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Abstract. Hydraulic fracturing is an effective technology used to stimulate hydrocarbon production from 
unconventional reservoirs. Numerical simulation of the hydraulic fracturing process plays a key role in the 
design of hydraulic fracturing. However, most of existing models are overly simplified by neglecting the 
poroelasticity of rock matrix, which may have a substantial effect on the growth of hydraulic fractures, 
especially in oil and/or water saturated formations. In this study, we developed a fully coupled finite element 
model for hydraulic fracture propagation in permeable formations by combining XFEM technique with 
cohesive zone model, and used it to investigate the effects of poroelasticity on the geometry evolution of 
single fracture which initiated from an injection point. Fluid flow within the fractures, Darcy flow within the 
rock matrix, hydraulic fractures propagation, and fluid leak-off into the formation are simultaneously taking 
into account in the model. Then, the model is validated by comparing the results with available analytical 
solutions. To understand and quantify the poroelastic effects on the propagation of hydraulic fracture, several 
cases with different matrix permeability, leak-off coefficients, and bulk modulus of pore fluid are performed. 
The simulation results show that the total volume of leakage is controlled by the combined action of matrix 
permeability and leak-off coefficient. The fracture aperture and length decrease with the increase of matrix 
permeability or leak-off coefficient, while as the bulk moduli of pore fluid increases, the fracture aperture and 
length tend to increase. 
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1. Introduction 
Hydraulic fracturing is an effective technology used to 
stimulate hydrocarbon production from unconventional 
reservoirs, in which one or more fractures are driven by 
the internal pressurized fluid (Bunger and Cardella, 2015). 
The growth of hydraulic fracture in porous media is a 
complex, multi-physics problem, which can be generally 
considered as the following coupled processes (Adachi et 
al., 2007; Detournay, 2016): (i) rock deformation caused 
by the fluid pressure on the fracture surfaces, (ii) fluid 
flow within the fracture, (iii) fracture propagation, and (iv) 
fluid leak out of the fracture into the formation matrix. 
Accurately predicting the growth behavior of hydraulic 
fracture is necessary to design a suitable fracturing 
scheme, which requires a fully coupled numerical model 
that can simultaneous account for the aforementioned 
processes. 
In the early times, analytical and semi-analytical methods 
(Detournay, 2004; Nordgren, 1972; Perkins and Kern, 
1961) have been developed to understand the evolution of 

variables of interests, such as fracture aperture, fracture 
length, and injection pressure. Due to the inherent 
limitation of analytical methods, these solutions, however, 
are usually limited to some simple situations such as 
constant injection rate and linearly elastic medium. To 
simulate the growth behavior of hydraulic fracture in 
more sophisticated situations, a large number of 
numerical approaches have been proposed in literatures, 
including the boundary element method (Gordeliy and 
Detournay, 2011; Long and Xu, 2017; Zhang and Jeffrey, 
2008), the distinct element method (Damjanac and 
Cundall, 2016; Han et al., 2015), the finite element 
method (Carrier and Granet, 2012; Guo et al., 2015; Li et 
al., 2017a; Li et al., 2017b), the finite discrete element 
method (FDEM) (Lisjak et al., 2017; Yan et al., 2015), the 
discontinuous deformation method (DDA) (Choo et al., 
2016), and the extended finite element method (XFEM) 
(Mohammadnejad and Khoei, 2013; Salimzadeh and 
Khalili, 2015). Although significant progress has been 
made, there are still some critical points that need to be 
elucidated. For example, most of existing models use 
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Carter leak-off model to characterize the velocity of fluid 
leak out of fracture, but neglect the poroelasticity effect of 
rock matrix, which may have substantial impacts on the 
growth of hydraulic fracture, especially in oil and/or water 
saturated formations. 
To understand and quantify the poroelasticity effect on the 
evolution of hydraulic fracture, this paper develops a fully 
coupled XFEM-based cohesive model which is able to 
take into account several crucial physical aspects during 
hydraulic fracture propagation in porous media, including 
fracture propagation, fluid flow within fracture, fluid 
leak-off, pore fluid flow, and rock deformation. In the 
following, the governing equations used in the model are 
provided first. Next, this model is validated against 
analytical solutions. Finally, parametric sensitivity 
analyses are performed to investigate the impact of 
poroelastic effect on the growth of hydraulic fracture. 

2. Governing equations 

2.1 Deformation of porous medium 
The rock formation is assumed to be a homogeneous, 
isotropic, and linear poroelastic medium. For quasi-static 
conditions, the stress equilibrium equation can be written 
as  

0   σ F                                  (1) 
where F  is the body force vector, and σ  is the total 
stress tensor. Assuming that the rock matrix is fully 
saturated by single-phase fluid and obeys poroelasticity 
theory, the effective stress of rock matrix reads 
(Detournay and Cheng, 1993) 

p  σ σ I                                  (2) 
where σ  is the effective stress, p  is the pore pressure, 
I  is the second-order unit matrix, and   is the Biot 
coefficient, which is defined as 

1 / sK K                                    (3) 

where K  and sK  are the bulk modulus of porous rock 
and of the rock matrix grain, respectively. The effective 
stress is related to the matrix strain as 

 σ Dε                                    (4) 
where D  is the elastic stiffness matrix, and ε  is the 
strain tensor. 
The pore fluid flow obeys mass balance equation as 

    0f
f ft

 
 


 


v                             (5) 

where f  is pore fluid density,   is the rock porosity, 

fv  is the fluid flow velocity of the pore fluid. The 
Darcy’s fluid velocity is given by 

 d f s v v v                                  (6) 

in which sv  is the solid phase (rock matrix) velocity, and 

dv  is the Darcy’s fluid velocity, can be defined as 

 m
d f

f

p 


  
kv g                               (7) 

in which mk  is the permeability of the rock matrix, f  
is the fluid viscosity, and g  is the vector of gravitational 
acceleration. 

2.2 Fracture fluid flow 
Assuming that the hydraulic fracture is filled with a 
Newtonian fluid, the mass balance equation for the fluid 
flow within the fracture reads (Hibbitt et al., 2016) 

  0t bw q q q                                (8) 
where 𝑤𝑤  is the fracture width, 𝑞𝑞  is the tangential fluid 
flow velocity within the fracture, 𝑞𝑞� and 𝑞𝑞� are the fluid 
leak-off into the formation across top and bottom fracture 
surfaces, respectively. 
The tangential fluid flow velocity obeys cubic law as  

3

12 f
f

wq p


                                   (9) 

in which 𝑝𝑝� is the fluid pressure within the fracture. 
The normal fluid velocity per unit area (𝑞𝑞� and 𝑞𝑞�) can be 
described as 

 
 

t t f t

b b f b

q c p p

q c p p

  


 
                               (10) 

where 𝑝𝑝� and 𝑝𝑝� are the pore fluid pressures in the rock 
matrix abut to the top and bottom surfaces, respectively. 
𝑐𝑐� and 𝑐𝑐� are the “leak-off coefficients” of top and bottom 
surfaces, respectively. Different with the classical 
Carter’s model, 𝑐𝑐� and 𝑐𝑐� here characterize the resistance 
of fluid across the fracture surfaces. The leak-off velocity 
is controlled by the rock matrix permeability if 𝑐𝑐� and 𝑐𝑐� 
are large enough. 

2.3 Fracture propagation 
XFEM technique, implemented in Abaqus, is used in this 
paper to simulate the hydraulic fracture propagation in 
porous media. The fracture propagation behavior is 
described by cohesive zone model with linear traction-
separation response, as shown in Fig. 1. Damage is 
assumed to initiate when a quadratic interaction function 
involving nominal stress ratios reaches 1.0, which can be 
expressed as (Hibbitt et al., 2016) 

2 2 2

0 0 0 1n s t

n s t

t t t
t t t

     
       
    

                         (11) 

where 𝑡𝑡�, 𝑡𝑡�, and 𝑡𝑡� are the nominal traction in the normal 
and two local shear directions, respectively; 𝑡𝑡�� , 𝑡𝑡��, and 
𝑡𝑡�� represent the cohesive strength in the normal and two 
local shear directions, respectively. 

 

2

E3S Web of Conferences 375, 01011 (2023)	 https://doi.org/10.1051/e3sconf/202337501011
ESAT 2023



 

 

Fig. 1 Linear elastic traction-separation law 

 
Damage evolution of cohesive zone model is described by 
progressive degradation of cohesive strength as 

 
0

1 0
0

n n

n n

D T T
t

T T
  


                        (12) 

 / /1s t s tt D T                                    (13) 
where 𝑇𝑇� �⁄ �⁄  are the stresses in the corresponding 
directions predicted by linear traction-separation law 
without damage. 𝐷𝐷 is the scalar damage parameter. 

3. Model validation 
In this section, Terzaghi’s problem and KGD problem are 
performed to verify the capability of the XFEM-based 
cohesive zone model on modeling the process of fluid 
diffusion and the growth of hydraulic fracture in rock 
matrix, respectively. 

3.1 Terzaghi’s problem 
Consider a water-saturated, plane strain porous column, 
with the height of 100 m, as shown in .Fig. 2(a). The top 
surface is drained and other surfaces are undrained 
boundary conditions. The normal displacement of left, 
right, and bottom boundaries are fixed. A load 𝑃𝑃�  acts 
instantaneously on the top boundary at initial time. The 
relevant parameters of this case are shown in Table. 1 and 
the analytical solution are provided in Appendix A. 
 

Table. 1 Input parameters for the Terzaghi’s problem 

Parameters Value 
Elastic moduli, GPa 1.0 
Poisson’s ratio 0.0 
Bulk moduli of grain, GPa 50.0 
Bulk moduli of pore fluid, GPa 2.2 
Permeability, D 1.0 
Fluid viscosity, mPa⋅s 1.0 
Load 𝑃𝑃�, MPa 1.0 

 
Fig. 2(b) shows the evolution of pore pressure along the 
length of the column at different time, and Fig. 2(c) shows 
the vertical displacement of top boundary. The numerical 
results agree well with analytical solutions, which 

indicates that the XFEM-based cohesive model has the 
capability to model the fluid diffusion of rock matrix. 
 

 

Fig. 2 (a) Sketch of the Terzaghi’s problem; (b) Evolution of 
pore pressure along the length of the column; (c) Vertical 

displacement of top boundary 

3.2 KGD problem 
As shown in Fig. 3(a), a bi-wing fracture is created by 
injecting a Newtonian fluid into an impermeable medium. 
Because the typical growth of hydraulic fracture in an 
unconventional reservoir is under viscosity dominated, 
the parameters used in this case were tuned to this regime, 
as provided in Table. 2. The details of semi-analytical 
solutions are shown in Appendix B. 
Fig. 3 (b) and (c) show the temporal evolution of injection 
pressure and mouth aperture. The agreement between 
numerical results and analytical solutions is very good, 
which proves the adequacy of the XFEM-based cohesive 
zone model on modeling the growth of hydraulic fracture. 
 

Table. 2 Input parameters for the KGD problem 

Parameters Value 
Elastic moduli, GPa 10.0 
Poisson’s ratio 0.2 
Mode-I fracture energy, J/m2 10 
Mode-II fracture energy, J/m2 300 
Tensile cohesive strength, MPa 0.2 
Shear cohesive strength, MPa 0.2 
Injection rate, m3/s 5×10-4 

Fluid viscosity, Pa⋅s 2.0 
Injection time, s 150.0 

 

 

Fig. 3 (a) Sketch of the KGD problem; (b) Temporal evolution 
of injection pressure; (c) Temporal evolution of mouth aperture 

0 0 0/ /n s tt t t

0 0 0/ /n s t   

t

3

E3S Web of Conferences 375, 01011 (2023)	 https://doi.org/10.1051/e3sconf/202337501011
ESAT 2023



 

4. Poroelastic effect on hydraulic 
fracture propagation 

This section aims to investigate the impact of poroelastic 
effect on the propagation behavior of hydraulic fracture. 
To this end, a series of parametric analyses for KGD 
problem are performed in this section. As shown in Fig. 4, 
a 2D plane-strain fracture is propagated by injecting a 
viscos fluid from the initial crack. The dimension of the 
domain is 200×50 m, and the length of the initial crack is 
0.4 m. The left boundary of the model is symmetric 
boundary condition, the normal displacements of other 
external boundaries are fixed, and a constant pore 
pressure boundary condition is also imposed on these 
boundaries. The input parameters for the base case of 
parametric analysis are listed in Table. 3. Additionally, in 
each parametric analysis, only the investigated parameter 
is changed while all other parameters are kept same with 
the values from the base case. 
 

Table. 3 Input parameters for the base case 

Parameters Value 
Elastic moduli, GPa 20.0 
Poisson’s ratio 0.2 
Mode-I fracture energy, J/m2 10 
Mode-II fracture energy, J/m2 300 
Tensile cohesive strength, MPa 0.2 
Shear cohesive strength, MPa 0.2 
Permeability, D 1.0 
Leak-off coefficient, m/(Pa⋅s) 1.0×10-5 

Bulk moduli of pore fluid, GPa 2.2 
Initial pore pressure, MPa 20.0 
𝜎𝜎�/𝜎𝜎�/𝜎𝜎�, MPa 30/27/35 
Fluid viscosity, Pa⋅s 0.1 
Injection rate, m3/s 5×10-4 

Injection time, s 80.0 
 

 

Fig. 4 The geometry and mesh of the KGD problem 

4.1 Results of the base case 
Fig. 5 shows the final fracture geometry and pore pressure 
distribution of the base case. The fracture grows to a 
length of 6.2 m at the end of the simulation (t=80 s). The 
leak-off coefficient in this case is large enough and the 

rock permeability dominates the fluid leak velocity. The 
simulation results for temporal evolution of net injection 
pressure and aperture at the injection point are shown in 
Fig. 6. The maximum aperture at the end of simulation is 
about 1.35 mm. 
 

 

Fig. 5 Fracture geometry and pore pressure distribution of the 
base case at the end of the simulation 

 

 

Fig. 6 Temporal evolution of net injection pressure and 
aperture at the injection point 

4.2 Effect of permeability 
As an important parameter for porous media properties, 
permeability is expected to significantly influence the 
pore pressure distribution around the hydraulic fracture, 
and consequently affects the fracture evolution. Thus, we 
perform a sensitivity analysis by varying permeability in 
this section. Assume there is no filter cake developed on 
the fracture surfaces. Fig. 7 depicts the fracture profile and 
pore pressure distribution at the end of the injection for 
different rock permeability. It readily observed that 
fracture length increases monotonically as permeability 
decreases. Large permeability leads to high fluid loss 
volume, which indicates that the leak-off in a system with 
large leak-off coefficient is controlled by rock 
permeability. 
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Fig. 7 Effect of permeability on the fracture profile and pore 
pressure distribution 

Fig. 8 shows the effect of permeability on the net pressure 
and aperture at the injection point as time elapse. It can be 
observed that the net pressure of high permeability case is 
much larger than the low permeability case, while the 
fracture aperture of high permeability case is much lower 
than the low permeability case. This is due to the large 
back-stress induced by poroelastic effect in high 
permeability case, which in turn reduces the aperture. 

 

Fig. 8 Effect of permeability on the net pressure and aperture at 
the injection point 

4.3 Effect of leak-off coefficient 
Leak-off coefficient in this work characterizes the 
resistance of filter-cake during the fracture propagation. 
Fig. 9 shows that the impact of leak-off coefficient on the 
growth of hydraulic fracture is substantial. Fluid loss is 
controlled by permeability in base case while it is 
controlled by the leak-off coefficient in Fig. 9(d) and 
consequently more fluid is utilized to drive the fracture 
propagation. 
 

 

Fig. 9 Effect of leak-off coefficient on the fracture profile and 
pore pressure 

 
Fig. 10 shows the temporal evolution of net pressure and 
aperture at the injection point for different leak-off 
coefficient. The results indicate that lower leak-off 
coefficient results in lower propagation pressure and 
higher fracture aperture. This is because the back-stress 
induced by poroelastic effect is lower. 

 

 

Fig. 10 Effect of Leak-off coefficient on the net pressure and 
aperture at the injection point 

4.4 Effect of bulk modulus of pore fluid 
Bulk moduli of pore fluid is one of factors determining 
the dissipation rate of pore pressure, which may influence 
the hydraulic fracture propagation. However, to the 
authors’ knowledge, there is no previous studies have 
investigated its influence on the fracture propagation. Fig. 
11 shows the fracture profiles for different bulk modulus 
of pore fluid. The results indicate that low bulk moduli of 
pore fluid tends to suppress the increase of the pore 
pressure around hydraulic fracture, which leads to high 
leak-off velocity and low fracturing fluid efficiency. 
 

 

Fig. 11 Effect of fluid bulk moduli on the fracture profile and 
pore pressure 

5. Conclusions 
In this paper, a fully coupled finite element model is 
proposed to investigate the influences of poroelastic effect 
on the growth of hydraulic fracture, and the model was 
validated against available solutions. The simulation 
results show that the total volume of leakage is controlled 
by the combined action of matrix permeability and leak-
off coefficient. The fracture aperture and length decrease 
with the increase of matrix permeability or leak-off 
coefficient, while as the bulk moduli of pore fluid 
increases, the fracture aperture and length tend to increase.  
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Appendix A. Terzaghi’s 1D consolidation 
problem(Wang, 2004) 

Pore pressure evolution: 
     2 2

0 2
0

2 1 2 14 1, exp sin
2 1 4 2m

m ct m z
p z t p

m L L
 







    
         

        (A.1) 

Vertical displacement: 
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where  0 4 / 3 L
u

Mp z P
K





 ;    0

1
4 / 3 L

u

u z P L z
K 

 
 ; 

  1
brM c  


      is the Biot modulus; brc  is the solid 

grain compressibility; uK  is the undrained bulk modulus; 

Mc  is the vertical uniaxial compressibility; c  is the 
consolidation coefficient. 

Appendix B. Viscosity dominated KGD 
problem 
A bi-wing fracture is created by injecting an 
incompressible Newtonian fluid into rock. The rock is 
assumed to be impermeable and under a plane strain 
condition. The fluid injection rate is 0Q . Fracture half-

length  l t , fracture aperture  ,w x t , and net pressure 

of the fracture  ,p x t  will be determined, where x  is 

the distance along the fracture and t  is injection time. The 
analytical solutions of this problem are provided by 
Detourney (Detournay, 2004) as functions of the injection 
rate 0Q  and three material parameters E , K  , and  ,  

21
EE
v

 


;   
1/ 224 ICK K


    
 

;   12   ;         (B.1) 

where ICK  is the fracture toughness, E  is the Young 
modulus, v  is the Poisson ratio, and   is the fluid 
viscosity. 

The solutions provided by Detourney (Detournay, 
2004) can be expressed as: 

     l t L t t ;         , ,w x t t l t t   ;  

     , ,p x t t E t     (B.2) 

where  /x l t   is the scaled coordinate 

 0 1  ;  t  is a small dimensionless parameter; 

 L t  is length scale;  ,  , and   are dimensionless 
fracture length, aperture, and net pressure, respectively. 

In viscosity-dominated propagation regime, the 
aforementioned dimensionless parameters can be 
expressed as follows: 

 
1/3

t
E t
     

;    
1/63

2/30E QL t t


 
   

    (B.3) 

0 0.616m                    (B.4) 

     
22/3 5/82 (1) 2 (1) 2 2

0 0 1 2

1 11 1 4 1 2
1 1

m A A B ln     


  
        

   
  (B.5) 

 (1) 2 (1) 2 (1)
0 02 1 1 2 1

1 1 2 1 1 10 7 1, ,1; ; ,1; ; 2
3 2 3 6 2 7 6 2m B A F A F B   


                           (B.6) 

where 1/ 2
0 3A  ; (1)

1 0.156A   ; (1) 0.0663B  ; 

B  is the Euler beta function; and 2 1F  is a hyper-
geometric function. 
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