Construction Management and Dynamic Building Structure's Sustainability on Engineering's Technology and Human Development Khristian Edi Nugroho Soebandrija¹, Hwi-Chie Ho¹, Meilani² ¹Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia ²Civil Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, 11480, Indonesia Abstract. Construction Management (CM) and Dynamic Building Structure (DBS) constitute indispensable factor within Sustainability Perspective in general and in Environmental, Social and Governance (ESG) within Global Perspectives. Precisely, this paper elaborates discourse on Civil Engineering and Industrial Engineering, including the ergonomics and its anthropometric measurement. The CM and DBS in this paper refers to office activities that involves activities carried out in a room to carry out certain business activities. In general, office activities in Indonesia are carried out by all middle and upper business entities in Indonesia. Generally, current office activities are dominated by the design of open space offices, with the aim of increasing collaboration between employees within the office. The objective of this paper is to observe and provide solutions for workers that experience distractions from co-workers such as talking too loudly so they have higher levels of stress difficulty concentrating and motivation. One of the solutions refer to use of partitions to avoid people experiencing claustrophobia or fear of tight spaces and to create a space of privacy for each employee. Subsequently the discourse on CM and DBS is intertwined with the concept of Environment, Social and Government (ESG) within Global Perspectives. This paper provides solutions within perspective on Civil Engineering and Industrial Engineering's Technology and Human development. Ultimately, this paper combines theoretical and empirical perspective within the Local Wisdom in Indonesia and subsequently in Global Perspectives. # 1. Introduction Construction Management (CM) and Dynamic Building Structure (DBS) constitute indispensable factor within Sustainability Perspective in general and in Environment, Social and Government (ESG) within Global Perspectives. Precisely, this paper elaborates discourse on Civil Engineering and Industrial Engineering. To some extent, sustainability on engineering's technology and human development requires perspectives vis-a-vis environmental, social and governance (ESG) principles. ESG principles have been undergoing years of its development prior its initial proposal in 2004. Countries within global perspectives commence and continue to generate leverage ESG principles accordingly [1]. #### 2. Literature Review ESG principles is deemed as mainstream, and its implementation has widened in the practical field. Subsequently, literature reviews on ESG theoretical and empirical have been spreading exponentially. To some *Corresponding author: meilani@binus.edu extent, ESG principles are applicable in financial area, but it is expanded to construction management and dynamic building structure's sustainability on engineering's technology and human development [2-6]. Construction Management (CM) is another perspective that this paper is elaborated other than Dynamic Building Structure (DBS). To some extent, Construction Management has its widened perspective on Construction Management Risk (CMR) as the primary leverage of developed countries, including Indonesia. The CMR is intended for sustainable development and its risk factor [7]. The mentioned paper elaborates the office ergonomics, as part of its further deeper analysis, not to mention the trilogy safety work level measurement, comfort work level and ease measurement of motion, as depicted in Figure 1. Those elements of trilogy are further elaborated in the specific sub elements as case-by-case situation and layout of office [8]. Fig. 1 The hierarchical model on office ergonomics Ergonomics defined as is multi-interactions among environment and work (machine)-human interaction. Within ergonomics domain, there are meticulous examination on optimization study of designs. These designs are focused on the human use and work-life conditions. In this paper, office ergonomics is rearranged vis-à-vis working space and the work itself, and vis-à-vis science of ergonomics. These rearrangements are complying wide array trilogy among comprehensive factors of anatomy, within physiology, and eventually psychology. This trilogy is identified by characteristics and capacity. Subsequently, conformity is obtained among the work and the human being, and eventually it provides the highest efficiency with the least fatigue [9]. Ultimately, to some extent, this office ergonomics involves multi variables and wide arrays of noise along with its vibration factors, and its thermal levels, along with light factors within its radiation, and pressure levels [10]. To some extent, Construction Management (CM) is deemed as widely implemented methods and tools to solve complex problem in CM including the office ergonomics. This CM is further widely cited in several research and its SCOPUS Journal as depicted in title in Table 1 Table 1. Construction Management in International Journal Title | _ | ٠. | . 1 | | | |---|----|-----|---|--| | 1 | 1 | tΙ | e | | A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics A model for cost-benefit analyst of construction and demolition waste management throughout the waste chain A prototype system dynamic model for assessing the sustainability of construction projects A model for evaluating the social performance of construction waste management The 1st title constitutes the research work of Yuan, Chini, Lu and Shen, precisely on the effects of management strategies relate to construction and demolition waste [11]. Furthermore, the 2nd title constitutes the research work on environmental and economic, that is the trigger for ESG in term of system dynamics [12]. To elaborate further the perspectives on environmental and economic, subsequently the 3rd title elaborates the cost-benefit model, vis-à-vis the systems dynamics [13]. Meanwhile for 4th title, the research on prototype in term of system dynamic and its model refers to the sustainability as intended for assessment purpose [14]. Subsequently, the similar system dynamics model is intended to determine the purpose in construction [15]. Ultimately, the work on social performance is also conducted for the purpose of evaluation [16]. #### 3. Methods In brief, this paper constitutes hybrid of both quantitative and qualitative methods, within research methodology and design methodology. Precisely, it combines both theoretical and empirical analysis on CD and DBS on Engineering's Technology and Human Development. First, as theoretical perspectives, the literature review in prior session constitutes the overview on the elaboration on the following perspective, not limited to ESG, CM and DBS, and to some extent to Sustainability on Engineering's Technology and Human Development. Second, empirical as the perspectives, implementation relates to one of the product marketing companies that are members of the High Point group, engaging in office furniture, education, residential and hospitality. In addition to the furniture sector, High Point Office itself also produces decorative products in the form of flooring and acoustics. ### 4. Data Collection To begin with, the data collection commences with the Anthropometry Measurement of D1 until D36 based upon <u>www.antropometriindonesia.org</u> and eventually it is elaborated within data collection with purposive sampling of respondents. Subsequently, the data collection based upon comparison within Statistics Trends of ESG [1] within range of years among 2004 – 2020, as depicted in Table 2. Table 2. Statistics Trends of ESG | Keywords | Strength | Begin | End | Duration | 2004-2020 | |-----------------------|----------|-------|------|----------|-----------| | company | 4.36 | 2004 | 2009 | 5 | | | framework | 4.31 | 2005 | 2014 | 9 | | | technology | 3.98 | 2006 | 2010 | 4 | -= | | perspective | 3.37 | 2006 | 2009 | 3 | | | altruism | 3.14 | 2006 | 2012 | 6 | | | capability | 2.99 | 2008 | 2011 | 3 | | | competition | 3.66 | 2010 | 2013 | 3 | | | consumption | 3.17 | 2012 | 2013 | 1 | | | choice | 3.07 | 2012 | 2013 | 1 | | | stakeholder theory | 2.97 | 2012 | 2013 | 1 | | | organization | 3.28 | 2013 | 2014 | 1 | | | philanthropy | 4.63 | 2015 | 2018 | 3 | | | self-regulation | 4.32 | 2015 | 2018 | 3 | | | standard | 3 | 2015 | 2016 | 1 | | | financial performance | 4.75 | 2016 | 2017 | 1 | | | firm value | 3.67 | 2017 | 2020 | 3 | | | moderating role | 3.2 | 2018 | 2020 | 2 | | | incentive | 3.18 | 2018 | 2020 | 2 | | | director | 2.91 | 2018 | 2020 | 2 | | # 5. Results and Discussion Table 3 First Anthropometry Measurement D1 until D36 | Dimensio
n | Remark
in cm | 5th | 50 th | 95th | SD | |-----------------|--|------------|------------------|------------|-----------| | Dimension 1 | Height | 117.5
4 | 152.5
8 | 187.6
3 | 21.3 | | Dimension 2 | Eye
Height | 108.2
4 | 142.2
2 | 176.2 | 20.6 | | Dimension 3 | Shoulder
Height | 96.6 | 126.7
9 | 156.9
9 | 18.3
6 | | Dimension 4 | Elbow
Height | 73.13 | 95.65 | 118.1
7 | 13.6
9 | | Dimension 5 | Hip
Height | 55.33 | 87.3 | 119.2
7 | 19.4
3 | | Dimension 6 | Bone
Height | 48.58 | 66.51 | 84.44 | 10.9 | | Dimension 7 | Fingertip
Height | 40.56 | 60.39 | 80.21 | 12.0
5 | | Dimension 8 | Height in sitting position | 60.93 | 78.1 | 95.28 | 10.4
4 | | Dimension 9 | Eye
Height
in sitting
position | 51.11 | 67.89 | 84.68 | 10.2 | | Dimension 10 | Shoulder
Height
in sitting
position | 37.75 | 54.89 | 72.03 | 10.4 | | Dimension 11 | Elbow
Height
in sitting
position | 10.84 | 24.65 | 38.47 | 8.4 | | Dimension
12 | Thigh Thicknes s | 3.75 | 14.7 | 25.65 | 6.66 | | Dimension
13 | Knee
length | 37.72 | 49.9 | 62.08 | 7.41 | | Dimension
14 | Popliteal length | 30.1 | 39.88 | 49.65 | 5.94 | | Dimension
15 | Knee
height | 36.16 | 48.12 | 60.08 | 7.27 | | Dimension
16 | Popliteal
height | 31.03 | 40.07 | 49.1 | 5.49 | |-----------------|---|------------|------------|------------|-----------| | Dimension
17 | Shoulder width | 26.35 | 38.75 | 51.16 | 7.54 | | Dimension
18 | Upper
Shoulder | 15.44 | 31.32 | 47.19 | 9.65 | | Dimension
19 | Hip
Width | 21.65 | 32.32 | 43 | 6.49 | | Dimension 20 | Chest
thickness | 9.73 | 19.22 | 28.71 | 5.77 | | Dimension 21 | Belly
thickness | 11.02 | 20.58 | 30.14 | 5.81 | | Dimension
22 | Upper sleeve length | 21.85 | 32.04 | 42.23 | 6.2 | | Dimension 23 | Lower
sleeve
length | 26.66 | 40.53 | 54.4 | 8.43 | | Dimension
24 | Long
arm span
forward | 48.36 | 66.18 | 84 | 10.8 | | Dimension
25 | Shoulder
length-
hand grip
forward | 43.75 | 56.72 | 69.7 | 7.89 | | Dimension 26 | Head
length | 10.77 | 17.91 | 25.05 | 4.34 | | Dimension 27 | Head
width | 12.47 | 16.05 | 19.64 | 2.18 | | Dimension 28 | Hand
length | 11.64 | 17.05 | 22.47 | 3.29 | | Dimension 29 | Hand
width | 3.69 | 9.43 | 15.17 | 3.49 | | Dimension 30 | Leg
length | 14.59 | 22.73 | 30.87 | 4.95 | | Dimension 31 | Leg
width | 6.29 | 9.14 | 11.98 | 1.73 | | Dimension 32 | Length
of arm
side arm | 111.4
1 | 152.7
1 | 194 | 25.1 | | Dimension 33 | Elbow
span
length | 57.17 | 79.88 | 102.5
9 | 13.8 | | Dimension
34 | Head
grip
height up
in a
standing
position | 138.3 | 185.7 | 233.2 | 28.8 | | Dimension 35 | Grip
height up
in sitting
position | 80.24 | 113.4 | 146.6
1 | 20.1 | | Dimension 36 | Length
of hand
grip
forward | 45.52 | 64.51 | 83.5 | 11.5
4 | From the anthropometry data and statistics trends of ESG, first, to some extent, the discussion refers to the pain and prevalence and severity (Institute of Medicine, 2011). The dimension from D1 until D36 are further interpreted as range of pain severity level from 0 until 5. These 0 and 5 levels indicates the absence of pain and the highest available pain. Any increment of improvement in term of reduced pain severity level is resulted from the treatment of physical therapy and its relevancy vis-à-vis musculosketal disorder. To some extent, the musculosketal pain during the person lifetime is resulted from the working environment, including the office ergonomics [17]. # 6. Conclusion Construction Management (CM) and Dynamic Building Structure (DBS) constitute indispensable factor within Sustainability Perspective in general and in Environmental, Social and Governance (ESG) within Global Perspectives. Precisely, this paper elaborates discourse on Civil Engineering and Industrial Engineering, including the ergonomics and its anthropometric measurement. The CM and DBS in this paper refers to office activities that involves activities carried out in a room to carry out certain business activities. In general, office activities in Indonesia are carried out by all middle and upper business entities in Indonesia. Generally, current office activities are dominated by the design of open space offices, with the aim of increasing collaboration between employees within the office. The mentioned paper elaborates the office ergonomics, as part of its further deeper analysis, not to mention the trilogy safety work level measurement, comfort work level and ease measurement of motion. Those trilogy elements are elaborated vis-à-vis specific sub elements office layout. In this paper, office ergonomics is rearranged vis-à-vis working space and the work itself, and vis-à-vis science of ergonomics. These rearrangements are referring through the lens factors of anatomy, within physiology, and eventually psychology This trilogy is identified by its characteristics and capacity. Subsequently, the conformity is identified through the perspectives of work and human being, and eventually it provides the highest efficiency with the least fatigue. This paper constitutes hybrid of both quantitative and qualitative methods, within research methodology and design methodology. Precisely, it combines both theoretical and empirical analysis on CD and DBS on Engineering's Technology and Human Development. As results and discussion, from the anthropometry data and statistics trends of ESG, first, to some extent, the discussion refers to the pain and prevalence and severity. The dimension from D1 until D36 are further interpreted as range of pain severity level from 0 until 5. These 0 and 5 levels indicates the absence of pain and the highest available pain. To some extent, improvement increment is identified as reduced pain severity level. This level is originated from physical therapy treatment and its relevancy vis-à-vis musculosketal disorder. To some extent, the musculosketal pain throughout person lifetime is originated from the working environment, not limited to office ergonomics #### References - [1] T.-T. Li, K. Wang, T. Sueyoshi, and D. D. Wang, "ESG: Research Progress and Future Prospects," Sustainability, vol. 13, no. 21, p. 11663, 2021, doi: 10.3390/su132111663. - [2] D. Daugaard, "Emerging new themes in environmental, social and governance investing: A systematic literature review," Accounting & Finance, vol. 60, no. 5, pp. 1501-1530, 2020, doi: 10.1111/acfi.12626. - [3] L. Widyawati, "A systematic literature review of socially responsible investment and environmental social governance metrics," Business Strategy and the Environment, vol. 29, no. 2, pp. 619-637, 2020, doi: 10.1002/bse.2367. - [4] S. Drempetic, C. Klein, and B. Zwergel, "The influence of firm size on the ESG score: Corporate sustainability ratings under review," Journal of Business Ethics, vol. 167, no. 2, pp. 333-360, 2020, doi: 10.1007/s10551-019-04270-4. - [5] N. S. Eccles and S. Viviers, "The origins and meanings of names describing investment practices that integrate a consideration of ESG issues in the academic literature," Journal of Business Ethics, vol. 104, no. 3, pp. 389-402, 2011, doi: 10.1007/s10551-011-0911-1. - [6] M. Ziolo, B. Z. Filipiak, I. Bak, and K. Cheba, "How to design more sustainable financial systems: The roles of environmental, social, and governance factors in the decision-making process," Sustainability, vol. 11, no. 20, p. 5604, 2019, doi: 10.3390/su11205604. - [7] R. B. Hessellund, "Civil Engineering Risk Management & Uncertainty Version 1.2," VIA University College, Denmark, pp. 6-10, 2017. - [8] E. Eraslan, I. Güneşli, and W. Khatib, "The evaluation of appropriate office layout design with MCDM techniques," SN Applied Sciences, Springer Nature Switzerland AG, 2020, doi: 10.1007/s42452-020-03728-5. - [9] M. F. Kahraman, "Ergonomics workplace design in Turkey according to anthropometrical data," Ministry of Labor and Social Security General Directorate of Occupational Health and Safety, 2013. - [10] K. H. E. Kroemer and A. D. Kroemer, Office Ergonomics, Taylor and Francis, New York, 2001. - [11]H. Yuan, A. R. Chini, Y. Lu, and L. Shen, "A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste," Waste Management, vol. 32, no. 3, pp. 521-531, 2012, doi: 10.1016/j.wasman.2011.10.021. - [12] M. Marzouk and S. Azab, "Environmental and economic impact assessment of construction and demolition waste disposal using system dynamics," Resources, Conservation and Recycling - [13] H. Yuan, A.R. Chini, Y. Lu and L. Shen, "A dynamic model for assessing the effects of management strategies on the reduction of construction and demolition waste," Waste Manag., vol. 32, pp. 521-531, 2012. - [14] X. Zhang, Y. Wu, L. Shen, M. Skitmore and M. Skitmore, "A prototype system dynamic model for assessing the sustainability of construction projects," Int. J. Proj. Manag., vol. 32, pp. 1313-1329, 2014. - [15] H. Yuan and J. Wang, "A system dynamics model for determining the waste disposal charging fee in construction," Eur. J. Oper. Res., vol. 237, pp. 988-996, 2014. - [16] H. Yuan, "A model for evaluating the social performance of construction waste management," Waste Manag., vol. 32, pp. 1218-1228, 2012. - [17] E. Weston, P. Le and W.S. Marras, "A biomechanical and physiological study of office seat and tablet device interaction," Appl. Ergon., vol. 62, pp. 83-93, 2017.