Water supply network modeling and pipe burst analysis based on WaterGEMS

Fuchen Ban^{*}, Mingxuan Zhang, and Lu Ye

School of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168 Liaoning, China

Abstract. In recent years, the water supply task of urban water supply pipe network is more and more heavy, and leakage accidents of pipe network often occur, among which the most serious leakage accident is pipe burst accident. To solve this problem, this study uses WaterGEMS software to establish the topological structure of water supply pipe network, adopts the water supply pipe network model and computer technology to carry out dynamic analysis on pipe burst accident of pipe network, and uses golden section method to predict the water leakage caused by pipe burst accident state.

Keywords: WaterGEMS, Golden section method, Micro model of pipe network, Tube-burst accident.

1 Introduction

Under the current information management system, there are still many water companies whose management and technology are not enough scientific, and informationized, exposing many problems that need to be solved [1]. Based on the pipe burst accident, this study uses WaterGEMS software to build the topological structure of water supply pipe network, sort out and simplify the topological relationship, and establish the micro model of water supply pipe network. Combined with computer technology, dynamic analysis of pipe burst accident in pipe network is carried out, and golden section method is used to predict the water leakage caused by pipe burst accident.

2 Establishment of location model of burst pipe

2.1 Establish the pipe network topology

The water supply pipe network of a high-tech zone in a city is more than 300 kilometers, with daily water supply of 200,000 tons. At present, there is a water plant in the area for water supply operation. A total of 6 pumps are set up to supply water at constant pressure in turn, and 3 to 4 pumps are usually open. The sorted GIS data was imported into

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

^{*} Corresponding author: <u>banfc@163.com</u>

WaterGEMS software, and the basic topological structure of water supply pipe network was established and sorted out. The sorted pipe network topology of a certain area is shown in Fig.1.:

Fig. 1. Pipe network topology diagram.

2.2 Urban water supply network node flow distribution

WaterGEMS is used for pipe network modeling, and the collected basic data information of water supply pipe network is imported into the established model through GIS data interface [2], so as to allocate the amount of water used by users. The topological relationship between the established model software and users is shown in Fig. 2.:

Fig. 2. Topological structure diagram of water users and pipe network.

2.3 Establish the mathematical model of pipe network

The flow of the nodes is distributed to the nodes of the hydraulic model of the water supply pipe network, and then the continuity equation of the pipe network, the energy equation of the water supply pipe network and the adjustment equation of the pipe network modeling are established to model and simulate the pipe segment.

When the adjustment equation is used for hydraulic calculation in modeling software, the relevant basic equations should be established in the established model first, and then the hydraulic modeling software should be used to verify and solve the established model equations [3]. By simulating the operation condition of water supply pipe network in a high-tech zone of a city, the node pressure, flow rate of pipe section, flow rate of pipe section and head loss [4] can be calculated, as shown in the figure below:

Fig. 3. The simulated results of hydraulic calculations of hydraulic model.

	ID	Label	Length (Scaled) (m)	Start Node	Stop Node	Hazen- Williams C	Flow (L/s)	Velocity (m/s)	Headloss (m)
49103: 8108	49103	8108	17.742	-M-519	-3-3749	110.0	88.89564	1.26	0.16521
49256: 8582	49256	8582	21.950	J-3916	J-3914	110.0	8.45501	1.08	0.44718
49277: 9830	49277	9830	22.517	-J-128	-J-127	110.0	31.95272	1.02	0.19811
50612: 11137	50612	11137	49.811	-J-2372	-3-445	110.0	477.61201	0.95	0.08943
51649: 11138	\$1649	11138	74.198	-3-2373	-J-2372	110.0	477.61201	0.95	0.12196
45726: 11366	45726	11366	0.481	-J-550	-M-822	110.0	7.41563	0.94	0.02989
48443: 11365	48443	11365	4.048	-M-822	-3-2047	110.0	7.41561	0.94	0.08312
48204: 11607	48204	11607	2.295	-3-399	-M-1247	110.0	250.34307	0.89	0.02372
49234: 11608	49234	11608	21.235	-M-1247	-3-404	110.0	250.34301	0.89	0.05473
50507: 11612	50507	11612	47.808	-J-2168	-J-405	110.0	250.34300	0.89	0.09823
50681: 11611	50681	11611	50.890	-J-404	-J-2168	110.0	250.34300	0.89	0.10329
48524: 8250	48524	8250	5.008	-3-273	-M-1185	110.0	248.68124	0.88	0.02779
49810: 11631	49810	11631	37.229	-M-1185	-1-409	110.0	248.68124	0.88	0.07990
46309: 6160	46309	6160	1.037	-3-2772	-M-98	110.0	6.89513	0.88	0.03315
47173: 6161	47173	6161	1.404	-M-98	-3-2773	110.0	6.89511	0.88	0.03795
49281: 11614	49281	11614	22.668	-3-405	-J-406	110.0	247.93241	0.88	0.05603
51296: 11618	51296	11618	62.268	-J-406	-J-2171	110.0	247.93238	0.88	0.11971
51101: 11619	51101	11619	58.154	-J-2171	-J-407	110.0	247.47546	0.88	0.11272
50373: 11639	50373	11639	45.267	-J-2180	-J-410	110.0	247.31222	0.87	0.09194
51207: 11635	51207	11635	60.307	-3-409	-3-2180	110.0	247.31222	0.87	0.11603
51097: 11622	51097	11622	57.991	-3-407	-3-2172	110.0	247.23471	0.87	0.11224
50878: 11623	50878	11623	54.436	-J-2172	-J-408	110.0	247.23192	0.87	0.10656
48990: 11628	48990	11628	14.242	-J-408	-J-2175	110.0	246.89186	0.87	0.04214
49083: 11630	49083	11630	16.948	-J-2176	-J-274	110.0	246.89186	0.87	0.04647
50162: 11629	50162	11629	42.207	-J-2175	-J-2176	110.0	246.89186	0.87	0.08677
48705: 11640	48705	11640	7.046	-3-410	-)-411	110.0	246.35408	0.87	0.03053
51054: 11644	51054	11644	57.155	-3-411	-3-2245	110.0	246.34897	0.87	0.11017
51130: 11778	51130	11778	58.741	-J-2245	-1-412	110.0	246.34897	0.87	0.11268
48750: 11408	48750	11408	7.812	-J-412	-J-413	110.0	246.19944	0.87	0.03170
49742: 10912	49742	10912	35.570	-J-413	-J-2187	110.0	246.19942	0.87	0.07577
50127: 10913	50127	10913	41.709	-J-2187	-J-534	110.0	245.45511	0.87	0.08504
47231: 7408	47231	7408	1.430	-3-3363	-M-296	110.0	6.74255	0.86	0.03666
47537: 8707	47537	8707	1.564	-3-571	-3-3363	110.0	6.74255	0.86	0.03834
46924: 7409	46924	7409	1.314	-M-296	-3-3364	110.0	6.74252	0.86	0.03522
48818: 8251	48818	8251	9.724	-M-1186	-J-273	110.0	241.78890	0.86	0.03356
48014: 8254	48014	8254	1.988	-J-274	-J-1613	110.0	241.78887	0.86	0.02167
48085: 8252	48085	8252	2.071	-J-1612	-M-1186	110.0	241.78887	0.86	0.02180
49238: 8253	49238	8253	21.344	-J-1613	-J-1612	110.0	241.78887	0.86	0.05138

Fig. 4. Water supply network hydraulic model pipeline simulation data table of the city.

2.4 Location of pipe burst accident point

It is found that the pressure drop in the area of pipe burst accident is greater than that in other areas by simulating the distribution of pipe burst accident and the variation of pipe pressure in the area of pipe burst accident. In addition, when the pipe burst occurs, due to the huge pressure difference between the inside and outside of the pipe, the ejected water will rub against the pipe wall to produce vibration and impact with the surrounding soil to produce sound waves, namely leakage signals [5].

Due to time delay and large amount of water leakage, the traditional acoustic positioning method is usually combined with the mean square error statistical index to evaluate the location of pipe network accident, and the mean absolute error statistical index and mean relative error statistical index are used as auxiliary indexes to determine.

2.5 Estimation of water loss

According to the city water supply in the zone, the water leakage of a golden interval step by step is determined, and the calculated leakage of water is used as the water supply network simulated calculation of the leakage of water at the time of the accident. Meanwhile the pressure value of the pressure measuring point and pressure measuring point of the pressure value of the mean square error at the time of accident in the pipe network under the actual working conditions are calculated, until the calculated accuracy meets the required range of mean square deviation.

2.6 The example analysis

The average daily water supply of the water plant in the high-tech zone of a city is 200,000 m^3/d . It is assumed that the accident occurred at the node position of -J-3606 in the fourth zone at 3:00 PM, and the leakage flow of water is 22L/s. According to the water supply capacity under normal working conditions, the interval of water leakage can be estimated as (0.01, 190) (unit L/s, the same below), according to the formula (1) and (2).

$$x_3 = x_1 + 0.382 \times (x_2 - x_1)$$
 (1)

$$x4=x1+0.618 \times (x2-x1)$$
 (2)

The formula can be used to calculate the water leakage at the golden section point as 72.586L/s and 117.424L/s respectively. Then, the mean relative error, mean absolute error and mean square error of the four working conditions are compared, and the results are shown in Table 1.:

Leakage flow	0.01L/s	72.586L/s	117.424L/s	190L/s
Mean relative error	1.181	1.016	2.469	4.989
Mean absolute error	4.079	3.782	9.724	21.894
Mean square error	1.193	1.031	2.483	4.992

Table 1. Leakage interval (0.01,190) comparison table of leakage loss error.

Determine the two numbers in the data with smaller mean square error, as a new leakage interval. According to the golden point formula, compare the error of leakage water again, make the above comparison, continuously shorten the leakage area, and list of all pressure testing points in the accident area and mean square error of points of the simulating condition point and the actual condition point at the time of pipe explosion accidents according to the calculated value of each point shown in Table 2.:

It can be seen from Table 2. that the mean square deviation of pressure monitoring points of No.4 and No.7 is 1.04 and 1.03 respectively, which are close to and minimum. According to the principle of leak location: When pipe somewhere tube-burst accident occurs suddenly, the pressure value around the leakage point drops sharply, causing a pressure difference of the pipeline inside and outside, which can determine the actual location of the pipe explosion accident between 4 and 7. Taking No. 4 and No. 7 as the accident area, at this time the golden section method can be used to determine again, with leakage of water set (0.01, 40.818) as the initial range of leakage water quantity, and then calculate again. By comparing the mean square error, it can be concluded that the mean square error is the smallest when the leakage water quantity is 21.547L/s, indicating that the actual leakage water quantity is 21.547L/s when the pipe bursting accident occurs.

The serial number	Position of monitoring point	Mean square error	
1	High-tech Zone Management Committee	1.07	
2	Hongsen Industrial Co., LTD	1.26	
3	3 Changming middle school		
4	Taigu Coca-Cola Beverage Co. LTD	1.04	
5	Fairview State Property Development Co. LTD	1.24	
6	XX University	1.34	
7	Hongyu Cigarette Machine Accessories Co., LTD	1.03	
8	Watch table of Cuilinyuan	1.16	
9	Shiqi measurement and Control Technology Co., LTD	1.53	
10	Zhengxing Technology Company Limited	1.19	
11	Second hydrant on Yulan street and Shinan Road north	1.23	
12	Yuanda Biopharmaceutical Co. LTD	1.19	
13	Fairview State Property Development Co. LTD 2	2.62	
14	XX University Experimental Primary School	2.60	

Table 2. Comparison tabl	e of mean square va	ariance correspo	nding to detonati	ng accidents at every
	monitoring po	oint in an accider	nt area.	

From the analysis of the above model, it can be seen that the red represents the suspicious accident point, and the purple mark represents the actual accident spot. Therefore, the model through the use of positioning the accident point can greatly reduce the range of pipe explosion accident, and by using golden section method to find the water leakage can be accurate in the event of a tube-burst accident.

3 Conclusion

WaterGEMS is used to establish the topological structure of the urban water supply pipe network, and then the hydraulic calculation of the water supply pipe network is carried out according to the established micro model, and the water leakage corresponding to each working point is calculated by using the golden section method, and then comparing the mean square error of the simulated data and the actual data at each working point, leakage water generated can be accurately in the event of pipe explosion accident. The results show that this method can effectively solve the problems encountered in the actual operation of water supply network and has good practical significance.

Fig. 5. Explosion accident points analyzed by pipe burst Location model and the actual explosion accident point.

I would like to thank the teachers in the school and laboratory for their help in my research and writing with my co-authors. We would also like to thank the Social Governance Science and Technology Special project of Shenyang Science and Technology Plan in 2021(21-108-9-33) and the Basic Research Project of Higher Education Institutions of Liaoning Province in 2021(LJKZ0576) for their joint help in providing financial support for our research.

References

- Ke, Q., Zhou, C., Wang, L.S.: Burst risk assessment model for water supply networks. Water & Wastewater Engineering 42 114(2016)
- 2. Ding, M.Z.: Design and analysis of renovation and upgrading project of Zepu County Water Supply General Plant. China Water Transport **18** 245(2018)
- 3. Chen, P., Zhuang, B.Y. Zhao, X.H.: Topological Analysis for Water Distribution System under Failure State, Zhongguo Jishui Paishui **28** 48(2012)
- 4. Xu, Q., Chen, Q.W., Gu, J.N., Zhang, M.T.: Comprehensive Review of Leakage Control Studies for Water Distribution, Zhongguo Jishui Paishui **28** 5(2012)
- 5. Liu, J.H., Ji S.S., Wang, G.M.: Study on location of leakage point in water supply network, Water & Wastewater Engineering 44 **119**(2018)