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Abstract. The integration of electric vehicles (EV) into demand-side response holds significant potential, 

which not only helps to reduce the operational expense of EVs, but also presents a viable strategy for the 

grid peak regulation. In this paper, the load simulation model of EVs is proposed based on the probability 

distribution of charging/discharging behaviours of different types of EV users from statistical data. On this 

basis, considering the incentive effect of hourly electricity price, an orderly charging/discharging 

optimization model is proposed to consider EV charging cost, discharge income and incremental battery 

loss cost caused by EV participating in the vehicle-to-grid (V2G) mode. This model provides a more 

accurate estimation on the incremental costs and market arbitrage benefits of EVs in V2G mode on the basis 

of conventional transportation utilization, so as to better optimize the operation strategy of the EVs for 

demand response. Numerical results show that in the context of tariff of usage (TOU), the orderly charge 

and discharge model reduces the operating cost of EV users, and can better exploit the potential of EV 

energy storage batteries in power grid peak regulation. 

1 Introduction  

Carbon emissions of China's power energy and 

transportation industries have reached 47.4% and 7.5% 

of total respectively, accounting for more than half of the 

country's CO2 emissions [1]. Therefore, the requirement 

of low-carbon transformation of transportation energy 

has become an urgent problem to be solved, with a key 

technological path of vigorously developing electric 

vehicles (EV). However, the integration of large-scale 

unordered EV charging brings adverse effects to the 

power grid, such as dramatically increased peak-to-

valley load difference and uncertainty of EV charging 

loads, leading to decreased power quality [2]. To better 

guide the travel demand and charging demand of EV is 

hence the basic work to realize the cooperative operation 

of power grid and traffic under the scenario of large-

scale EV integration to the power grid, considering the 

basic traffic function of EV. 

At present, the research on EV charging load 

distribution mainly starts from EV operating mode, and 

is carried out through the correlation between 

characteristics of travel traffic, electric energy 

consumption and charging load. Literature [3-4] 

analyzed the travel characteristics of EV users and 

predicted the charging load of EV based on the mapping 

relationship between travel mileage and power 

consumption. Based on the analysis of EV staying area 

and charging behavior, literature [5-6] obtained the 

distribution characteristics of EV charging load in 

different zones, and proposed an EV charging load 

prediction model based on EV driving behavior and 

parking characteristics. In literature [7], big data-related 

technologies were used to establish prediction models 

based on traffic and weather data, and classification 

standards were established by decision tree to predict EV 

charging demand on different date types. The above 

literatures have made a beneficial exploration on the load 

demand prediction and characteristics of EVs. 

Under the power market environment, bringing in 

time-of-use (TOU) electricity price can guide the power 

users to implement demand-side response and peak load 

shaving and shifting. Since the EV is itself an energy 

storage battery, it is easier to change the charging 

behaviour, respond well to price changes, and achieve an 

orderly charging/discharging strategy. Based on the 

TOU strategy, literature [8-9] guided EV to participate in 

the power balance of the system by constructing a 

minimum charging cost model of EV. Literature [10] put 

forward the overall structure of V2G management 

system, and adopted fuzzy control algorithm to calculate 

charging/discharging power, and sent it to each charging 

pile to improve the load characteristics of regional power 

grid. Literature [11] established a multi-objective 

cooperative scheduling model with the objectives of 

minimizing the mean square error of the system load 

curve and minimizing the user's electricity cost. 

Literature [12] proposed a two-stage multi-objective 

optimization model solution method and an orderly 

charging control strategy based on multi-population 

genetic algorithm. In the first stage, Monte Carlo 
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simulation was introduced to EV charging behaviour and 

transformation of the charging load from the peak period 

to the normal period or the off-peak period. In the 

second stage, error prediction was used to further 

optimize the charging load during the peak period. 

Besides, EV participating into the V2G mechanism of 

demand-side response will increase the cost of battery 

life loss and charging facility upgrading. However, to the 

best of our knowledge, abovementioned studies have not 

considered the impact of this cost on EV charging and 

discharge optimization.  

In this paper, the charging behaviours of individual 

EV users are categorized into three types assigned with 

different probability distribution characteristics of the 

travel plans. Then, applying Monte Carlo simulation, the 

load of EV groups in the charging pool is modelled. 

Based on the load estimation of the EVs, an optimization 

model of EV charging/ discharging strategy is proposed 

to minimize the EV operation costs under TOU as well 

as the battery loss cost of EVs, taking into account the 

economic benefits and increased interactive losses of 

vehicle owners participating in the demand-side response 

of the grid. Then, followed by a thorough numerical 

analysis, the impact of charging modes of EVs and the 

price setting of TOU mechanism on the grid peak 

regulation is discussed. 

2 Analysis of EV charging/discharging 
characteristics based on traffic 
behavior 

The influencing factors of EV load mainly include EV 

behavior state and battery state. The behavioral state of 

EVs depends on the user's travel habits, mainly including 

charging, driving, parking, and so on. 

In this paper, pure electric private cars are taken as 

the research object, with following assumptions on 

charging behavior of EVs as the boundary conditions: 

• The operation duration is set as 1 day, divided into 

96 sub-periods, each for 15 minutes. 

• Considering the physical characteristics of the EV 

battery, assuming that the state of charge (SOC) of the 

EV in the charging pool is 20%-100%; 

• Because the function of EVs on weekdays is mainly 

for commuting, the electricity consumed can be made up 

at relatively short time, assuming that the expected 

number of times for each EV charging is only once a day. 

2.1 Daily electricity requirement 

For electric private cars, it is mostly used for commuting 

to and from work on weekdays, and the travel path is 

relatively fixed, so the driving mileage can be set 

according to the commuting distance [13]. Assuming 

that EV travel distance on working days follows a 

lognormal distribution, that is, S~Log-N( ), and 

the probability density function (PDF) is shown in 

equation (1). 
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Where,  are the mean and variance of a 

lognormal distribution respectively. 

The distribution parameters in equation (1) can be 

obtained by fitting the commuting distance data based on 

the Commuter Monitoring Report of Major Cities in 

China 2022. Statistical analysis shows that different city 

size will lead to different parameter ranges. 

The EV daily charge  can be obtained based on 

EV mileage and energy consumption per kilometer (km), 

and the energy consumption per km can usually be 

acquired by means of endurance mileage and battery 

capacity of EV. 

2.2 EV charging/discharging time 

2.2.1 Charging start moment  

The charging start moment of EV mainly depends on the 

working mode of EV. By analyzing the daily driving 

distance and EV parameters, it is concluded that most of 

daily EV consumption can be filled in a short time. From 

the perspective of mathematical analysis, it can be 

considered that the EV involved in charging is only 

charged once a day [14]. Therefore, EV users are 

classified into three types according to the start/end 

charging moment: 

- Type 1 owners often start charging immediately 

after returning home from work, and finish charging 

when they go to work the next morning. 

- Type 2 will charge at the workplace after arriving at 

office in the morning and finish charging after work. 

- The charging start/end moment of type 3 owners is 

not fixed.  

The start/end charging moment of the above three 

type owners was modelled respectively. It is considered 

that the start charging moment  of the first two 

types follows a normal distribution N( , ), while 

the start charging moment of the 3rd type follows a 

uniform random distribution U(0, 96). The PDF of the 

moment when each type of car owners start charging is 

shown in formula (2) and (3). 
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Where j=1, 2, indicates car owners of type 1 and 2. 

,  are the mean and variance of the moment 

distribution for start charging respectively. 

According to the statistical data in literature [13], the 

mean value and standard deviation can be =76, 

=36 ; =6,, =4. In addition, it is believed 

that type 1 owners account for 60%, while type 2 and 

type 3 owners account for 20% respectively. 
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2.2.2 Distribution for available charging/discharging 

time  

In order to gain the charging/discharging time, firstly we 

must calculate the charging end moment . On the 

basis of , add the charging duration , that is, 

 is obtained, but there will be cross-day situations 

(that is, ). Since the charging/ 

discharging strategy of private cars in working days is 

the object of study, the EV travel rules of two 

consecutive working days and the base load curve of the 

object area are consistent, so the sub-period beyond the 

96th period is placed at the beginning of the first period 

(as the next day) in this paper. The calculation of  

can be obtained as shown in formula (4). 
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Therefore, the distribution for available charging/ 

discharging time can be divided into two cases according 

to whether it is cross-day or not, as shown in Figure 1. 
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Fig.1 Distribution for available charging/discharging time 

2.2.3 Initial state of charging (SOC) for EV 

According to literature [15], the SOC of EV at the right 

beginning, that is, the initial SOC, follows a normal 

distribution N( , ). Suppose the mean 

=0.5 and the variance =0.1, then the 

probability density function of the initial SOC is shown 

in equation (5). 
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3 Monte Carlo simulations on charging/ 
discharging scenarios of EV 

Monte Carlo simulation (MCS) is a method of data 

generation based on probabilistic statistical theory that 

relies on repeated random sampling to obtain numerical 

results. MCS can be divided into two steps, ie, 

constructing the probability distribution of the random 

variable to be simulated and generating the sample 

values conforming to the distribution [16-17]. Among 

them, the construction of a probability distribution that 

can truly reflect the characteristics of random variables is 

the basis of simulation. The modelling in section 1 has 

led to the probability distribution model of EV's required 

charging amount , charging start moment , 

charging end moment , and initial charging state 

. 

After the charging start/end moment of each EV 

cluster in a certain region is determined by Monte Carlo 

method, the total load caused by EV users in the region 

at every moment of the day is calculated as the sum of 

the charging load of each EV at this moment. The total 

charging load of the region is set as P, then the 

calculation for P is shown in equation (6). 
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Where, NEV represents the number of private cars 

charged in the area in a day. PS,t and Pi,t respectively 

represent the total charging power and the charging 

power of certain electric private cars (the amount of cars 

is i) in the area at the moment t. 

4 EV charging/discharging optimization 
model considering V2G 

Under the electricity market environment, EV users can 

use the power supply capacity of their storage batteries 

in cars to participate in the demand-side response of the 

grid, that is, charging at low electricity prices and 

discharging during high electricity prices (V2G), and 

obtain arbitrage benefits on the basis of reducing 

electricity costs. The V2G behaviour of EV users will 

increase the number of charge and discharge cycles of 

energy storage batteries, causing additional battery life 

loss, and this part of the incremental cost of V2G battery 

loss is also the core factor that owners must consider 

when developing charging/discharging strategies. 

4.1 Objective function 

On the premise of meeting the driving power demand, 

the goal of EV user's charging/discharging decision is to 

obtain the minimum comprehensive cost after charging 

cost, incremental loss cost minus discharge income, as 

shown in equation (7). 
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Where, Fi is the comprehensive cost of the ith EV, 

and the charging/discharging power of the ith EV at the 

moment t respectively. rt is the electricity price at 

moment t. 
,

BAT

i tC
 
indicates costs of incremental battery 

loss due to V2G. 

Studies have shown that in the process of EV 

charging/ discharging, the battery loss will occur [18], 

and then the battery loss cost will be counted. Literature 

[19] points out that the life of EV batteries and the 

number of charging/discharging cycles is roughly in 

linear decline relationship. The cycle periodic-life 

relationship curve of traditional lithium iron phosphate 

(LiFePO4) batteries commonly used in EV [20-21] is 

shown in Figure 2. If the capacity of EV vehicle battery 

drops below 80%, it will have a great impact on normal 

use, and the battery needs to be replaced. By referring to 
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the curve shown in Figure 2, the number of cycles 

corresponding to the actual effective EV battery capacity 

can be obtained. 

 

Fig.2 Cycle times-life curve relationship of traditional lithium 

iron phosphate battery 

Since the incremental battery loss cost  caused 

by V2G is mainly determined by the discharge to the 

grid, discharge efficiency and the actual number of 

cycles, calculation of  is shown in formula (8) and 

(9). 
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Where,  is the charge amount required by the 

ith EV due to discharging to the grid, kWh. β is the 

charge and discharge efficiency.  is the rated battery 

capacity of the ith EV.  is the EV battery replacement 

cost, usually including battery manufacturing costs and 

labor costs.  is the rated cycle life of ith EV battery. 

The division by 4 in equation (8) corresponds to the 

division of an hour into four sub-periods in this paper. 

Under the incentive of TOU pricing policy in the 

power market, EV will try to charge in the low price 

period and discharge in the peak price period in order to 

pursue individual interests, so as to achieve the effect of 

peak cutting and valley filling required by the system. 

4.2 Constraint condition 

4.2.1 Charge and discharge state mutually 
exclusive constraints 

The charging and discharging states of EV cannot occur 

at the same time, that is, at least one of EV charging 

power and discharging power is zero at a certain time 

 , ,* 0=Chr DChr

i t i tP P  (10) 

4.2.2 Available charging/discharging time constraint 

EV can only be charged and discharged within the 

available charging/discharging time mentioned in section 

1.2.2. In the period other than the available charging/ 

discharging time, EV battery should be charged and 

discharged at zero power to restrict the charging and 

discharging power 
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4.2.3 Charging amount constraint 

It is necessary to ensure that after the whole charging / 

discharging process, the charging amount of EV is not 

less than the electric power required by EV , and 

the amount of charging/discharging is restricted as below 
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4.2.4 Battery SOC constraint 

In order to ensure the safety of EV batteries, it is also 

necessary to limit the discharge depth of the battery, and 

to prevent the battery from over-charging and over-

discharging. So the battery SOC is restricted as 

 min , maxi tSOC SOC SOC   (13) 

Where,  is the charged state of the ith EV after 

the end of the No. t sub-period.  and  are 

the maximum and minimum charge states of the battery 

respectively. 

5 Analysis of examples 

5.1 Parameter setting 

In order to verify the effectiveness of the EV charging/ 

discharging strategy proposed above, BYD e2, one of the 

most popular EV type with the highest market share, is 

adopted in the analysis. Its rated battery capacity 

=43.2kWh. Rated charging power = 6.6kW. 

Rated discharge power = 3.3kW. Mileage for one 

kWh is 9.375km/kWh. The replacement cost of LiFePO4 

battery  is ¥45,000. Battery cycle life is 2500 times. 

Charge and discharge efficiency β  is set to 0.9. The 

commuting distance follows Log-N(2.3 ). 

It is assumed that the study area contains a total of 

1000 private EVs, and the base load distribution of 

typical days in this area is shown in Table 1. The base 

load of 96 sub-periods is obtained through mathematical 

fit. The general industrial TOU price is shown in Table 

2[22]. 

Table 1. Basic load of a day 

Moment Load/MW Moment 
Load 

/MW 
Moment 

Load 

/MW 

1:00 23.89 9:00 27.15 17:00 29.02 

2:00 23.61 10:00 28.63 18:00 30.01 

3:00 23.08 11:00 31.38 19:00 31.19 

4:00 22.79 12:00 32.23 20:00 32.95 

5:00 24.03 13:00 31.96 21:00 31.96 

6:00 25.13 14:00 30.73 22:00 29.80 

7:00 25.92 15:00 30.10 23:00 26.36 

8:00 26.87 16:00 29.26 24:00 24.03 
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Table 2. TOU price 

Period type Period division Price(¥/kWh) 

Peak 10:00-15:00 18:00-21:00 1.322 

Normal 
7:00-10:00 15:00-18:00 

0.832 
21:00-23:00 

Valley 23:00-7:00 0.369 

5.2 Analysis of example results 

5.2.1 Analysis of peak regulation effect of orderly 
charging 

In order to analyse the impact of different charging 

strategies on EV users and power system load peaking, 

three EV charging/discharging modes are simulated in 

this paper:  

- The unordered charging mode is adopted. 

- Orderly charging under the TOU price (referred to 

as Orderly mode). 

- Under the TOU price, together with ordered 

charging mode including V2G (referred to as V2G 

mode). 

The charge and discharge curve of EV cluster is 

superimposed on the base load, and the total load curve 

of the system obtained including EV is shown in Figure 

3, and the technical and economic results are shown in 

Table 3. 

Table 3. Characteristic of curve and total cost  

Charging 

mode 

Peak-

valley 

difference 

rate % 

Charging 

cost/¥ 

Discharge 

earning/¥ 

Incremental 

loss cost/¥ 

Total 

costs 

/¥ 

Unordered 35.14 3152 / / 3152 

Orderly 25.79 2646 / / 2646 

V2G 23.08 6429 10359 5508 1578 

 

Fig.3 Load curves of different charging modes 

As can be seen from Fig. 3 and Table 3, if EV users 

adopt the random charging mode upon arrival at the 

parking place, the peak-valley difference of the total 

system load increases after EV load is added, while the 

two orderly charging modes both reduce the peak-valley 

difference of the total load. Especially for V2G mode, 

compared with the peak-valley difference rate of 30.83% 

of the base load, the decrease ratio is as high as 25.1%, 

which significantly reduces the demand for peak 

regulation of the system. 

From EV user’s perspective, the combined total cost 

for EV users with V2G mode is the lowest, which 

reduces the total cost by 49.9% comparing to unordered 

charging mode. From the perspective of cost 

composition, the V2G mode increases the charging cost 

and battery loss cost by 104%. However, because EV 

discharge to the system during the peak electricity price 

period can obtain up to 2.74 times the income from 

electricity sales, which is much higher than the cost 

increment, making the comprehensive cost of EV users 

greatly reduced. Therefore, under the condition of TOU 

tariff, guiding EV users to participate in V2G can benefit 

both grid and EV users. 

5.2.2 Effects of different electricity pricing 
mechanisms on EV charging/discharging strategy 
and load 

In order to analyze the influence of different electricity 

pricing strategies on EV charging/discharging load curve 

and the peak-valley difference of the total system load, 

three different peak-valley electricity pricing ratios were 

set for calculation and analysis. It is assumed that all 

EVs in this region participate in the ordered charging/ 

discharging of V2G. Three different pricing strategies 

for peak period are selected in this paper (scene settings 

are shown in Tab.4) to optimize V2G charging/ 

discharging strategies for EV. The calculation results are 

shown in Table 4. 

Table 4. Different peak and valley time price  

Scene setting 
Period price 

Peak-

valley ratio  

Normal Peak Valley  

Scene 1 0.832 1.322 0.369 3.6 

Scene 2 0.832 1.082 0.6 2.16 

Scene 3 0.832 1.664 0.29 5.71 

The daily total load curve under the three scenarios is 

shown in Fig. 4, and the peak-valley difference ratio and 

various costs are shown in Table 5. 

 

Fig.4 Load curves of different peak and valley time price 
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Table 5. Characteristic of overall load and costs (different peak 

- valley time price)  

Price 

strategy 

Peak-

valley 

difference 

rate % 

Charging 

cost/¥ 

Discharge 

earning/¥ 

Incremental 

loss cost/¥ 

Total 

costs 

/¥ 

Scene 1 23.08 6429 10359 5508 1578 

Scene 2 25.16 3903 4028 2507 2382 

Scene 3 16.02 6862 14670 7257 -551 

As can be seen from Fig. 4 and Table 5, in scene 1, 

EV will choose to charge at valley and normal hours and 

discharge at peak hours within its available charging/ 

discharging time, thus completing the arbitrage, showing 

a good peak cutting and valley filling effect. 

In scene 2, as the electricity price in peak and valley 

periods is closer to the electricity price in normal periods, 

for some EVs with limited charge-discharge time (for 

example, the available charge-discharge time is mostly 

distributed in the valley and normal periods), taking into 

account the existence of battery loss costs, the benefits of 

participating in V2G may be less than the cost of 

accelerating battery loss caused by frequent charge-

discharge. Therefore, for such EVs, Most of them only 

charge in the low period as far as possible to achieve 

their own charging requirements, and will not participate 

too much in V2G, so the total cost of scene 2 is higher 

than that of scene 1, and the effect of peak clipping and 

valley filling is also worse than that of Scene 1. 

For scene 3, contrary to scene 2, the benefit brought 

by most EVs participating in V2G is significantly greater 

than the incremental battery loss cost brought by this 

behaviour due to the more obvious difference in 

electricity prices between peak and valley periods. Users 

are motivated by high payback and switch to V2G state 

in more periods, so the peak-load shifting effect of base 

load is better. However, it is noted that in some parts of 

the curve, such as the 60-68th period (corresponding to 

15:00-17:00), there is a new small load peak. This 

phenomenon is mainly due to the fact that from 15:00, 

the electricity price changes from high electricity price to 

flat electricity price. For the type 2 car owners 

mentioned in section 1.3 who choose to charge after 

arriving at the work place, Its EV will start charging on a 

large scale at 15:00, and the base load itself is not low 

during this period, it will form a new load peak, until 

17:00 as most owners finish charging after work, the 

load will start to reduce). Therefore, when the ratio of 

peak-valley electricity price increases to a certain extent, 

EV participation in V2G may lead to excessive peak-

load shifting, resulting in new load peaks and new 

impacts on the power system. 

Through the above analysis, it can be concluded that 

with the increase of electricity price backing during 

peak/valley period, EV can be encouraged to optimize its 

own charge and discharge strategy and participate more 

in V2G for arbitrage, which plays a better role in peak-

load shifting for the load curve of the whole region. 

However, if the price gap between peak and valley is too 

large, it will not only increase the V2G subsidy 

expenditure of power suppliers, but also may form a new 

load peak, which will have an adverse impact on the 

power system. Therefore, it is necessary to set the peak, 

flat and valley electricity price reasonably. 

Because participating in V2G will make the charging 

method of the owner more complicated, and although the 

BYD e2 car selected in this paper has the discharge 

function, not all kinds of EV on the market have this 

function, so the concept of V2G response rate α  is 

introduced here. Response rate α is a parameter between 

0-1, indicating the proportion of EV in response to V2G 

selected in the region. For EVs that do not participate in 

V2G, a disorderly charging method is adopted (that is, 

EV is charged at rated power when it is connected to the 

grid to start charging, and will be stopped when the 

charging requirement has been reached). 

The time-sharing pricing strategy in Table 2 was 

selected to simulate the 100% response rate, 60% 

response rate, 30% response rate and 0% response rate 

(i.e., unordered charging) respectively. The daily load 

curves under different response rates were obtained as 

shown in Fig. 5, and the peak-valley difference rate and 

cost data were shown in Table 6. 

 

Fig.5 Load curves of different response rate 

Table 6. Characteristics of overall load and costs (with 

different response rate) 

Response 

ratio for 

V2G 

Peak-

valley 

difference 

rate % 

Charging 

cost/¥ 

Discharge 

earning/¥ 

Incremental 

loss cost/¥ 

Total 

costs 

/¥ 

0% 

Unordered 
35.14 3152 / / 3152 

30% 25.90 4276 3213 1625 2688 

60% 23.67 4902 6023 3317 2196 

100% 23.08 6429 10359 5508 1578 

As can be seen from Figure 5 and Table 6, the total 

cost decreases as the response rate of EV users to TOU 

increases. Among them, compared with unordered 

charging, orderly charging with V2G mechanism can 

obviously improve the problem of peak load balancing. 

The load curve with 100% response rate shows the best 

effect of peak cutting and valley filling. With the 

increase of response rate, the curve peak-valley 

difference rate and the total charging cost of the user 

gradually decrease. However, the time characteristic of 

unordered charging is basically the same as that of base 

load. After the superposition of EV charging curve and 

load curve, the peak-valley difference is higher than that 

of base load curve, and the curve fluctuation is larger. 
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6 Conclusions 

The main conclusions are as follows. 

- Based on the commuting statistics of private EVs, 

an EV charging/discharging characteristic analysis 

model considering the relationship between traffic and 

electricity consumption is proposed, which is the 

premise and basis for the optimization of charging/ 

discharging strategy. 

- In terms of the incentive effect of TOU on demand-

side elasticity, it is proposed about an orderly charging/ 

discharging method that takes into account the 

incremental battery loss cost caused by V2G, which can 

more accurately reflect the additional benefits and 

incremental costs brought by the participation of EV 

storage battery discharge for peak regulation of grid. 

- When EV users optimize their own charging/ 

discharging strategies, the increase of peak-valley price 

difference will directly encourage more EV users to 

participate in V2G arbitrage in more periods. However, 

when the peak-valley price difference is high to a certain 

extent, it may lead to a new load peak on the load curve. 

Therefore, power suppliers need to set the TOU price 

reasonably for EV to play a better role in peak-load 

shifting under the guidance of V2G. 

- Compared with unordered charging, both orderly 

charging and V2G can effectively reduce the peak-valley 

difference of the system. With the increase of the 

response rate of vehicle owners participating in V2G, the 

effect of EV charging/discharging on peak-load shifting 

in load curve gradually becomes better. Therefore, 

power suppliers need to promote and improve the 

response proportion of vehicle owners to participate in 

V2G through technical and price measures, so that EV 

development can not only expand the electricity market, 

but also contribute to the coordinated development of the 

grid. 

References 

1. China Carbon Accounting Database China Branch 

Accounting Carbon Emission Inventory [DB/OL]. 

[2022-02-18]. https://www.ceads.net.cn/data/nation/ 

2. J. Quiros-Tortos, L. Ochoal, T. Butler. How Electric 

Vehicles and The Grid Work Together: Lessons 

Learned from The One of The Largest Electric 

Vehicle Trials in the World [J]. IEEE Power and 

Energy Magazine, 16, 6 (2018) 

3. L. Chen, Y. Nie, Q. Zhong. A Model for Electric 

Vehicle Charging Load Forecasting Based on Trip 

Chains [J]. Transactions of China Electrotechnical 

Society. 30, 04 (2015) 

4. H. Lin, K. Fu, Y. Wang, et al. Characteristics of 

electric vehicle charging demand at multiple types 

of location - Application of an agent-based trip 

chain model, Energy (Oxford). 188 (2019) 

5. D. Wang et al. Modeling of plug-in electric vehicle 

travel patterns and charging load based on trip chain 

generation. Journal of Power Sources, 359 (2017) 

6. H. Zhang, Z. Hu, Y. Song, et al. A Prediction 

Method for Electric Vehicle Charging Load 

Considering Spatial and Temporal Distribution [J]. 

Automation of Electric Power Systems. 38, 1 (2014) 

7. M. B. ARIAS, S. BAE. Electric vehicle charging 

demand forecasting model based on big data 

technologies [J]. Applied Energy. 183 (2016) 

8. Z. Hu, Y. SONG, Z. Xu, et al. Impacts and 

utilization of electric vehicles integration into power 

systems [C]. Proceedings of the CSEE. 32, 4 (2012) 

9. Y. Hua, Y. Wang, D. Han, et al. Mid- and Long-

term Charging Load Forecasting for Electric 

Vehicles in Residential Areas Considering Orderly 

Charging [C]. Proceedings of the CSU-EPSA. 34, 6 

(2022) 

10. Y. Zhang, Q. Liu, C. Hong, et al. Charging and 

Discharging Dispatch Strategy of Regional V2G 

Based on Fuzzy Control [J]. Electric Power 

Automation Equipment. 39, 7 (2019) 

11. M. Wang, L. Lv, Y. Xia. Coordinated Scheduling 

Strategy of Electric Vehicles for Peak Shaving 

Considering V2G Price Incentive [J]. Electric Power 

Automation Equipment. 42, 4 (2022) 

12. K. Chen, Z. Ma, S. Zhou, et al. Charging Control 

Strategy for Electric Vehicles Based On Two-Stage 

Multi-Target Optimization [J]. Power System 

Protection and Control. 48, 1 (2020) 

13. Report on Commuter Monitoring in Major Chinese 

Cities in 2022 [R]. China Urban Planning and 

Design Research Institute, 7 (2022) 

14. J. Gui, Y. Chang, X. Li, et al. Time-of-Use Price 

Based Research on Electric Vehicle Charging Load 

Influence [J]. Engineering Journal of Wuhan 

University. 51, 10 (2018) 

15. J. Yan, F. Yan. An Orderly Charging and 

Discharging Strategy For Residential Electric 

Vehicles Based on Peak-Valley Electricity Tariffs 

[J]. Power System Protection and Control. 46, 15 

(2018) 

16. J. Wen, S. Tao, X. Xiao, et al. Analysis on Charging 

Demand of EV Based on Stochastic Simulation of 

Trip Chain [J]. Power System Technology. 39, 6 

(2015) 

17. K. Clement-Nyns, E. Haesen, J. Driesen. The impact 

of charging plug-in hybrid electric vehicles on a 

residential distribution grid [J]. IEEE Trans. on 

Power Sys. 25, 1 (2010) 

18. M. R. Sarker, Y. Dvorkin, M. A. Ortega-Vazquez. 

Optimal participation of an electric vehicle 

aggregator in day-ahead energy and reserve markets 

[J]. IEEE Trans. on Power Systems. 31, 5 (2015) 

19. J. Neubauer, E. Wood. The impact of range anxiety 

and home, workplace, and public charging 

infrastructure on simulated battery electric vehicle 

lifetime utility [J]. Journal of Power Sources. 257, 3 

(2014) 

7

E3S Web of Conferences 466, 02011 (2023)   https://doi.org/10.1051/e3sconf/202346602011
ICAEER & CEEST 2023



20. H. Huang. Cycle Life Fading of LiFePO4 Lithium-

Ion Battery and Its Life Prediction [J]. Power 

Sources. 46, 4 (2022) 

21. H. Wu, S. Shao, Z. Zhu, et al. Acceleration Model 

of Cycle Life of LiFePO4 Li-Ion Battery [J]. Battery 

Bimonthly. 51, 4 (2021) 

22. L. Zhang, C. Sun, G. Cai, et al. Two-stage 

Optimization Strategy for Coordinated Charging and 

Discharging of EVs Based on PSO Algorithm [C]. 

Proceedings of CSEE. 42, 5 (2022) 

8

E3S Web of Conferences 466, 02011 (2023)   https://doi.org/10.1051/e3sconf/202346602011
ICAEER & CEEST 2023


