
Taking advantage of semantic web ontologies and shape constraints for Heating, Cooling and Ventilation Systems

Ali Kücükavci1, Mikki Seidenschnur1,2, Kristoffer Negendahl1, Christian Anker Hviid1

1Department of Civil and Mechanical Engineering, Technical University of Denmark, Denmark
2Ramboll, Copenhagen, Denmark

Abstract

In recent years semantic web ontologies have improved
data interoperability within architecture, engineering,
construction, and operation of buildings. One of the per-
sisting issues inhibiting quality assurance is a lack of ro-
bust model validation of BIM models used for HVAC flow
system simulation and analysis. This article provides a
novel approach for automating the BIM validation pro-
cess using SHACL shapes and FSO/FPO ontologies. Us-
ing this approach will ensure that the BIM model contains
the required HVAC information for simulating hydraulic
systems. The paper presents multiple shapes developed to
identify and validate typical HVAC design details in build-
ings.

Introduction

Knowledge graphs and linked data has proven useful
for the representation of Building Information Model-
ing (BIM) models in the Architecture, Engineering, Con-
struction, and Operation (AECO) industry in the recent
years (Rasmussen et al., 2021; Balaji et al., 2016; Pauwels
and Terkaj, 2015). Graph representations of BIM mod-
els has potential uses in many different aspects of design
and engineering. However, one issue in particular ties to
the interoperability with the two most common formats
for common data exchange, Industry Foundation Classes
(IFC) and green building Extensible Markup Language
(gbXML). These data formats are not designed to carry
over all the data relevant for energy and indoor climate
simulations, or Heating, Ventilation, and Cooling (HVAC)
simulation data (Redmond et al., 2012). A recent attempt
to challenge this issue is Porsani et al. (2021) who shows
the difficulty in transforming BIM models to Building En-
ergy Model (BEM) models, where the aspect of transfor-
mation between proprietary formats such as Revit (.rvt) to
IFC and gbXML inherently generates errors later in the
simulation process.
Kukkonen et al. (2022) proposed a semantic web ontol-
ogy called Flow Systems Ontology (FSO) to describe the
composition of flow systems and their energy and mass
flow. Kukkonen et al. (2022) provided a comprehensive
roadmap for further developments showing that use cases
should be developed to further the development of the
specific ontology of FSO. Furthermore, it was proposed
that an ontology should be developed to include the prop-
erties of flow systems (component sizes, flow, material,
i.e.). Though FSO proposes a common language to de-

scribe flow systems, the data needs to be parsed from
existing BIM tools, which means that model validation
is paramount to insure data integrity. FPO is a seman-
tic web ontology developed to describe the capacity- and
size-related properties of HVAC components (Kücükavci
et al., 2022).
Several efforts have sought to create validation tools for
the IFC schema based on EXPRESS (Ghannad et al.,
2019; Lee et al., 2016, 2021; Bolpagni et al., 2015; Lee
et al., 2015). However, IFC is a large super-schema which
is interpreted differently by BIM software vendors like
Autodesk and Graphisoft, meaning that a building made in
Archicad will not be parsed the same as a building made in
Revit. Efforts proposes the use of Shapes Contraint Lan-
guage (SHACL) shapes when using semantic web ontolo-
gies (Stolk and McGlinn, 2020; Soman et al., 2020; So-
man, 2019; Hamdan and Scherer, 2020). SHACL shapes
allow for validation of BIM models represented in a linked
data format.
In this article we explore the HVAC system validation
process of proprietary BIM models using FSO, FPO and
SHACL to ensure that the required information for per-
forming flow simulations are represented.

Methods

A Revit model of a typical office building was created
and an airflow calculation was carried out for the HVAC
system. The Revit model was transformed from a pro-
prietary file format (.rvt) into a web-based Resource De-
scription Framework (RDF)-triplestore containing a BIM
model. Finally, SHACL shapes were used to validate that
the model contained the necessary information to find the
most critical pressure point in the open- or closed-circuit
HVAC system.
The following sections describe the methods used to;

1. Parse data from a BIM to an RDF-triplestore

2. Validate and enrich the model using SHACL shapes
and SPARQL

3. Use typical HVAC system design queries as use case
examples

The process starts with a Revit model that contains a part
of an HVAC system and the attached spaces. For this arti-
cle, a parser was created, using C# and the Revit Applica-
tion Programming Interface (API). First, the script maps
the components and spaces, then it builds a .ttl (turtle for-
mat) string based on the FSO and FPO ontologies. Once

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

the parser has looped through all components and spaces,
the .ttl string is parsed as a .txt file and sent through a
client to the RDF-triplestore. Then, the triplestore stores
the data, and then SHACL shapes are used to validate the
data integrity (is all parameters filled, etc.). If the data
validation fails, it will send an ”actions needed” message
to the original BIM model and tell it which components
need to be fixed to continue. If it succeeds, it will pass to
the final stage, which is the pressure and flow calculation
of the critical branch. Finally, it displays the results in a
table format for the user. The following sections will go
through the process shown in Figure 1.
Parsing HVAC data from a BIM model into a
Graph model

In the use case a HVAC model is linked with an archi-
tectural Revit model. The architectural model describe
an office building with four rooms each heated by a ra-
diator and ventilated by one return air terminal and one
supply air terminal. The HVAC model involves three sys-
tems: heating, cooling, and ventilation seen in Figure 2.
The heating system consists of a pump that feeds eight
radiators and a heat exchanger. A pump supplies a heat
exchanger via the cooling system. The ventilation system
consists of a supply fan and exhaust fan connected by air
ducts to four air terminals. A detailed description of the
systems are illustrated in Figure 2.
The Revit to RDF parser converts the Revit data
to RDF to be read into an RDF-based data model
(triplestore). The RDF parser plugin written in C#
accomplishes this. Revit’s API is used to extract
data from both the HVAC model and the architect
model from the database, as shown in Figure 1.
This data is then converted to RDF format expressed
in turtle syntax and appended to a StringBuilder in C#.

Listing 1: Code-snippet from the parser showing how
a pipe in Revit is converted to RDF using FPO.

1 //Get all pipes

2 FilteredElementCollector pipeCollector = new

FilteredElementCollector(doc);,!

3 ICollection<Element> pipes =

pipeCollector.OfClass(typeof(Pipe)).ToElements();,!

4 List<Pipe> pipeList = new List<Pipe>();

5 foreach (Pipe component in pipeCollector)

6 {

7 Pipe w = component as Pipe;

8 //Type

9 string componentID =

component.UniqueId.ToString();,!

10 sb.Append($"inst:{componentID} a fpo:Pipe ." +

"\n");,!

11 }

Listing 1 shows a small example of the code from the
parser that can be applied to convert Revit data into RDF.
The filteredElementCollector class and some other classes
from Revit’s API are used to retrieve pipes in the model.
We extract each pipe’s guid number and add it to our
StringBuilder object sb.

Validation of model and data integrity

The graph model is validated by parsing the RDF data
into a Fuseki database. The server is a SPARQL server
that stores knowledge graphs in RDF form. In this case
SPARQL is used to enable Create, Read, Update, Delete
(CRUD) operations via an endpoint. Queries are used
to both enrich or simply request data such as head and
flow rates for a specific moving device. Data validation
ensure that the necessary data exists and that it has the
correct data type, content, and relation to other data in
the graph. W3C recommends using SHACL shapes for
validating RDF-based data used to describe and constrain
RDF graphs. Each shape contains a description of the tar-
get it validates. Six SHACL shapes are developed to as-
sure necessary data is present for a query to be performed
subsequently to determine head and flow rate:

1. Each supply component must supply fluid to another
component of the same system

2. Each return component must return fluid to another
component of the same system

3. A component can only supply fluid to one component,
except for a tee fitting and heat exchanger

4. A heat exchanger and tee must supply fluid to two
components

5. Each supply component must have a parameter of
pressure drop. The parameter must have a value and
unit and the value must be above 0.0 and have a
datatype of double.

6. Each supply component must have a parameter of
length. The parameter must have a value and unit and
the value must be above 0.0 and have a datatype of
double.

In order to validate the data within the triplestore, the
database must receive a .ttl file with all six shapes. The
SHACL validation engine on the Fuseki server validates
our shapes against the RDF graph and returns a validation
report. It will then be possible to determine whether our
data complies with the rules (shapes) in the validation re-
port. The BIM model is updated if the data set does not
comply with the rules. If the dataset matches the graph,
we can continue to the next step and query the database.
We used Postman, an HTTP client, to send a .ttl file to the
Fuseki server and receive a validation report.
Querying head and flow rate

A query is a request for data from a database. Data from
the triplestore can be queried using SPARQL. This arti-
cle shows four queries. To find the head and flow rate
of a specific flow moving device, we need to determine
whether the flow moving device is part of an open-circuit
or closed-circuit and what type of flow medium it is trans-
porting as it impacts how we are going to query the head.
In a closed-circuit system, the total head is equal to the
dynamic head. When the system is an open-circuit and
transports air, the total head is equal to the dynamic head.
Lastly, if the system is an open-circuit and transports wa-
ter, the total head is equal to the dynamic head plus the

2

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

the parser has looped through all components and spaces,
the .ttl string is parsed as a .txt file and sent through a
client to the RDF-triplestore. Then, the triplestore stores
the data, and then SHACL shapes are used to validate the
data integrity (is all parameters filled, etc.). If the data
validation fails, it will send an ”actions needed” message
to the original BIM model and tell it which components
need to be fixed to continue. If it succeeds, it will pass to
the final stage, which is the pressure and flow calculation
of the critical branch. Finally, it displays the results in a
table format for the user. The following sections will go
through the process shown in Figure 1.
Parsing HVAC data from a BIM model into a
Graph model

In the use case a HVAC model is linked with an archi-
tectural Revit model. The architectural model describe
an office building with four rooms each heated by a ra-
diator and ventilated by one return air terminal and one
supply air terminal. The HVAC model involves three sys-
tems: heating, cooling, and ventilation seen in Figure 2.
The heating system consists of a pump that feeds eight
radiators and a heat exchanger. A pump supplies a heat
exchanger via the cooling system. The ventilation system
consists of a supply fan and exhaust fan connected by air
ducts to four air terminals. A detailed description of the
systems are illustrated in Figure 2.
The Revit to RDF parser converts the Revit data
to RDF to be read into an RDF-based data model
(triplestore). The RDF parser plugin written in C#
accomplishes this. Revit’s API is used to extract
data from both the HVAC model and the architect
model from the database, as shown in Figure 1.
This data is then converted to RDF format expressed
in turtle syntax and appended to a StringBuilder in C#.

Listing 1: Code-snippet from the parser showing how
a pipe in Revit is converted to RDF using FPO.

1 //Get all pipes

2 FilteredElementCollector pipeCollector = new

FilteredElementCollector(doc);,!

3 ICollection<Element> pipes =

pipeCollector.OfClass(typeof(Pipe)).ToElements();,!

4 List<Pipe> pipeList = new List<Pipe>();

5 foreach (Pipe component in pipeCollector)

6 {

7 Pipe w = component as Pipe;

8 //Type

9 string componentID =

component.UniqueId.ToString();,!

10 sb.Append($"inst:{componentID} a fpo:Pipe ." +

"\n");,!

11 }

Listing 1 shows a small example of the code from the
parser that can be applied to convert Revit data into RDF.
The filteredElementCollector class and some other classes
from Revit’s API are used to retrieve pipes in the model.
We extract each pipe’s guid number and add it to our
StringBuilder object sb.

Validation of model and data integrity

The graph model is validated by parsing the RDF data
into a Fuseki database. The server is a SPARQL server
that stores knowledge graphs in RDF form. In this case
SPARQL is used to enable Create, Read, Update, Delete
(CRUD) operations via an endpoint. Queries are used
to both enrich or simply request data such as head and
flow rates for a specific moving device. Data validation
ensure that the necessary data exists and that it has the
correct data type, content, and relation to other data in
the graph. W3C recommends using SHACL shapes for
validating RDF-based data used to describe and constrain
RDF graphs. Each shape contains a description of the tar-
get it validates. Six SHACL shapes are developed to as-
sure necessary data is present for a query to be performed
subsequently to determine head and flow rate:

1. Each supply component must supply fluid to another
component of the same system

2. Each return component must return fluid to another
component of the same system

3. A component can only supply fluid to one component,
except for a tee fitting and heat exchanger

4. A heat exchanger and tee must supply fluid to two
components

5. Each supply component must have a parameter of
pressure drop. The parameter must have a value and
unit and the value must be above 0.0 and have a
datatype of double.

6. Each supply component must have a parameter of
length. The parameter must have a value and unit and
the value must be above 0.0 and have a datatype of
double.

In order to validate the data within the triplestore, the
database must receive a .ttl file with all six shapes. The
SHACL validation engine on the Fuseki server validates
our shapes against the RDF graph and returns a validation
report. It will then be possible to determine whether our
data complies with the rules (shapes) in the validation re-
port. The BIM model is updated if the data set does not
comply with the rules. If the dataset matches the graph,
we can continue to the next step and query the database.
We used Postman, an HTTP client, to send a .ttl file to the
Fuseki server and receive a validation report.
Querying head and flow rate

A query is a request for data from a database. Data from
the triplestore can be queried using SPARQL. This arti-
cle shows four queries. To find the head and flow rate
of a specific flow moving device, we need to determine
whether the flow moving device is part of an open-circuit
or closed-circuit and what type of flow medium it is trans-
porting as it impacts how we are going to query the head.
In a closed-circuit system, the total head is equal to the
dynamic head. When the system is an open-circuit and
transports air, the total head is equal to the dynamic head.
Lastly, if the system is an open-circuit and transports wa-
ter, the total head is equal to the dynamic head plus the

Parser .rvt -> .ttl

Revit File (.rvt) FSO&FPO file (.ttl)

Component
Catalogue

Component
Catalogue

Static pressure
Flow calculation

Query result

Dynamic pressure
Static pressure

Flow calculation

Validation of
data integrity

Component
Mapper

.ttl string
builder

FSO & FPO
.ttl file

Entry for
System TypeOK

NOT OKActions
needed

Closed loop

Open loop

Figure 1: Process diagram for the Revit to FSO and FPO parser. The process consists of a BIM model, a
parser, a Fuseki server to store, query and validate RDF models, a set of SHACL shapes and a Simple Protocol
and RDF Query Language (SPARQL) select query to find the resulting head and flow rate of a given pump.

Pump

Isolation valveHeat Exchanger

Ventilation fan Ventilation damper Ventilation supply Heating coil

Ventilation extractMotorized valve

Cooling Supply

Cooling Return

Heating Supply

Heating Return

Ventilation Supply

Ventilation Return

M

M

CC

M

HC

HC

Radiator

Space 1

Radiator

Space 2

Radiator

Space 3

Radiator

Space 4

Figure 2: System diagram showing the heating system, cooling system and ventilation system supplying the 4
rooms (spaces) and their components. This schematic was modeled in Revit for the use case of this article.

3

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

static head. The first query identifies the type of circuit. A
query will be performed according to the circuit type and
flow medium type to obtain the head and flow rate of the
given flow moving device.

Results

A total of six SHACL shapes and four SPARQL queries
have been developed; however, due to article space lim-
itations, only two SHACL shapes and two queries have
been described in detail. The descriptions and source code
for all SHACL shapes, SPARQL queries and converted
triples, has been made available online 1

To perform a hydraulic calculation to determine the
capacity of a flow moving device in an HVAC system
two parameters are needed; the total head and flow rate.
Based on these, an HVAC designer can select a product.
For closed-circuits’ water-based systems, the head is the
sum of the pressure drop generated by the critical branch.
A SPARQL insert query can be used to perform all neces-
sary calculations automatically. This is also possible when
the original BIM model lacks critical data containing
circuit type information. By using the insert query shown
in Listing 2, each system in the triplestore is enriched with
circuit type ex:ClosedCircuit or ex:OpenCircuit

based on the medium and consumer components
it uses, as well as the supply- and return temperatures.

Listing 2: Sparql update query to determine whether a
system is a open-circuit or closed-circuit, and to add
that information to that system, expressed in Turtle
syntax.

1 INSERT {?system a ?circuit . ?system a ?systemType

.},!

2 WHERE {

3 ?system fso:hasComponent ?component .

4 ?component fso:feedsFluidTo+ ?componentA .

5 ?componentA a ?componentAType .

6 ?system fso:hasFlow ?flow.

7 ?flow fpo:temperature ?temperature .

8 ?temperature fpo:value ?temperatureValue .

9 BIND (IF((?temperatureValue >= 25 &&

?temperatureValue <= 70 && (?componentAType =

fpo:SpaceHeater || ?componentAType =

,!

,!

10 fpo:HeatExchanger)), ex:HeatingSystem, IF (

(?temperatureValue >= 5 &&

?temperatureValue <= 15 &&

(?componentAType =

,!

,!

,!

11 fpo:ChilledBeam || ?componentAType =

fpo:HeatExchanger)), ex:CoolingSystem, IF

((?temperatureValue >= 16 &&

?temperatureValue <=

,!

,!

,!

12 24 && (?componentAType = fpo:AirTerminal ||

?componentAType = fpo:HeatExchanger)),

ex:VentilationSystem, ""))) AS

?systemType)

,!

,!

,!

13 FILTER (isIRI(?systemType))

14 BIND (IF((?temperatureValue >= 25 &&

?temperatureValue <= 70 && (?componentAType =

fpo:SpaceHeater || ?componentAType =

,!

,!

1https://github.com/alikucukavci/

IBPSA-SPARQL-QUERIES-AND-SHACL-SHAPES

15 fpo:HeatExchanger)), ex:ClosedCircuit,

IF((?temperatureValue >= 5 &&

?temperatureValue <= 15 &&

(?componentAType =

,!

,!

,!

16 fpo:ChilledBeam || ?componentAType =

fpo:HeatExchanger)), ex:ClosedCircuit,,!

17 IF ((?temperatureValue >= 16 &&

18 ?temperatureValue <=

19 24 && (?componentAType = fpo:AirTerminal ||

?componentAType = fpo:HeatExchanger)),

ex:OpenCircuit, ""))) AS ?circuit)

,!

,!

20 }

Every HVAC component in the BIM model must be
associated with a parameter fpo:pressureDrop. The
parameter fpo:pressureDrop must also have a value
associated with it, and the unit must be consistent across
all components. Otherwise, the sum will be incorrect.
The SHACL shape shown in Listing 3, validates exactly
fpo:pressureDrop for all HVAC components in our
BIM model. Listing 3 shows how we select our target
using a SPARQL select query. The listing includes
HVAC components on both a closed circuit’s supply and
return sides. Since the pump itself for a closed-circuit
does not have a pressure drop, we omit this by writing
FILTER NOT EXISTS this is a fpo:Pump. The
rules are assigned to the target with the sh: property.
For example, the maximum and minimum of one
fpo:pressureDrop property is required for the target.

Listing 3: Shacl shape of each component must have
a parameter pressure drop, value and unit. Expressed
in Turtle syntax.

1 ex:Shape-1 a sh:NodeShape ;

2 sh:nodeKind sh:IRI ;

3 sh:target [

4 a sh:SPARQLTarget ;

5 sh:prefixes (fpo: fso: ex:) ;

6 sh:select """PREFIX fso: <https://w3id.org/fso#>

PREFIX fpo: <https://w3id.org/fpo#> prefix

ex:<http://example.org/> SELECT ?this WHERE

{?system a ex:ClosedCircuit .?system

fso:hasComponent ?this .filter not exists

{values ?type {fpo:Pump fpo:Fan} ?this a

type} .} """ ;

,!

,!

,!

,!

,!

,!

7] ;

8 sh:property [

9 sh:path fpo:pressureDrop ;

10 sh:minCount 1;

11 sh:maxCount 1;

12];

13 sh:property [

14 sh:path (fpo:pressureDrop fpo:value) ;

15 sh:minCount 1;

16 sh:maxCount 1;

17 sh:minInclusive 0.001;

18 sh:dataType xsd:double ;

19];

20 sh:property [

21 sh:path (fpo:pressureDrop fpo:unit) ;

22 sh:minCount 1;

23 sh:maxCount 1;

24 sh:dataType xsd:string ;

25 sh:hasValue "Pascal"^^xsd:string ;

26].

4

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

static head. The first query identifies the type of circuit. A
query will be performed according to the circuit type and
flow medium type to obtain the head and flow rate of the
given flow moving device.

Results

A total of six SHACL shapes and four SPARQL queries
have been developed; however, due to article space lim-
itations, only two SHACL shapes and two queries have
been described in detail. The descriptions and source code
for all SHACL shapes, SPARQL queries and converted
triples, has been made available online 1

To perform a hydraulic calculation to determine the
capacity of a flow moving device in an HVAC system
two parameters are needed; the total head and flow rate.
Based on these, an HVAC designer can select a product.
For closed-circuits’ water-based systems, the head is the
sum of the pressure drop generated by the critical branch.
A SPARQL insert query can be used to perform all neces-
sary calculations automatically. This is also possible when
the original BIM model lacks critical data containing
circuit type information. By using the insert query shown
in Listing 2, each system in the triplestore is enriched with
circuit type ex:ClosedCircuit or ex:OpenCircuit

based on the medium and consumer components
it uses, as well as the supply- and return temperatures.

Listing 2: Sparql update query to determine whether a
system is a open-circuit or closed-circuit, and to add
that information to that system, expressed in Turtle
syntax.

1 INSERT {?system a ?circuit . ?system a ?systemType

.},!

2 WHERE {

3 ?system fso:hasComponent ?component .

4 ?component fso:feedsFluidTo+ ?componentA .

5 ?componentA a ?componentAType .

6 ?system fso:hasFlow ?flow.

7 ?flow fpo:temperature ?temperature .

8 ?temperature fpo:value ?temperatureValue .

9 BIND (IF((?temperatureValue >= 25 &&

?temperatureValue <= 70 && (?componentAType =

fpo:SpaceHeater || ?componentAType =

,!

,!

10 fpo:HeatExchanger)), ex:HeatingSystem, IF (

(?temperatureValue >= 5 &&

?temperatureValue <= 15 &&

(?componentAType =

,!

,!

,!

11 fpo:ChilledBeam || ?componentAType =

fpo:HeatExchanger)), ex:CoolingSystem, IF

((?temperatureValue >= 16 &&

?temperatureValue <=

,!

,!

,!

12 24 && (?componentAType = fpo:AirTerminal ||

?componentAType = fpo:HeatExchanger)),

ex:VentilationSystem, ""))) AS

?systemType)

,!

,!

,!

13 FILTER (isIRI(?systemType))

14 BIND (IF((?temperatureValue >= 25 &&

?temperatureValue <= 70 && (?componentAType =

fpo:SpaceHeater || ?componentAType =

,!

,!

1https://github.com/alikucukavci/

IBPSA-SPARQL-QUERIES-AND-SHACL-SHAPES

15 fpo:HeatExchanger)), ex:ClosedCircuit,

IF((?temperatureValue >= 5 &&

?temperatureValue <= 15 &&

(?componentAType =

,!

,!

,!

16 fpo:ChilledBeam || ?componentAType =

fpo:HeatExchanger)), ex:ClosedCircuit,,!

17 IF ((?temperatureValue >= 16 &&

18 ?temperatureValue <=

19 24 && (?componentAType = fpo:AirTerminal ||

?componentAType = fpo:HeatExchanger)),

ex:OpenCircuit, ""))) AS ?circuit)

,!

,!

20 }

Every HVAC component in the BIM model must be
associated with a parameter fpo:pressureDrop. The
parameter fpo:pressureDrop must also have a value
associated with it, and the unit must be consistent across
all components. Otherwise, the sum will be incorrect.
The SHACL shape shown in Listing 3, validates exactly
fpo:pressureDrop for all HVAC components in our
BIM model. Listing 3 shows how we select our target
using a SPARQL select query. The listing includes
HVAC components on both a closed circuit’s supply and
return sides. Since the pump itself for a closed-circuit
does not have a pressure drop, we omit this by writing
FILTER NOT EXISTS this is a fpo:Pump. The
rules are assigned to the target with the sh: property.
For example, the maximum and minimum of one
fpo:pressureDrop property is required for the target.

Listing 3: Shacl shape of each component must have
a parameter pressure drop, value and unit. Expressed
in Turtle syntax.

1 ex:Shape-1 a sh:NodeShape ;

2 sh:nodeKind sh:IRI ;

3 sh:target [

4 a sh:SPARQLTarget ;

5 sh:prefixes (fpo: fso: ex:) ;

6 sh:select """PREFIX fso: <https://w3id.org/fso#>

PREFIX fpo: <https://w3id.org/fpo#> prefix

ex:<http://example.org/> SELECT ?this WHERE

{?system a ex:ClosedCircuit .?system

fso:hasComponent ?this .filter not exists

{values ?type {fpo:Pump fpo:Fan} ?this a

type} .} """ ;

,!

,!

,!

,!

,!

,!

7] ;

8 sh:property [

9 sh:path fpo:pressureDrop ;

10 sh:minCount 1;

11 sh:maxCount 1;

12];

13 sh:property [

14 sh:path (fpo:pressureDrop fpo:value) ;

15 sh:minCount 1;

16 sh:maxCount 1;

17 sh:minInclusive 0.001;

18 sh:dataType xsd:double ;

19];

20 sh:property [

21 sh:path (fpo:pressureDrop fpo:unit) ;

22 sh:minCount 1;

23 sh:maxCount 1;

24 sh:dataType xsd:string ;

25 sh:hasValue "Pascal"^^xsd:string ;

26].

In the first iteration of Listing 3, eight components
violated the rules as they were missing the parameters
fpo:pressureDrop, fpo:value and fpo:unit. We
fixed these components in the HVAC BIM model, and
the process from BIM to validation was repeated. After
the second iteration, the validation report was confor-
mant since all components met the conditions in Listing 3.

To verify the existence of a parameter, the composi-
tion of HVAC systems and components can also be
validated. The tee and heat exchanger, for example,
feed fluid to at least two other components. In Listing
2, the composition of the tees and heat exchangers
for the RDF model is validated, and the validation
report was conformant already in the first iteration.

Listing 4: Shacl shape of a heatexchanger- and tee
component must supply fluid to two components ex-
pressed in Turtle syntax.

1 ex:Shape-2 a sh:NodeShape ;

2 sh:nodeKind sh:IRI ;

3 sh:target [

4 a sh:SPARQLTarget ;

5 sh:prefixes (fpo: fso:) ;

6 sh:select """

7 PREFIX fso: <https://w3id.org/fso#>

8 PREFIX fpo: <https://w3id.org/fpo#>

9 SELECT ?this WHERE {

10 ?system fso:hasComponent ?this .

11 FILTER EXISTS {

12 VALUE ?type {

13 fpo:Tee fpo:HeatExchanger

14 } ?this a ?type .}} """ ;

15] ;

16 sh:property [

17 sh:path fso:feedsFluidTo ;

18 sh:minCount 2;

19].

Using a SPARQL query, listing 4 calculates the head
and flow rate of a given pump. This pump is part of
a close circuit, so we ignore the static head and only
calculate the dynamic head. We must first calculate the
total pressure loss of the critical path before we can
calculate the dynamic head. The parameter pressure drop
is summarized for each path from the given pump to a
terminal to determine the critical path. The next step
is to filter the path with the largest pressure loss. Due
to this being a closed system, the terminals are either
fpo:SpaceHeater or fpo:HeatExchanger. The total
pressure loss for the critical path is converted from Pascal
to meters. Finally, the flow rate is summarized for the
terminals that the given flow moving device supplies
in the same system. For the given flow moving device
inst:98172f87-b31e-4363-a01f-2f3f2d13a48f-00

131613, the SPARQL query returns the id num-
ber of the critical consumer component, a head of
1.71 meters of head and a flow rate of 0.034 L/s.

Listing 5: Sparql SELECT query to retrieve the dy-
namic head and flow rate of a given pump for a heat-
ing system, expressed in Turtle syntax.

1 PREFIX fpo: <https://w3id.org/fpo#>

2 PREFIX fso: <https://w3id.org/fso#>

3 PREFIX inst: <https://example.com/inst#>

4 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

5

6 SELECT ?consumer

((?totalPressure/0.00010199773339984) AS

?dynamicHead) ?totalFlow

,!

,!

7 WHERE{

8 {SELECT (SUM(?flowRateValue) AS ?totalFlow)

9 WHERE{

10 ?system fso:hasComponent inst:98172f87-b31e- c
4363-a01f-2f3f2d13a48f-00131613

.

,!

,!

11 VALUES ?type {fpo:SpaceHeater

fpo:HeatExchanger} ?consumer a ?type .,!

12 ?consumer fpo:flowRate ?flowRate .

13 ?flowRate fpo:value ?flowRateValue .

14 }

15 }

16 {

17 SELECT ?consumer (?totalComponentPressureDrop +

?consumerPresserDropValue AS ?totalPressure),!

18 WHERE {

19 {

20 SELECT ?consumer (SUM(?returnPressureValue)

+ (SUM(?totalSupplyPressureDrop)/COUNT(c
?totalSupplyPressureDrop)) AS

?totalComponentPressureDrop)

,!

,!

,!

21 WHERE {

22 {

23 SELECT ?consumer

(SUM(?supplyPressureValue) AS

?totalSupplyPressureDrop)

,!

,!

24 {

25 ?supplySystem fso:hasComponent

inst:98172f87-b31e-4363-a01f- c
2f3f2d13a48f-00131613

.

,!

,!

,!

26 ?supplySystem a fso:SupplySystem .

27 ?supplySystem fso:hasComponent

?supplySystemComponent .,!

28 ?supplySystemComponent

fso:feedsFluidTo+ ?consumer .,!

29 values ?type {fpo:SpaceHeater

fpo:HeatExchanger} ?consumer a

?type .

,!

,!

30 ?supplySystemComponent

fpo:pressureDrop

?supplyPressureDrop .

,!

,!

31 ?supplyPressureDrop fpo:value

?supplyPressureValue .,!

32 }

33 GROUP BY ?consumer

34 }

35 {

36 ?returnSystem fso:hasComponent ?consumer

.,!

37 ?returnSystem a fso:ReturnSystem .

38 ?returnSystem fso:hasComponent

?returnSystemComponent .,!

39 ?consumer fso:feedsFluidTo+

?returnSystemComponent .,!

40 ?returnSystemComponent fpo:pressureDrop

?returnPressureDrop .,!

41 ?returnPressureDrop fpo:value

?returnPressureValue .,!

42 }

5

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

43 } GROUP BY ?consumer

44 }

45 ?consumer fpo:pressureDrop

?consumerPressureDrop .,!

46 ?consumerPressureDrop fpo:value

?consumerPresserDropValue .,!

47 }

48 ORDER BY DESC((?totalPressure)) LIMIT 1

49 }

50 }

Discussion

This article has provided a novel approach to generate
FSO triples based on a Revit BIM model. Furthermore,
it allows for a systematic and standardized way to per-
form model validation of an HVAC system with the use of
SHACL shapes. Such model validation enables better data
interoperability in the future, and therefore eases the de-
signer’s burden. The SHACL shapes can be used in future
work to ensure that models contain the right BIM informa-
tion to allow for simulation of the hydraulic systems per-
formed in Modelica. The SHACL shapes created in this
article, though advanced, needs to be validated further by
industry and academia. Listing 5 is limited to query the
head and flow rate of one flow moving device at a time
and only for closed-circuits. A more generic query that
can calculate head and flow rate for every flow moving
device on a construction project, regardless of system and
circuit type, will be helpful for the HVAC designer. We
created Listing 5 as a starting point, but for future work,
it should be modified to be more generic. Furthermore,
we created the SHACL shapes specifically for the vali-
dation of HVAC systems, but their use is not limited to
that. There is a potential to use SHACL shapes for vali-
dation of many different sub-disciplines within the AECO
industry. The article provides a proof-of-concept for a val-
idation method readily available within the world of se-
mantic web ontologies. To further verify the validity of
SHACL shapes as a model validation method, further re-
search should be carried out on the topic. Furthermore,
this paper suggested a way to perform dimensioning of
pumps, using an RDF-triplestore. In the roadmap for fu-
ture works, the researchers imagine the work of this pa-
per to pave the way for pump manufacturers to create an
RDF-triplestore with all of their product data available.
Doing this will close the gap from the manufacturer to the
HVAC designers by allowing the HVAC designer to au-
tomatically query for product data from the manufacturer,
based on the static and dynamic pressure calculations car-
ried out in the RDF-triplestore.

Conclusion

It is possible to transform a typical BIM model with lim-
ited HVAC data into an RDF-triplestore using FSO and
FPO. Beside being able to make useful HVAC queries on
original data we demonstrate that HVAC data can be en-
riched via SPARQL insert queries. We demonstrate that
the HVAC data can be validated for consistency and coher-
ence through the use of generic SHACL shapes. Finally,

we conclude that SPARQL select queries can be used to
compute critical pressure and flow rate for a given flow
moving device thus exploiting the inherent advantages of
an open source graph database using FSO, FPO, SHACL,
and SPARQL as key enablers.

Acknowledgements

Funding: This work was funded by; the Ramboll Foun-
dation; the Innovation Fund Denmark; EU-Interreg ÖKS
”Data-driven Energy Management in Public Buildings”.

References

Balaji, B., A. Bhattacharya, G. Fierro, J. Gao, J. Gluck,
D. Hong, A. Johansen, J. Koh, J. Ploennigs, Y. Agar-
wal, M. Berges, D. Culler, R. Gupta, M. B. Kjærgaard,
M. Srivastava, and K. Whitehouse (2016). Brick: To-
wards a Unified Metadata Schema For Buildings. In
BuildSys ’16: Proceedings of the 3rd ACM Interna-

tional Conference on Systems for Energy-Efficient Built

Environments, pp. 41–50.

Bolpagni, M., A. Luigi, C. Ciribini, and S. M. Ventura
(2015). Informative content validation is the key to suc-
cess in a BIM-based project validation is the key.

Ghannad, P., Y.-c. Lee, J. Dimyadi, and W. Solihin
(2019). Automated BIM data validation integrating
open-standard schema with visual programming lan-
guage. Advanced Engineering Informatics 40(January),
14–28.

Hamdan, A. H. and R. J. Scherer (2020). Integration
of BIM-related bridge information in an ontological
knowledgebase. CEUR Workshop Proceedings 2636,
77–90.

Kücükavci, A., M. Seidenschnur, and H. C. A. Pauwels,
Pieter (2022). Proposing a Semantic Web Ontology
to Support Capacity- and Size-Related Property De-
scriptions of Heating, Ventilation and Air Conditioning
Components in The Design Phase of Buildings.

Kukkonen, V., A. Kücükavci, M. Seidenschnur, M. H.
Rasmussen, K. M. Smith, and C. A. Hviid (2022). An
ontology to support flow system descriptions from de-
sign to operation of buildings. Automation in Construc-

tion 134(November 2020), 104067.

Lee, Y.-c., C. M. Eastman, and J.-k. Lee (2015). Valida-
tions for ensuring the interoperability of data exchange
of a building information model. Automation in Con-

struction 58, 176–195.

Lee, Y.-c., C. M. Eastman, and W. Solihin (2021). Rules
and validation processes for interoperable BIM data ex-
change. Journal of Computational Design and Engi-

neering 8(August 2020), 97–114.

Lee, Y.-c., C. M. Eastman, W. Solihin, and R. See (2016).
Modularized rule-based validation of a BIM model per-
taining to model views. Automation in Construction 63,
1–11.

6

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

43 } GROUP BY ?consumer

44 }

45 ?consumer fpo:pressureDrop

?consumerPressureDrop .,!

46 ?consumerPressureDrop fpo:value

?consumerPresserDropValue .,!

47 }

48 ORDER BY DESC((?totalPressure)) LIMIT 1

49 }

50 }

Discussion

This article has provided a novel approach to generate
FSO triples based on a Revit BIM model. Furthermore,
it allows for a systematic and standardized way to per-
form model validation of an HVAC system with the use of
SHACL shapes. Such model validation enables better data
interoperability in the future, and therefore eases the de-
signer’s burden. The SHACL shapes can be used in future
work to ensure that models contain the right BIM informa-
tion to allow for simulation of the hydraulic systems per-
formed in Modelica. The SHACL shapes created in this
article, though advanced, needs to be validated further by
industry and academia. Listing 5 is limited to query the
head and flow rate of one flow moving device at a time
and only for closed-circuits. A more generic query that
can calculate head and flow rate for every flow moving
device on a construction project, regardless of system and
circuit type, will be helpful for the HVAC designer. We
created Listing 5 as a starting point, but for future work,
it should be modified to be more generic. Furthermore,
we created the SHACL shapes specifically for the vali-
dation of HVAC systems, but their use is not limited to
that. There is a potential to use SHACL shapes for vali-
dation of many different sub-disciplines within the AECO
industry. The article provides a proof-of-concept for a val-
idation method readily available within the world of se-
mantic web ontologies. To further verify the validity of
SHACL shapes as a model validation method, further re-
search should be carried out on the topic. Furthermore,
this paper suggested a way to perform dimensioning of
pumps, using an RDF-triplestore. In the roadmap for fu-
ture works, the researchers imagine the work of this pa-
per to pave the way for pump manufacturers to create an
RDF-triplestore with all of their product data available.
Doing this will close the gap from the manufacturer to the
HVAC designers by allowing the HVAC designer to au-
tomatically query for product data from the manufacturer,
based on the static and dynamic pressure calculations car-
ried out in the RDF-triplestore.

Conclusion

It is possible to transform a typical BIM model with lim-
ited HVAC data into an RDF-triplestore using FSO and
FPO. Beside being able to make useful HVAC queries on
original data we demonstrate that HVAC data can be en-
riched via SPARQL insert queries. We demonstrate that
the HVAC data can be validated for consistency and coher-
ence through the use of generic SHACL shapes. Finally,

we conclude that SPARQL select queries can be used to
compute critical pressure and flow rate for a given flow
moving device thus exploiting the inherent advantages of
an open source graph database using FSO, FPO, SHACL,
and SPARQL as key enablers.

Acknowledgements

Funding: This work was funded by; the Ramboll Foun-
dation; the Innovation Fund Denmark; EU-Interreg ÖKS
”Data-driven Energy Management in Public Buildings”.

References

Balaji, B., A. Bhattacharya, G. Fierro, J. Gao, J. Gluck,
D. Hong, A. Johansen, J. Koh, J. Ploennigs, Y. Agar-
wal, M. Berges, D. Culler, R. Gupta, M. B. Kjærgaard,
M. Srivastava, and K. Whitehouse (2016). Brick: To-
wards a Unified Metadata Schema For Buildings. In
BuildSys ’16: Proceedings of the 3rd ACM Interna-

tional Conference on Systems for Energy-Efficient Built

Environments, pp. 41–50.

Bolpagni, M., A. Luigi, C. Ciribini, and S. M. Ventura
(2015). Informative content validation is the key to suc-
cess in a BIM-based project validation is the key.

Ghannad, P., Y.-c. Lee, J. Dimyadi, and W. Solihin
(2019). Automated BIM data validation integrating
open-standard schema with visual programming lan-
guage. Advanced Engineering Informatics 40(January),
14–28.

Hamdan, A. H. and R. J. Scherer (2020). Integration
of BIM-related bridge information in an ontological
knowledgebase. CEUR Workshop Proceedings 2636,
77–90.

Kücükavci, A., M. Seidenschnur, and H. C. A. Pauwels,
Pieter (2022). Proposing a Semantic Web Ontology
to Support Capacity- and Size-Related Property De-
scriptions of Heating, Ventilation and Air Conditioning
Components in The Design Phase of Buildings.

Kukkonen, V., A. Kücükavci, M. Seidenschnur, M. H.
Rasmussen, K. M. Smith, and C. A. Hviid (2022). An
ontology to support flow system descriptions from de-
sign to operation of buildings. Automation in Construc-

tion 134(November 2020), 104067.

Lee, Y.-c., C. M. Eastman, and J.-k. Lee (2015). Valida-
tions for ensuring the interoperability of data exchange
of a building information model. Automation in Con-

struction 58, 176–195.

Lee, Y.-c., C. M. Eastman, and W. Solihin (2021). Rules
and validation processes for interoperable BIM data ex-
change. Journal of Computational Design and Engi-

neering 8(August 2020), 97–114.

Lee, Y.-c., C. M. Eastman, W. Solihin, and R. See (2016).
Modularized rule-based validation of a BIM model per-
taining to model views. Automation in Construction 63,
1–11.

Pauwels, P. and W. Terkaj (2015). EXPRESS to OWL
for construction industry: Towards a recommendable
and usable ifcOWL ontology. Automation in Construc-

tion 63, 100–133.

Porsani, G. B., K. D. V. de Lersundi, A. S. O. Gutiérrez,
and C. F. Bandera (2021). Interoperability between
building information modelling (Bim) and building
energy model (bem). Applied Sciences (Switzer-

land) 11(5), 1–20.

Rasmussen, M. H., M. Lefrançois, G. F. Schneider, and
P. Pauwels (2021). BOT: The building topology ontol-
ogy of the W3C linked building data group. Semantic

Web 12(1), 143–161.

Redmond, A., A. Hore, M. Alshawi, and R. West (2012).
Exploring how information exchanges can be enhanced
through Cloud BIM. Automation in Construction 24,
175–183.

Soman, R. K. (2019). Modelling construction scheduling
constraints using shapes constraint language (SHACL).
Proceedings of the 2019 European Conference on Com-

puting in Construction 1(2006), 351–358.

Soman, R. K., M. Molina-Solana, and J. K. Whyte (2020).
Linked-Data based Constraint-Checking (LDCC) to
support look-ahead planning in construction. Automa-

tion in Construction 120(August), 103369.

Stolk, S. and K. McGlinn (2020). Validation of IfcOWL
datasets using SHACL. CEUR Workshop Proceed-

ings 2636, 91–104.

7

E3S Web of Conferences 362, 04002 (2022) https://doi.org/10.1051/e3sconf/202236204002
BuildSim Nordic 2022

