructure, and utilities, 
thereby offering a robust tool for estimating earthquake 
losses. 

4.2 Tsunami fragility curve 

In the pursuit of understanding the impact of tsunamis 
on structures, various studies have been conducted to 
develop fragility curves. These curves, which represent 
the probability of exceeding a certain damage state 
given a hazard intensity measure, are derived either 
empirically or analytically. 

 
Empirical-based fragility curves are derived from 

observed damage data. For instances, Koshimura et al. 
[41] followed a semi-empirical approach, developing 
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fragility functions for tsunami damage estimation via 
numerical simulation of tsunami inundation model and 
post-tsunami data from Banda Aceh, Indonesia. 
Valencia et al. [42] developed tsunami damage 
functions for European-Mediterranean coasts based on 
empirical dataset from December 2004 tsunami. 
Subsequently, Suppasri et al. [8] utilized data from the 
2011 Great East Japan tsunami to derive fragility 
functions for over 250,000 surveyed structures. Later, 
Charvet et al. [43] adopted generalized linear models to 
assess the potential tsunami damage to buildings, using 
empirical data from the same event. Furthermore, De 
Risi et al. [44] investigating the importance of 
incorporating flow velocity in the tsunami, multi-variate 
empirical fragility modelling and highlighted its 
significant contribution, particularly for severe 
structural damage states. 
 

On the other hand, analytical-based fragility curves 
are derived from theoretical models and simulations. A 
novel study by Petrone et al. [9] assessed the fragility of 
a reinforced concrete structure under tsunami actions 
using nonlinear static and nonlinear dynamic analyses 
by linking inundation depth variance. Later, Petrone 
[45] extended the study to examine the sequential event 
of an earthquake and tsunami. Another example of 
analytical fragility curve is based on the study of Medina 
et al. [46], which combined rigorous nonlinear structural 
analysis with the Monte Carlo statistical algorithm to 
develop theoretical probability fragility curves in the 
building context of the Colombian Pacific coast. These 
studies highlight the importance of analytical models in 
understanding and predicting the impact of tsunamis on 
structures. 

4.3 Wind fragility curve 

The vulnerability of structures to wind damage is a 
significant concern in the field of structural engineering. 
This vulnerability is influenced by a variety of factors, 
including roof design, construction quality, and 
geographic location. However, currently, wind fragility 
function is limited to analytical-based fragility curve. 
Moreover, only wind fragility curve in the context of 
building will be discussed herein. 
 

A series of studies by Stewart and colleagues have 
made significant contributions to our understanding of 
these factors. For instance, Stewart et al. [47] conducted 
a fragility analysis of roof damage to industrial buildings 
subject to extreme wind loading in non-cyclonic 
regions. In another study, Stewart et al. [48] developed 
a new fragility function for roof sheeting failure under 
extreme wind conditions, highlighting the potential 
impact of climate change on housing vulnerability, 
particularly in coastal regions. Furthermore, Qin and 
Stewart [49] demonstrated that construction defects 
significantly increase the vulnerability of metal roofs to 
wind damage. 
 

A particularly noteworthy contribution to this field 
is the work of Pandolfi et al. [50] who introduced a tool, 
termed ERMESS, a new method for assessing the risk 

of extreme wind damage to building portfolios. This 
method combines building-specific fragility curves with 
regional wind hazard maps to estimate the risk of wind 
damage to a portfolio of buildings. The authors 
demonstrated the effectiveness of ERMESS by applying 
it to a case study in Italy. This approach allows for a 
more comprehensive assessment of wind risk, 
considering both the vulnerability of individual 
structures and the spatial distribution of wind hazards. 
This innovative approach represents a significant 
advancement in the field and provides a solid foundation 
for future research. 

 
In summary, it is essential to note that wind hazards 

predominantly might significantly affect a specific set of 
structures. It seems that the effects are most substantial 
on flexible structures such as cold-formed or light 
structures, timber structures, transmission towers, 
structural poles, and roof structures. This specificity 
indicates a need for targeted research and mitigation 
strategies for these types of structures that could 
significantly reduce their vulnerability to wind hazards. 

4.4 Flood fragility curve 

Floods are a recurrent hazard globally, affecting not 
only emerging regions but also developed areas. The 
impact of climate change has further complicated the 
understanding of flood hazards, necessitating the 
development of effective mitigation strategies to address 
this challenge. 

 
The flood fragility function uses inundation depth as 

the Intensity Measure (IM), similar to the approach used 
for characterizing tsunami hazards. Tsunamis are 
distinguished by high water flow velocities and the 
potential to carry debris, resulting in significant impact 
forces on buildings. In contrast, typical types of floods, 
such as river floods, urban floods, and pluvial floods, are 
triggered by heavy rainfall, leading to a gradual increase 
in water levels until surrounding buildings or 
infrastructure are submerged. Conversely, flash floods 
can occur suddenly, inundating neighboring buildings 
rapidly. Accurate classification of the flood type is 
crucial for developing an appropriate fragility function 
to effectively estimate and mitigate risks. 

 
Flood fragility curves have been extensively studied 

and applied in various contexts, as evidenced by the 
diverse range of literature available on the subject. The 
development of these curves often involves the use of 
empirical or analytical methods, each with its unique 
advantages and limitations. For instance, the JRC Tech 
Report [51] presents a global analysis of flood depth-
damage functions, proposing a new approach that 
incorporates a wider range of factors, including building 
characteristics, flood characteristics, and socio-
economic factors. Similarly, Thapa et al. [52] present a 
methodology for mapping flood hazards and analyzing 
the vulnerability of residential buildings at the 
catchment scale, using a combination of Digital 
Elevation Model (DEM), HEC-geoRAS preprocessing, 
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Valencia et al. [42] developed tsunami damage 
functions for European-Mediterranean coasts based on 
empirical dataset from December 2004 tsunami. 
Subsequently, Suppasri et al. [8] utilized data from the 
2011 Great East Japan tsunami to derive fragility 
functions for over 250,000 surveyed structures. Later, 
Charvet et al. [43] adopted generalized linear models to 
assess the potential tsunami damage to buildings, using 
empirical data from the same event. Furthermore, De 
Risi et al. [44] investigating the importance of 
incorporating flow velocity in the tsunami, multi-variate 
empirical fragility modelling and highlighted its 
significant contribution, particularly for severe 
structural damage states. 
 

On the other hand, analytical-based fragility curves 
are derived from theoretical models and simulations. A 
novel study by Petrone et al. [9] assessed the fragility of 
a reinforced concrete structure under tsunami actions 
using nonlinear static and nonlinear dynamic analyses 
by linking inundation depth variance. Later, Petrone 
[45] extended the study to examine the sequential event 
of an earthquake and tsunami. Another example of 
analytical fragility curve is based on the study of Medina 
et al. [46], which combined rigorous nonlinear structural 
analysis with the Monte Carlo statistical algorithm to 
develop theoretical probability fragility curves in the 
building context of the Colombian Pacific coast. These 
studies highlight the importance of analytical models in 
understanding and predicting the impact of tsunamis on 
structures. 

4.3 Wind fragility curve 

The vulnerability of structures to wind damage is a 
significant concern in the field of structural engineering. 
This vulnerability is influenced by a variety of factors, 
including roof design, construction quality, and 
geographic location. However, currently, wind fragility 
function is limited to analytical-based fragility curve. 
Moreover, only wind fragility curve in the context of 
building will be discussed herein. 
 

A series of studies by Stewart and colleagues have 
made significant contributions to our understanding of 
these factors. For instance, Stewart et al. [47] conducted 
a fragility analysis of roof damage to industrial buildings 
subject to extreme wind loading in non-cyclonic 
regions. In another study, Stewart et al. [48] developed 
a new fragility function for roof sheeting failure under 
extreme wind conditions, highlighting the potential 
impact of climate change on housing vulnerability, 
particularly in coastal regions. Furthermore, Qin and 
Stewart [49] demonstrated that construction defects 
significantly increase the vulnerability of metal roofs to 
wind damage. 
 

A particularly noteworthy contribution to this field 
is the work of Pandolfi et al. [50] who introduced a tool, 
termed ERMESS, a new method for assessing the risk 

of extreme wind damage to building portfolios. This 
method combines building-specific fragility curves with 
regional wind hazard maps to estimate the risk of wind 
damage to a portfolio of buildings. The authors 
demonstrated the effectiveness of ERMESS by applying 
it to a case study in Italy. This approach allows for a 
more comprehensive assessment of wind risk, 
considering both the vulnerability of individual 
structures and the spatial distribution of wind hazards. 
This innovative approach represents a significant 
advancement in the field and provides a solid foundation 
for future research. 

 
In summary, it is essential to note that wind hazards 

predominantly might significantly affect a specific set of 
structures. It seems that the effects are most substantial 
on flexible structures such as cold-formed or light 
structures, timber structures, transmission towers, 
structural poles, and roof structures. This specificity 
indicates a need for targeted research and mitigation 
strategies for these types of structures that could 
significantly reduce their vulnerability to wind hazards. 

4.4 Flood fragility curve 

Floods are a recurrent hazard globally, affecting not 
only emerging regions but also developed areas. The 
impact of climate change has further complicated the 
understanding of flood hazards, necessitating the 
development of effective mitigation strategies to address 
this challenge. 

 
The flood fragility function uses inundation depth as 

the Intensity Measure (IM), similar to the approach used 
for characterizing tsunami hazards. Tsunamis are 
distinguished by high water flow velocities and the 
potential to carry debris, resulting in significant impact 
forces on buildings. In contrast, typical types of floods, 
such as river floods, urban floods, and pluvial floods, are 
triggered by heavy rainfall, leading to a gradual increase 
in water levels until surrounding buildings or 
infrastructure are submerged. Conversely, flash floods 
can occur suddenly, inundating neighboring buildings 
rapidly. Accurate classification of the flood type is 
crucial for developing an appropriate fragility function 
to effectively estimate and mitigate risks. 

 
Flood fragility curves have been extensively studied 

and applied in various contexts, as evidenced by the 
diverse range of literature available on the subject. The 
development of these curves often involves the use of 
empirical or analytical methods, each with its unique 
advantages and limitations. For instance, the JRC Tech 
Report [51] presents a global analysis of flood depth-
damage functions, proposing a new approach that 
incorporates a wider range of factors, including building 
characteristics, flood characteristics, and socio-
economic factors. Similarly, Thapa et al. [52] present a 
methodology for mapping flood hazards and analyzing 
the vulnerability of residential buildings at the 
catchment scale, using a combination of Digital 
Elevation Model (DEM), HEC-geoRAS preprocessing, 

spatial analysis, and empirical damage data collected 
after the 2017 flood in eastern Nepal. 

 
The vulnerability of buildings to flood hazards, 

particularly traditional and residential structures, is a 
recurring theme in the literature. D'ayala et al. [53] 
discuss the vulnerability and risk assessment of 
traditional buildings in a heritage district of Kuala 
Lumpur, Malaysia, proposing a novel physical-based 
approach that combines hydraulic modeling, building 
surveys, and vulnerability curves to assess flood loss 
estimation. Torres et al. [54] focus on the vulnerability 
of Florida residential structures to hurricane-induced 
coastal flooding, providing valuable insights into the 
specific risks associated with coastal regions. 
Interestingly, this study incorporated the 2011 Great 
East Japan tsunami as a benchmark to produce coastal 
flood vulnerability function. In addition, insurance 
claims data and expert-based models are used to validate 
the model, resulting a comprehensive hybrid approach.  

 
The literature also highlights the importance of using 

multi-variate approaches to estimating flood fragility 
and loss for buildings. Nofal et al. [55] proposing a 
general method without requiring direct empirical 
(field) data. This study also emphasize that the multi-
variate approach provides a more accurate and 
comprehensive assessment of flood risk, particularly for 
buildings with complex characteristics. This is further 
supported by Lazzarin et al. [56], who propose a new 
flood damage function based on the impact parameter 
(W) that combines both physical and data-based aspects, 
arguing that this provides a more accurate estimate of 
flood damage than traditional methods that rely solely 
on water depth, where flow velocity is unconsidered. 

 
The development and application of models for 

flood fragility and vulnerability assessment are also 
well-documented in the literature. Galasso et al. [57] 
present a taxonomy for models used in the assessment 
of building fragility and vulnerability to flooding, 
providing a framework for selecting appropriate models 
for flood risk assessment.  

4.5 Other fragility curve 

In addition to seismic, tsunami, wind, and flood fragility 
functions, other types of fragility functions are also 
crucial in assessing the vulnerability of structures to 
various hazards. Alberico et al. [58] developed a 
fragility function to assess building damage probability 
due to pyroclastic currents from small-size explosive 
eruptions at Campi Flegrei, Italy. This function provides 
a quantitative tool, which can be used for loss estimation 
of volcanic hazard event. Szagri and Szalay [59]  
proposed a novel approach to assess heat vulnerability 
of residential buildings using theoretical fragility 
curves. This approach considers the impact of extreme 
weather events, such as heatwaves, on building 
overheating, thereby providing a more objective 
measure of heat vulnerability.  

5 Discussion 

5.1 Catalog of selected studies of worldwide 
fragility functions  

The dataset presented in Table 1  represents a 
comprehensive compilation of fragility functions 
sourced from a literature review of selected studies. The 
data encompasses a range of hazard types including, but 
not limited to, seismic, tsunami, wind, and flood 
hazards. 
 

The building characteristics impacted by these 
hazards are diverse. This diversity underscores the broad 
applicability of the dataset across different building 
typologies. Factors such as the uniqueness of the 
building archetype, vernacular aspects, local materials 
availability, construction technology, and prescribed 
building codes impact these variabilities. This diversity 
emphasizes the need for a similarly diverse set of 
fragility functions to accurately represent the 
vulnerability of different types of buildings to various 
hazard types. 

 
In conclusion, the presented dataset is an extensive 

collection of fragility functions derived from a thorough 
review of existing literature. It spans a range of hazard 
types, derivation methods, building types, and intensity 
measures. This broad scope makes it a valuable resource 
as a starting point to develop a robust catalog of 
Indonesian fragility functions, which are incredibly 
beneficial in providing insights to estimate potential 
national hazard loss. 

5.2 Formulating Indonesian fragility functions 

This chapter will focus on the development of 
Indonesian-specific fragility functions. One could argue 
whether those fragility functions in Table 1 could be 
used for Indonesia’s structural fragility, given the 
known constraints, where those studies could or might 
not reflect Indonesia’s building characteristic or 
taxonomy.   The need for these fragility functions arises 
from the unique architectural styles, building materials, 
and construction methods common in Indonesia.  

5.2.1 Seismic fragility model 

Seismic fragility functions are frequently studied in 
the literature. When empirically derived for a specific 
event, these functions can portray building losses via 
statistical estimation of observed datasets. If the 
empirical data on damaged buildings are meticulously 
surveyed, detailed insights into building characteristics 
such as construction type and material, the number of 
stories, and structural systems can be obtained. 
Conversely, the distribution of intensity, such as Peak 
Ground Acceleration (PGA), is estimated based on the 
Ground Motion Prediction Equation (GMPE), which 
can vary depending on the computational model and 
parameter assumptions. However, a noteworthy issue 
with post-damage surveys is the quality of the collected 
data, as the varying decisions made by surveyors when 
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filling out assessment forms could introduce bias. 
Another concern when using seismic empirical-based 
fragility functions is that structural systems can differ 
significantly from one country to another. From this 
standpoint, the existing empirical data often do not align 
with the Indonesian building taxonomy. 

 
An analytical-based approach can be employed to 

create seismic fragility functions for any building 
taxonomy. For instance, by constructing an analytical 
model based on the Indonesian building taxonomy 
(outlined in Chapter 2), an analytical-based seismic 
fragility can be generated using the framework of 
Rossetto et al. [21] or Baltzopoulos et al. [22]. The 
spectral acceleration, Sa, represents the most suitable 
Intensity Measure (IM) from an engineering perspective 
due to the structural system nature to excite at its 
fundamental mode [28]. Consequently, a seismic 
fragility function representing the Indonesian building 
taxonomy can be constructed. However, this approach 
raises a question about the number of structural models 
that should be built to conduct the numerical simulation, 
ensuring a probabilistic consideration of unique building 
characteristics in Indonesia. 
 

To cope up with this limitation, an in-depth building 
classification strategy can be implemented in this case. 
For instance, the selection of fragility functions can be 
categorized based on occupancy type, structural system 
(e.g., RC, Steel, masonry), and the number of building 
stories. Perhaps the most efficient method is to 
incorporate some of the fragility function from existing 
world-wide databases like the Global Earthquake Model 
[38] and the Global School Infrastructure (GLOSI) [39]. 
It is important to note that most fragility functions from 
these databases are derived analytically. By utilizing 
these databases along with the framework of FRACAS 
[21] or SPO2FRAG [22], it is possible to supplement the 
specific building taxonomies where necessary. 

5.2.2 Tsunami fragility model 

Perhaps, compared to other hazards, a tsunami is the 
most destructive event, which is most likely to cause 
damage or lead to building collapses. This is reflected in 
the notorious events of the 2004 Indian Ocean tsunami 
and the 2011 Great East Japan tsunami. In the context of 
Indonesian building regulation, except for tsunami 
evacuation buildings, engineers are not required to 
consider tsunami loading for building permits, even in 
coastal regions with a history of tsunamis. 
Consequently, buildings can be highly vulnerable if 
exposed to a tsunami event. 

 
The use of an analytical fragility framework for 

tsunami hazards can be facilitated by applying the 
proposed framework of Petrone et al. [9]. However, the 
selected IM (i.e., base shear force, which preferrable 
from an engineering perspective) can be problematic to 
use, since Probabilistic Tsunami Hazard Analysis 
(PTHA) or scenario-based computations generally 
derive the hazard intensity in terms of tsunami 

inundation depth. This IM appears to be the most 
appropriate measure of intensity for non-engineers. 

 
Both the studies of Koshimura et al. [41] and 

Valencia et al. [42] could potentially align with the 
regional characteristics of Indonesian building 
taxonomy. However, these studies lack detail in 
defining the building taxonomy and do not sufficiently 
elaborate the damage state of fragility functions. In 
contrast, the works of Suppasri et al. [8] and Charvet et 
al. [43], based on empirical-driven fragility functions 
from the 2011 Great East Japan tsunami, have done an 
excellent job in classifying the building classes. 
Considering the devastating effect of tsunami impact on 
buildings, it is reasonable to assume that the work of 
Suppasri et al. [8] can be used for Indonesia's tsunami 
fragility function, offering a more various building 
taxonomy. 

5.2.3 Wind fragility model 

Generally speaking, rigid structures, such as those using 
an RC structural system, have very low susceptibility to 
wind impact. If there is any damage, it's most likely to 
occur on components such as the façade, door, window, 
or roof structure. During an extreme wind event, the roof 
of a building might endure the most pressure from both 
wind and rain. Therefore, the vulnerability of the roof 
should be governed more thoroughly, especially when 
developing a wind fragility function. 

 
In addition to the ERMESS [50], which is currently 

not publicly accessible, most references from Table 1 
are inferred from the works of Stewart et al. [47] [48] 
[49]. These studies are derived from an analytically-
based fragility curve for residential house typology in 
Australia. The characteristics of the structural system 
mentioned in these studies have a weak relation to 
Indonesia's roof typologies. However, these studies 
provide an insightful framework to develop a unique 
wind fragility function for Indonesian typology. 

 
This study reports some development progress of the 

wind fragility function. A triple fink truss composed of 
cold-formed members is considered as a case example. 
The probabilistic aspect of generating a fragility 
function can be achieved by varying the slope degree of 
the roof, from 20 to 45 degrees. The wind loading 
procedures follow SNI 1727 2020, which are equivalent 
to ASCE 7-16. Due to the absence of an Indonesian wind 
speed map, the wind gust is assumed to range from 0 to 
40 m/s. The EDPs are in terms of the ratio of demand 
per capacity of structural members, and the deflection 
limit. Furthermore, the Open Application Program 
Interface (OAPI) script is introduced to ease the 
modelling process, such as enabling a communication 
interface between Python and SAP2000. The resulting 
structural analysis output is then processed as an input 
for a random seed to generate the Monte-Carlo 
simulation. Finally, the optimized Monte-Carlo results 
of observed collapsed datasets are processed to generate 
the wind fragility function. 
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filling out assessment forms could introduce bias. 
Another concern when using seismic empirical-based 
fragility functions is that structural systems can differ 
significantly from one country to another. From this 
standpoint, the existing empirical data often do not align 
with the Indonesian building taxonomy. 

 
An analytical-based approach can be employed to 

create seismic fragility functions for any building 
taxonomy. For instance, by constructing an analytical 
model based on the Indonesian building taxonomy 
(outlined in Chapter 2), an analytical-based seismic 
fragility can be generated using the framework of 
Rossetto et al. [21] or Baltzopoulos et al. [22]. The 
spectral acceleration, Sa, represents the most suitable 
Intensity Measure (IM) from an engineering perspective 
due to the structural system nature to excite at its 
fundamental mode [28]. Consequently, a seismic 
fragility function representing the Indonesian building 
taxonomy can be constructed. However, this approach 
raises a question about the number of structural models 
that should be built to conduct the numerical simulation, 
ensuring a probabilistic consideration of unique building 
characteristics in Indonesia. 
 

To cope up with this limitation, an in-depth building 
classification strategy can be implemented in this case. 
For instance, the selection of fragility functions can be 
categorized based on occupancy type, structural system 
(e.g., RC, Steel, masonry), and the number of building 
stories. Perhaps the most efficient method is to 
incorporate some of the fragility function from existing 
world-wide databases like the Global Earthquake Model 
[38] and the Global School Infrastructure (GLOSI) [39]. 
It is important to note that most fragility functions from 
these databases are derived analytically. By utilizing 
these databases along with the framework of FRACAS 
[21] or SPO2FRAG [22], it is possible to supplement the 
specific building taxonomies where necessary. 

5.2.2 Tsunami fragility model 

Perhaps, compared to other hazards, a tsunami is the 
most destructive event, which is most likely to cause 
damage or lead to building collapses. This is reflected in 
the notorious events of the 2004 Indian Ocean tsunami 
and the 2011 Great East Japan tsunami. In the context of 
Indonesian building regulation, except for tsunami 
evacuation buildings, engineers are not required to 
consider tsunami loading for building permits, even in 
coastal regions with a history of tsunamis. 
Consequently, buildings can be highly vulnerable if 
exposed to a tsunami event. 

 
The use of an analytical fragility framework for 

tsunami hazards can be facilitated by applying the 
proposed framework of Petrone et al. [9]. However, the 
selected IM (i.e., base shear force, which preferrable 
from an engineering perspective) can be problematic to 
use, since Probabilistic Tsunami Hazard Analysis 
(PTHA) or scenario-based computations generally 
derive the hazard intensity in terms of tsunami 

inundation depth. This IM appears to be the most 
appropriate measure of intensity for non-engineers. 

 
Both the studies of Koshimura et al. [41] and 

Valencia et al. [42] could potentially align with the 
regional characteristics of Indonesian building 
taxonomy. However, these studies lack detail in 
defining the building taxonomy and do not sufficiently 
elaborate the damage state of fragility functions. In 
contrast, the works of Suppasri et al. [8] and Charvet et 
al. [43], based on empirical-driven fragility functions 
from the 2011 Great East Japan tsunami, have done an 
excellent job in classifying the building classes. 
Considering the devastating effect of tsunami impact on 
buildings, it is reasonable to assume that the work of 
Suppasri et al. [8] can be used for Indonesia's tsunami 
fragility function, offering a more various building 
taxonomy. 

5.2.3 Wind fragility model 

Generally speaking, rigid structures, such as those using 
an RC structural system, have very low susceptibility to 
wind impact. If there is any damage, it's most likely to 
occur on components such as the façade, door, window, 
or roof structure. During an extreme wind event, the roof 
of a building might endure the most pressure from both 
wind and rain. Therefore, the vulnerability of the roof 
should be governed more thoroughly, especially when 
developing a wind fragility function. 

 
In addition to the ERMESS [50], which is currently 

not publicly accessible, most references from Table 1 
are inferred from the works of Stewart et al. [47] [48] 
[49]. These studies are derived from an analytically-
based fragility curve for residential house typology in 
Australia. The characteristics of the structural system 
mentioned in these studies have a weak relation to 
Indonesia's roof typologies. However, these studies 
provide an insightful framework to develop a unique 
wind fragility function for Indonesian typology. 

 
This study reports some development progress of the 

wind fragility function. A triple fink truss composed of 
cold-formed members is considered as a case example. 
The probabilistic aspect of generating a fragility 
function can be achieved by varying the slope degree of 
the roof, from 20 to 45 degrees. The wind loading 
procedures follow SNI 1727 2020, which are equivalent 
to ASCE 7-16. Due to the absence of an Indonesian wind 
speed map, the wind gust is assumed to range from 0 to 
40 m/s. The EDPs are in terms of the ratio of demand 
per capacity of structural members, and the deflection 
limit. Furthermore, the Open Application Program 
Interface (OAPI) script is introduced to ease the 
modelling process, such as enabling a communication 
interface between Python and SAP2000. The resulting 
structural analysis output is then processed as an input 
for a random seed to generate the Monte-Carlo 
simulation. Finally, the optimized Monte-Carlo results 
of observed collapsed datasets are processed to generate 
the wind fragility function. 

5.2.4 Flood fragility model 

Currently, the flood fragility model is the least explored 
reference in this study, but it will be reserved for 
valuable discussions in future work. 

 
Flood inundation insignificantly damages or affects 

the structural systems of buildings, except in the case of 
flash floods which, along with relatively high flow 
velocity water and debris, can likely affect vulnerable 
structural systems (e.g., such as poorly constructed or 
temporary dwellings [52]). The empirical flood 
vulnerability model is particularly effective in 
estimating economic losses due to flood hazards [53]. 
To date, for RC building taxonomy, flood fragility 
functions are typically used in estimating the probability 
of loss in terms of component or asset losses, rather than 
building failure. 

 
The most direct use of a flood vulnerability model 

(e.g., damage to water depth function) can be inferred 
from the JRC Technical Report and Hazus Flood 
Technical Manual. The single curve of the vulnerability 
model can be used to estimate the percentage of damage 
loss for buildings exposed to flood hazards. 

6 Conclusion 

This paper has presented (1) a general overview of 
techniques used to derive fragility functions; (2) a 
statistical trend of Indonesia's building taxonomy; (3) a 
multi-hazard catalog of fragility functions; and (4) a 
pilot model to generate unique fragility functions for 
multi-hazard events. To offer an intuitive overview, Fig. 
3 presents an illustration of the multi-hazard assessment 
framework by highlighting several important key terms. 

 
This study is part of a larger project aimed at 

developing a national-scale framework for loss 
estimation, incorporating multi-hazard risk assessments. 
The findings and results of this study will be set aside 
and are anticipated to make a significant contribution to 
further work. 
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