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Abstract. The presence of fiber waviness defects is well-known to reduce 
the compressive strength. A FE model was established and the results of 
failure load and mode were compared with the test results to demonstrate 
the validity and accuracy. The influence of two parameters L and offset 
Angle θ of fiber waviness defect was studied. The simulation results show 
that the compression failure load increases with the increasing of L at 
constant A/H for convex and concave fiber fold by 33.0% and 20.1% 
respectively, but there is no significant effect on the failure load with θ
within 5%.

1 Introduction

Composite laminates are more susceptible to manufacture defects due to their inherent 
anisotropic characteristics of composite materials and complex manufacture processes. 
Fiber waviness defects are the commonly observed manufacture defects in the composite 
laminates, which was introduced unintentionally during manufacturing process. The 
presence of fiber waviness defects is well-known to reduce the compressive strength of 
composite laminates. Therefore, the investigations of fiber waviness defects are important 
both to evaluate the structural integrity of composite components, and to improve 
manufacture techniques to reduce the defects.

Many studies have been done on the fiber waviness defects, which were introduced 
unintentionally during manufacturing process. Chan et al. [1] studied the influence of fiber 
waviness on the deflection and natural frequency of symmetric composite beams. 
Mukhopadhyay et al. [2] conducted compression tests and numerical simulations on 
artificially induced fiber waviness. Bloom [3] and El-Hajjar [4] et al. studied the influence 
of fiber waviness on the strength and failure mode of laminates through tensile test. Kugler 
et al. [5] determined the material and process parameters that have the greatest influence on 
the development of waviness in laminates, and explained the influence emphases of 
different parameters. Potter et al. [6] investigated how different choices in composite design 
affect the performance of composite materials and induce defects. Lightfoot et al. [7]
proposed a new waviness formation mechanism based on the shear force caused by the 
mismatch of thermal expansion coefficient between composite materials and tools, and the 
interlayer slip process occurring during consolidation.
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A lot of experimental and numerical studies have been carried on the mechanical 
performance of the composite laminates and structures with fiber waviness. Xu et al. [8]
studied the influence of out-of-plane waviness on full-thickness tensile strength through 
experiments and numerical studies on multidirectional curved beam laminate, and the 
strength could be reduced by 16%. Hu et al. [9] also studied bending composites. 
Predefined waviness profiles were generated using special lay-up and forming processes, 
and mechanical tests and DIC measurements were performed to illustrate the effect of the 
waviness. It is found that local stress concentration around waviness is an important factor 
leading to failure. Alves et al. [10] collated and compared the analytical methods developed 
to predict mechanical properties. Based on the latest techniques in this field of research, 
they studied and debated specially formulated experimental techniques to investigate the 
effect of corrugations on key structural characteristics.

There have been many experimental and simulation studies on laminates with fiber 
waviness defect, but few of them were referred to the parameter sensitivity of the waviness. 
In this paper, an accurate finite element model was established to explore the impact of 
length L and offset angle θ.

2 Finite element model

2.1 Theory of failure criterion

2.1.1 CFRP plies

The strength theory of composite takes into account damage characterization, stress 
analysis, damage judgment and damage evolution. The Continuum Damage Mechanics 
(CDM) holds that material damage will directly result in the reduction of carrying capacity. 
It provides a method that can accurately determine the full range of deterioration in a 
composite material [11]. Based on CDM, Puck’s theory [12,13] was coded as VUMAT 
subroutines in ABAQUS/Explicit which assumes that the brittle fracture of the matrix in 
unidirectional composite lam-inates will generate a crack plane parallel with the fiber 
direction (Figure 1).

Fig. 1. Cross section of specimens containing a fiber waviness defect.

In Puck’s Definition of stresses on the crack plane theory, the material fracture is 
represented by the stress exposure fE. If fE <1, there is no damage, otherwise if fE≥1, the 
material has damage occurred. Besides, Puck considered that fiber failure (FF) and inter-
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represented by the stress exposure fE. If fE <1, there is no damage, otherwise if fE≥1, the 
material has damage occurred. Besides, Puck considered that fiber failure (FF) and inter-

fiber failure (IFF) must be treated by different criteria. According to the IFF hypothesis, 
two different fracture conditions for IFF are required as shown in Equation 1.
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2.1.2 Cohesive interfaces

The interfaces were modelled using a 3D cohesive interface constitutive in the traction-
separation law embedded in Abaqus/Explicit. The opening (mode I) and sliding (mode II) 
displacements between the top and bottom surfaces of the cohesive element were related to 
the corresponding stress components by high interfacial stiffness value KI and KII. The 
material parameters of the cohesive zones are given in Table 3. The cohesive interfacial 
stiffness and strength were estimated because they cannot be measured directly. The 
quadratic stress criterion was used to detect damage initiation
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where σnn is the normal component of stress in the cohesive layer, σss and σtt are two shear 
traction components of stress in cohesive layer, while Nmax, Smax and Tmax are the mode I, 
mode II and mode III failure initiation stresses. Here, the Macaulay bracket on σnn indicates 
that negative normal traction component does not contribute to traction-separation of 
cohesive layer. After damage initiation is detected at the interface, the bilinear damage 
evolution law is used to degrade the stiffness of the cohesive elements. The damage 
variable ddelam was defined by

i
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where δm is the effective displacement in interfacial mixed-mode. The superscript ‘i’ and ‘f’ 
indicate their values corresponding to damage initiation and complete failure, respectively. 
The damage variables ddelam was used to degrade the interfacial stiffness linearly from 0 (no 
damage) to 1 (complete failure) following a mixed-mode delamination. After damage 
initiation, a power law fracture energy criterion was used for the damage evolution.

2.2 Modelling in abaqus

The composite laminates specimens were designed containing different severity of fiber 
waviness. The stacking sequence is [45/0/-45/90/45/0/-45/0/45/0]s. The nominal cured 
thickness of each ply is 0.19mm. The nominal total thickness of the specimens is 3.8mm. 
All the specimens were machined in the length of 140mm and the width of 12mm. The 
unsupported length of the specimens was 12mm.

The severity of the fiber waviness defect is illustrated in Fig. 2. The nominal thickness 
of laminates is defined as H. The maximum depth of dent or height of convex is defined as 
A. The severity of the dent defect is characterized by the fiber waviness ratio A/H. Four 
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configurations of specimens with different fiber waviness ratios were investigated, which 
were 10%, 20%, -10%, -20%, respectively, where the negative sign represents the concave 
waviness of the fiber, otherwise it is the convex waviness of the fiber.

Fig. 2. Cross section of specimens containing a fiber waviness defect.

The plies of composite were modelled using 3D 8-noded solid reduced-integration 
elements (C3D8R). There were one layer elements in the thickness direction of each ply. 
The “enhanced” hourglass control option was used to avoid the appearance of spurious 
zero-energy hourglass modes in the reduced integration C3D8R elements. Zero thickness 8-
noded cohesive COH3D8 elements were inserted among all the plies to model delamination 
failure. Fine mesh, 0.25×0.25mm in-plane dimension, was employed in the concave fiber 
waviness containing zone. Otherwise, a relatively coarser grid, the largest size scale 
reached to 0.75×0.25mm in-plane dimension, was used in the other zones to improve the 
efficiency of calculation. A typical FE model of specimen consisted of 34560 C3D8R 
elements and 32832 COH3D8 elements. The mesh of typical specimen and the actual side 
view of specimen were presented in Fig. 3.

Fig. 3. FE mesh and actual side view of specimen with concave fiber waviness specimen (a) FE mesh 
of specimen (b) side view of test specimen.

The finite element models were built in Abaqus/Explicit with quasi-static analysis and 
the explicit dynamic solver. The calculated kinematic energy was less than 5% of internal 
energy of model, which indicated that the quasi-static simulation was credible. In order to 
improve the computing efficiency, only the gauge length of 12mm of the specimens were 
modelled. The fiber waviness is defined as the cosine function in the thickness direction 
with a wavelength of λ and an amplitude of 2a.

The scanning of the convex fiber waviness shows that the fibers of the lower half 
composite laminate had no waviness along the through-thickness direction of the specimens, 
while the upper-half fibers had waviness along the through-thickness di-rection. The nodal 

(a)

(b)
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coordinates of the convex fiber waviness model in the direction of through-thickness are 
defined as:

W 0Z Z Z= +∆                                                           (4)

where ZW is the nodal coordinate of the through-thickness direction of the fiber waviness 
model, Z0 is the nodal coordinate of the through-thickness direction of the waviness-free 
model and ΔZ is expressed as:
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Note that sgn(x) is the symbolic function:
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where x is the coordinate of the model length direction. λ is the wavelength of the waviness, 
and the wavelength of the fiber waviness on the specimens is half the wave-length. A is the 
convex height of the fiber waviness in the direction of through-thickness, and H is the 
theoretical thickness of the model. B is the amplitude in the direction of through-thickness, 
which is one on the top surface of the FE model, linearly decays in the direction of through-
thickness, and takes to zero at the middle-plane position of the composite laminates. T is 
equivalent to H, which is also the thickness of the model. A/H is used here to define the 
severity of fiber waviness.

For the geometrical profile of the concave fiber waviness, it is roughly the same as that 
of the convex fiber waviness model. The curvature of the concave fiber waviness gradually 
decays from the top surface to its subsequent plies. Therefore, the severity of the concave 
fiber waviness on the top layer was the largest, and the bottom layer did not have any fiber 
waviness. The nodal coordinate of the concave fiber waviness model in the through-
thickness direction is defined as follows:

W 0Z Z Z= −∆                                                            (7)

and Z∆ is expressed as:

2
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                         (8)

Note that the meanings of symbols in Equation (7) are identical to those in the convex 
fiber waviness model. In the concave fiber waviness model, parameter B is one at the top 
layer and zero at the bottom layer.

3 Numerical results and verification

The material properties of the T800/epoxy composite were used in this study. The failure 
loads of the specimens predicted by finite element analysis are summarized in Table. 1. It 
can be seen that the errors of experimental values and simulation values of other specimens 
are within 10%.
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Table. 1. Experimental and simulation results of fiber waviness specimens.

A/H Simulation Value/kN
Experimental value 

/kN
Error

0% 34.86 36.53 −4.57%
−20% 14.08 15.27 −7.79%
−10% 21.85 23.21 −5.86%
10% 26.16 26.55 −1.47%
20% 24.39 24.73 −1.37%

(a) (b)

Fig. 4. Typical failure mode (a) compression test (b) FE model.

Fig. 4 shows the test and simulation failure mode of typical specimens with fiber 
waviness, where the defects are on the top of the pictures. The elements in blue are the 
undamaged regions. The elements in red are the failure regions. The elements in white are 
the delamination regions. By comparing (a) and (b) in Fig. 4, it can be found that the failure 
mode of the fiber waviness model obtained by finite element simulation is similar to the 
failure situation of the experiment, and most of the failure occurs at the maximum 
dislocation Angle. This is also the aera where the stress is easy to concentrate and the 
fragile part of the fiber waviness specimens. The experimental failure load and failure mode 
are close to the simulation results, which shows the validity and accuracy of the finite 
element model from both sides.

4 Sensitivity analysis of related parameters

4.1 Length of fiber waviness

In section 4, the length of fiber waviness L along the length direction of specimens is 
constant. In this part the influence of L is studied when A/H is 10% or -10%. L varies from 
3mm to 6mm and the interval is 1mm both in concave and convex fiber waviness. The 
results are shown in Table. 2 and Fig. 5.

Table. 2. Simulation results of fiber waviness specimens with L.

A/H L Simulation Value/kN
10% 3 20.91
10% 4 23.75
10% 5 24.51
10% 6 26.16
−10% 3 14.64
−10% 4 16.83
−10% 5 19.67
−10% 6 21.85
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Fig. 5. Simulation results of fiber waviness specimens with different L.

The curves presented in Fig. 5 decreases with the decrease of L in both cases where 
fiber waviness is concave or convex. Although simply reducing the value of L under the 
condition that A/H remains unchanged will reduce the area affected by fiber waviness 
defects in the working section of the specimens, it will increase the fold angle, leading to 
more concentrated stress and reduced bearing capacity. When L is 3mm, their failure modes 
of FE models are the same as when L is 6mm, but the load decreases by 20.1% in the case 
of concave waviness and 33.0% in the case of convex waviness, indicating that L has a 
significant impact on fiber waviness.

4.2 Offset angle of fiber wavines

The fiber waviness defects discussed in the previous paper are perpendicular to the length 
direction of the sample, that is, the offset angle is 90°. In the actual manufacturing process, 
fiber waviness defects may show other angles as shown in Fig. 6. In this part the influence 
of offset angle θ is studied when A/H is 10% or -10%. θ varies from 90° to 70° and the 
interval is 5° both in concave and convex fiber waviness. The results are shown in Table. 3 
and Fig. 7.

Fig. 6. Fiber waviness defects with θ=70°.

Table. 3. Simulation results of fiber waviness specimens with θ.

A/H θ Simulation Value/kN

10% 90° 20.91
10% 85° 21.21
10% 80° 21.44
10%
10%

75°
70°

21.67
21.61

−10% 90° 14.64
−10% 85° 14.86
−10% 80° 15.07
−10%
−10%

75°
70°

15.44
15.41
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Fig. 7. Simulation results of fiber waviness specimens with different θ.

It can be seen from Fig. 7 that the two curves tend to be basically horizontal. During the 
change process of θ from 90° to 70°, the failure load changes slightly within 5%. Fig. 8
shows the typical failure mode of fiber waviness defects specimens with offset angles. At 
the initial stage of damage, fiber damage occurs at the maximum angle of the waviness, as 
shown in (a). Then, with the loading of compression load, a large number of layered failure 
occurs in the area affected by the wrinkle, as shown in (b). In spite of the change of offset 
angle, the number and degree of fiber wrinkling are not changed, and the stress 
concentration at the waviness is basically unchanged, so the bearing capacity of laminates 
does not decrease. It can be concluded that the offset angle of fiber waviness defects only 
has slight effect.

Fig. 8. Failure mode of fiber waviness defects with offset angle.
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