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Abstract. Accurate acquisition of real-time aerosol distribution indoors is crucial to both estimating real-

time infection risk of indoor respiratory infectious diseases as well as rapidly optimizing the ventilation 

effectiveness of building structure during the design stage. Real-time prediction of aerosol distribution can 

hardly be achieved by CFD model due to its iterative solution strategy, while the Markov chain model can 

greatly reduce computing time by implementing the non-iterative state transfer process. In this study, a real-

time visualization algorithm for aerosol dispersion in limited space is developed based on the Markov chain 

principle and pre-solved flow field. Then the reliability of the proposed algorithm is verified by experimental 

data. An interactive user interface is further constructed based on the validated algorithm to realize real-time 

simulation of the dynamic release process of multiple indoor pollution sources. Results show that the 

simulation outcomes agree well with the experimental validation data, and the dynamic real-time 

distribution of aerosols can be well visualized for steady-state airflow. The present study aims to provide a 

new effective prediction method for real-time visualization of indoor pollutant dispersion and rapid 

evaluation of the impacts of building structure on ventilation effectiveness.

1 Introduction 
In recent decades, various airborne respiratory 

infectious diseases, such as tuberculosis, influenza, 

severe acute respiratory syndrome (SARS), and 

coronavirus disease 2019 (COVID-19), led to a series of 

public health events. Research has demonstrated that 

these pandemics are mainly transmitted through airflow, 

and strongly associated with the distribution of indoor 

airflow [1]. Particles generated by breathing, coughing, 

and sneezing will diffuse with indoor airflow fields by 

infected persons [2], resulting in non-contact infection 

of other people in a shared room. Therefore, quickly and 

accurately predicting the dynamic transport process and 

real-time distribution of particles in an enclosed 

environment is crucial to reducing the risk of infection 

and optimizing the design of indoor ventilation systems. 

Visualization of the abovementioned real-time 

prediction results is more helpful for infection 

prevention and control. 

Eulerian model and Lagrangian model based on 

Computational Fluid Dynamics (CFD) simulation have 

been used extensively for particle transport process. 

Chen et al. [3] applied RANS model with the Eulerian 

method to obtain person-to-person contaminant 

transport data. Seepana et al. [4] analyzed the interaction 

between full-scale indoor airflow and exhaled droplets 

with an Eulerian approach. Wang et al. [5] tracked 

particle transport based on CFD-calculated ventilation 

flow fields by using the Lagrangian model. Zhang et al. 

[6] used the Lagrangian model to investigate the 

diffusion process of respiratory droplets released by 
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coughing. Both Lagrangian and Eulerian models can 

compute detailed information related to transient 

particle concentration distributions, however, both are 

quite time-consuming due to continuous iteration during 

simulation. 

The Markov chain model is implemented for particle 

phase simulation due to its non-aftereffect property. 

Besides, the Markov chain model is usually performed 

with simple vector multiplications instead of continuous 

iteration to obtain particle distribution. Chen et al. [7,8] 

combined the Markov chain framework with CFD 

model to perform particle phase and airflow simulation, 

they found that the calculating speed increased by 6.3 

and 8.0 times compared with the Eulerian model and the 

Lagrangian model, respectively. Anthony et al. [9] 

mainly studied the method based on the set theory 

approach to construct Markov matrices, and strictly 

determined the number of Markov states and the time 

step. Mei et al. [10,11] proposed a modified Markov 

chain model to predict particle deposition caused by 

thermophoresis and gravitational forces. Hu et al. [12] 

optimized the Markov chain state transfer matrix 

constructed based on a set theory, which improved the 

accuracy of particle distribution prediction. However, 

none of abovementioned models can simultaneously 

provide real-time prediction and visualization of particle 

distribution. 

For a fixed flow field, the Markov chain technique 

can avoid repeatedly solving particle transport equations 

for different pollution source locations. Therefore in the 

present study, a real-time visualization algorithm for 

aerosol dispersion in limited space is developed based 
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on the Markov chain principle and pre-solved flow field. 

An interactive user interface is further constructed based 

on the validated algorithm to realize the real-time 

simulation of the dynamic release process of multiple 

indoor pollution sources. 

2 Method 

2.1 Markov chain model

The fluid computational domain is divided into � cells, 

and the outlet is linked to a space labelled as, the 

(� + 1)��  cell to store particles escaping the 

computational domain. The distribution state of 

particles in the current space-time (state � ) is 

represented by a vector: 

 �� = [��,	 ��,
 ⋯ ��,� ��,�	] (1) 

where ��,� represents the quantity of particles in the cell 

� at state �. It is presumed that the particles in the cell 

can only have two transfer probabilities within a certain 

time step (∆�), one is the probability of a particle staying 

in the current cell (��,�), and the other is the probability 

of a particle transferring to the adjacent cell � (��,�). We 

then constructed the (� + 1)  × ( � + 1)  matrix �  of 

the transfer probabilities: 

 � =
⎣⎢
⎢⎢
⎡�		 �	
�
	 �
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where �� �	 represents the probability that the particle 

will move from internal cell � to the (� + 1)�� space. It 

is assumed that particles in the (� + 1)�� space will not 

return to the computational domain, so we have: 

 ��	�	 = 1 (3) 

For the first-order homogeneous Markov chain 

model, the corresponding state transfer matrix must 

satisfy the following properties: 

 ∑ ������	 = 1 ��� ≥ 0 (4) 

Thus, the state ��∆�  after one time step can be 

calculated by: 

 ��∆� = ��� (5) 

Under steady-state airflow condition, the transfer 

matrix is fixed. If we calculate the particle transport 

from state � , the particle number vector after !  time 

steps can be calculated by: 

 ��"∆� = ���#  (6) 

2.2 Producing the state transfer matrix

Acquiring a precise state transfer matrix is critical for 

particle transport calculations. This study adopted the 

flux-based method to calculate the probability of the 

contaminant transfer. Parameters of the flow field were 

calculated using the RNG k-ε model. Information such 

as flow velocities and, cell centroid locations are 

exported from the commercial software Ansys Fluent 

through a user-defined function (UDF). Thus, the 

probabilities of particle transfer, ��,�  and ��,� , can be 

calculated by the flow flux between cells: 

 ��,� = $%� &− ∑ '*,-.
/*�2 ∆�3 (7) 

 ��,� = '*4
∑ '*,-.-. 51 − ��,�6 (8) 

where 7�,�2 consists of the mean airflow rate (789:�,�,�2) 

and the turbulent fluctuating airflow rate (7;<>?@>A@BCD,�,�2) 

from cell � to its neighbouring cell, E� is the volume of 

cell �. The state transfer matrix � is sparsely stored since 

most of its elements are zero, which can remarkably 

reduce storage need. 

2.3 Investigation of the construction of an 
interactive Interface

Existing research mainly focuses on the accuracy and 

computational cost of the Markov chain model, the 

process and result of particle transport are two 

independent parts. If the numerical information cannot 

be visualized in real time, the practicality of this method 

will be greatly reduced. Combining the above 

mentioned algorithms, an interactive user interface for 

visualizing the transport paths of particles in enclosed 

spaces is developed under the integrated development 

environment.  

The overall interface design is shown in Fig. 1. 

Different computational domain and its pre-calculated 

flow field can be selected/loaded in the child window of 

the interactive main interface. Besides, the release 

locations, patterns and quantities of pollution source can 

be set per users’ choices. When the initialization button 

is pressed, the initial distribution of particles is 

automatically generated for subsequent particle 

transport calculations. The right side of the interface will 

display the real-time particle distribution contour chart 

when the start button is activated. 

 

Fig. 1. Design drawing of the interactive interface

3 Result

3.1 Model validation with 3D case

In this study, the airflow distribution is assumed not to 

be affected by particle motion. The adopted validation 

case [13] simulated particle distribution and deposition 

in a ventilated chamber under a steady-state flow field . 

The configuration of the ventilated chamber is shown in 

Fig. 2. The chamber had spatial dimensions of 

0.8H(I) × 0.4H(K) × 0.4H(L)  in % × M × N .The 

supply-inlet(0.04H × 0.04H) and the outlet(0.04H ×
0.04H) are symmetrical about the y=0.2 plane, and are 

0.02H away from the ceiling and the floor, respectively. 

The averaged supply-air velocity magnitude of 0.225H/
Q  was tested. When the flow field was stable, the 
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particles were continuously released into the ventilation 

chamber from the inlet. 

 

Fig. 2. Configuration of the ventilated chamber studied by 

Chen et al. [13].

In the validation case, CFD software was adopted to 

calculate the flow field parameters. A grid resolution of 

40 × 20 × 20, which has been processed to be qualified 

for the grid independency test, was used for the airflow 

calculation. The x-velocity component and normalized 

particle concentration are compared on the three vertical 

lines (% = 0.2 H, % = 0.4 H, % = 0.6 H) as shown in 

Fig. 2. 

Fig. 3. Comparison of x-velocity with experimental data [13] 

at (a) % = 0.2H; (b) % = 0.4H; (c) % = 0.6H. 

Fig. 3 shows the comparison of the x-velocity 

component with the experimental data. As can be seen, 

the simulation flow results agree well with experimental 

data. Therefore, the transfer probability between grids 

can be directly calculated by Eq. (7-8), and then the state 

transfer matrix is generated. Finally, the particle 

transport calculation is performed by solving Eq. (6). 

Normalized particle number concentration along three 

sampling lines (% = 0.2 H, % = 0.4 H, % = 0.6 H)  are 

presented in Fig. 4. The results show that the algorithm 

seems to be quite feasible. 

 

 

Fig. 4. Comparison of normalized particle number 

concentration along three sampling lines 

3.2 Real-time visualization of the 2D case

A simple cavity plane example is used to demonstrate 

the effect of the developed interface. The flow field was 

also simulated using CFD software. The geometry is 

9 H (I) × 3 H (K) . Airflow was supplied from the 

inlet( U = 0.168 H ) near the top, at a velocity of 

0.455H/Q, and the outlet(U = 0.48 H) was placed next 

to the bottom.  

The grid resolution of 300 × 100 was found to be 

sufficiently fine. The time step size was set as 0.02Q. 

Both the continuous release of contaminants from the 

inlet and the point source pulsed release within one time 

step were tested with the newly developed interactive 

interface, results are shown in Fig. 5. In both cases, the 

number of particles released is 5000. 

As can be seen from Fig.5, different initial states 

have little effect on the computation time, which is even 

at least 5 times faster than real-time. 

  

 

 

 

Fig. 5. Comparison of interface results at different times.

Method 1: continuous release with the inlet: (a)� = 60Q, (b) 
� = 600Q. Method 2: point source pulse release: (c)� = 60Q, 

(d) � = 600Q. 

4 Discussion
The time step size is an important factor in determining 

the accuracy of the state transfer matrix. If the time step 

is too small, there will be absorbed states meaning, 

particles cannot leave the current cell. If the time step is 

too large, particles will move across all adjacent cells. 

These problems can generate a defective state transfer 

matrix, which can lead to inaccurate results of particle 

transport calculations. Currently, how to define a 

suitable time step is still a problem. In this study, the 

minimum time step (MTS) is determined by: 

 ∆�8�� = �W*-
XWYZ (9) 

where ℎ8�� represents the minimum distance from the 

cell centroid to the grid surface, and ^8:_ represents the 

maximum velocity in the fluid internal domain. The 

MTS for the studied validation case in this paper is 

X(m)

X(m)

X(m)

X(m)

(a) 

(b) 

(c) 

(d) 
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0.003s. The simulative results for eight different time 

steps are shown in Fig. 6. There is an exponential 

relationship between ��,� and time step. The ��,� will be 

closer along with increase of the time step, which leads 

to similar particle transport results. The normalized root-
mean-square deviation (NRMSD) between numerical 
and experimental results for several time steps are 
calculated and presented in Table 1. The NRMSD can 
be calculated by:

�`a�b = c∑ 5deZf,*gd-hWei*jYk,*6l/�-*mn
deZf,WYZgdeZf,W*-

 (10)

where o9_p,�  is the ���  experimental data point, and 

o�X89q�r:s,� is the corresponding numerical data point. 

o9_p,8:_ and o9_p,8�� are the maximum and minimum 

values of experimental data, respectively. As shown in 
Table 1, the numerical results agree well with the
experimental data especially when t� = 0.3Q. The time 

step size has a great influence on the particle transport 

results. However, how to directly determine the optimal 

time step size still needs to be further studied. 

Table 1. The NRMSD between numerical and 
experimental results for different time steps

Time 
step 0.2s 0.3s 0.4s 0.5s 0.6s

NRME
D

0.258
8

0.239
2

0.265
5

0.291
4

0.311
5

 

Fig. 6. Comparison of results at different time steps 

5 Conclusions
This research developed an interactive interface based 

on the new Markov chain algorithm. The interface can 

realize real-time simulation of the dynamic release 

process of multiple indoor pollution sources. The 

accuracy of the algorithm is verified by experimental 

data. It can be concluded that the developed algorithm 

based on the Markov chain technique is feasible for a 

fixed flow field and can quickly predict the general trend 

of contaminants distribution. 
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