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Abstract. Predictive maintenance is the latest frontier in the management and maintenance of many industrial assets, 
including aeroengines. Made possible by last decades advances in monitoring equipment and machine learning 
algorithms, it permits individual-based maintenance schedules, on the basis of performance monitoring and estimates 
resulting from the application of diagnostic and prognostic techniques, whether on ground or real time. Predictive 
maintenance results in operational cost reduction and asset usage optimization, if compared with traditional maintenance 
strategies, which instead may suffer from unanticipated failure or unnecessary maintenance and therefore higher 
operational costs. In the study, Remaining Useful Life (RUL) estimates will be carried out for different turbofan engines, 
based on historical individual and fleet data made available by the Prognostics Center of Excellence at NASA. 
The design of Prognostics and Health Management (PHM) algorithms requires at first an analysis of available data to 
identify which of them is effectively related to equipment degradation and hence could be useful in determining future 
system evolution and predicting failure.  
In particular, RUL prediction of test engines suffering from high pressure compressor fault with exponential degradation 
trend has been carried out with both regression and Artificial Neural Networks (ANNs). In turn, different regression 
models and neural network architectures have been compared, namely tree regression with different levels of tree depth, 
Gaussian Process Regression (GPR) with different kernel functions and Multilayer Perceptron (MLP) with one to three 
hidden layers and varying number of nodes. The objective is to demonstrate the capability of such machine learning 
algorithms to predict engine failure and thus their importance in supporting predictive maintenance planning, and to 
evaluate the quality of results in relation to the algorithm structure.  
Results show comparable performance in terms of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) of 
predicted with respect to actual RUL, in particular predictions obtained through recourse to multilayer perceptron reveal 
to be the most accurate, with a RMSE of 17.38 and a MAE of 12.50. 

 

Nomenclature 

ANN (NN) Artificial Neural Network (Neural Network) MLP Multilayer Perceptron 
GPR Gaussian Process Regression MSE Mean Square Error 
HPC (HPT) High Pressure Compressor (Turbine) PHM Prognostics and Health Management 
LPC (LPT) Low Pressure Compressor (Turbine) RMSE Root Mean Square Error 
MAE Mean Absolute Error RUL Remaining Useful Life 

 
 

INTRODUCTION 

Reliability, availability, safety and maintenance cost effectiveness have been an important concern in many 
industries. 
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For this reason, predictive maintenance is one of the key figures within the field of Industry 4.0, since it 
guarantees high equipment availability and reduced downtime, allowing for an optimal exploitation of the item itself 
and its maintenance process and thus reduced operational costs. 

Predictive maintenance relies on Prognostics and Health Management (PHM) systems, which provide overall 
health state of machines or complex systems and assists in making correct decisions on machine maintenance. 

The main duties of PHM technology are monitoring of key features, assessing engine health, identifying and 
isolating potential faults and establishing degradation trends to be used to predict the engine remaining useful life 
(RUL). 

Starting from either a fault detection or a degradation trend, prognostic models can be developed to predict future 
evolution scenarios of the engine state until a predefined threshold of acceptability. 

This can be intended as the point at which the impact of the potential fault on the system performance is no 
longer tolerable or as the remaining useful life of life limited parts. 

In fact, health monitoring plays the preliminary role of monitoring system performance, identifying eventual 
faults or abnormal behavior and then enabling a future perspective to be delineated by means of prognostic 
algorithms. 

This in turn permits a different maintenance approach, which provides for a maintenance action to be taken when 
necessary but however before failure occurrence: in this way, the system can be exploited at a maximum and the 
maintenance operation can be planned in optimal manner. 

In the present paper, fleet data of several turbofan units available at NASA PCoE Data Repository are analyzed 
and employed to implement different predictive models by means of three distinct machine learning algorithms, 
namely Tree Regression, Gaussian Process Regression and Neural Networks, whose scope is the prediction of 
Remaining Useful Life of test engines. 

Algorithm performance in terms of RMSE and MAE of predicted with respect to actual values of RUL are given 
on varying algorithm characteristic parameters. 

The most common practice in engine prognostics algorithms is that of fusing data collected from the engines into 
a single health index and use it as the target of models to be trained. Following this approach, Kang et al. [1] have 
already demonstrated the high potentiality of MLP in predicting failure. 

A similarity-based approach has been employed in [2] and [3]; several neural network solutions have been used 
for prognostic purposes, such as Recurrent Neural Network in [4], Deep Convolutional Neural Network  in [5] and 
Long Short-Term Memory in [6]. Though, such algorithms require a much higher computational cost if compared 
with MLP. Thus, this study aims to develop a MLP for RUL prediction trained with separate engine data and 
compare algorithm performance in relation to its architectural parameters. 

As for regression kind prognostics, Taha et al. [7] compare different regression methodologies, ranging from 
linear to random forest, while Tree Regression is used in [8]. In the present study, the potentiality of Tree 
Regression and result optimization with tree development are analyzed. 

Finally, Gaussian Process Regression appears to be a novelty inside engine prognostics, since its previous 
applications mainly concern different equipment ([9], [10]). 

 
 

DATASET AND ANALYSIS 

The present work is focused upon data processing and training of a model which would be useful for RUL 
prediction of several individuals from a fleet of similar turbofan engines, on the basis of data made available at 
NASA PCoE Repository. 

Data is extracted from datasets FD001 and FD002, which in turn contain a training dataset plus a test dataset 
each, whose actual values of RUL are given, too.  

The former (training) is made of degradation trajectories of different units until failure occurrence while the 
latter consists of degradation trajectories of other units interrupted at an unknown time prior failure occurrence. 

For FD001, both training and testing datasets contain 100 degradation trajectories, while for FD002 260 training 
engines and 259 testing engines are given. 

Degradation trajectories are obtained through simulations of a turbofan engine model in C-MAPSS (Commercial 
Modular Aero Propulsion System Simulation). 

When building the model to be simulated, the user inserts a degradation law that can be applied to each of the 
rotating components (fan, LPC, HPC, HPT, LPT), to simulate performance decay during engine life.  

Each of the modules can be characterized by 3 types of degradation: efficiency loss, flow capacity loss and 
pressure ratio loss. 

In particular, data available in dataset FD001 and FD002 have been obtained from simulations run with different 
exponential degradation trajectories affecting only HPC (this form was chosen since it reflects common degradation 
trends experienced in practice), with randomly chosen coefficients a and b (0.001 ≤ a ≤ 0.003 and 1.4 ≤ b ≤ 1.6)1, 
being the exponential degradation d (non-dimensional) expressed as a function of time t in the form 

 
 d = exp (a∙tb) 1) 

 
Moreover, an initial deterioration not higher than 0.01 is added, to account for initial wear ascribable to 

manufacturing inefficiencies that is commonly observed in real systems.  
The output of the simulations carried out with the above-described deteriorated models, is given as a time-series 

of the parameters listed in Table 1, corrupted with a certain amount of random measurement noise [11]. 
 

TABLE 1. C-MAPSS simulation outputs. 

Sensor number Sensed parameter Description 

Sensor 1 T2 Total temperature at fan inlet [°R] 

Sensor 2 T24 Total temperature at LPC outlet [°R] 

Sensor 3 T30 Total temperature at HPC outlet [°R] 

Sensor 4 T50 Total temperature at LPT outlet [°R] 

Sensor 5 P2 Total pressure at fan inlet [psia] 

Sensor 6 P15 Total pressure in bypass duct [psia] 

Sensor 7 P30 Total pressure at HPC outlet [psia] 

Sensor 8 Nf Fan speed [rpm] 

Sensor 9 Nc Core speed [rpm] 

Sensor 10 EPR P50/P2 

Sensor 11 Ps30 Static pressure at HPC outlet 

Sensor 12 Phi Fuel flow/Ps30 [pps/psi] 

Sensor 13 NRf Corrected fan speed [rpm] 

Sensor 14 NRc Corrected core speed [rpm] 

Sensor 15 BPR Bypass Ratio 

Sensor 16 FARb Burner fuel air ratio 

Sensor 17 htBleed Bleed enthalpy 

Sensor 18 Nf_dmd Demanded fan speed [rpm] 

Sensor 19 PCNfR_dmd Corr. demanded fan speed [rpm] 

Sensor 20 W31 HPT coolant bleed [lbm/s] 

Sensor 21 W32 LPT coolant bleed [lbm/s] 
                                                                         

 
1 For the details of C-MAPSS engine simulations refer to [11], since only simulation outputs were made available for the purpose of data-driven 
algorithm implementation for RUL predictions. 
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Being very large and noisy datasets, they should be properly pre-processed before being employed to construct a 
certain predictive model with higher accuracy.  

In fact, not all available data are necessarily useful for prognostic purposes. 
Hence, at first parameters assuming constant or nearly constant values throughout the engines’ lives were 

discarded from training datasets, since they carry no information about performance decay.  
They have been identified by imposing a lower threshold to 0.005 to parameters’ standard deviations.  
After this step, parameters (T2 - P2 - P15 – EPR – FAR – Nf_dmd – PCNfR_dmd ), corresponding to sensors s1, 

s5, s6, s10, s16, s18 and s19 were deleted from the original dataset FD001 and (T2 - P2 - EPR - FAR - Nf_dmd - 
PCNfR_dmd), and so sensors s1, s5, s10, s16, s18 and s19 are discarded from FD002. 

Although engine degradations of all members of FD002 is ascribable to HPC failure as for FD001, the main 
difference between them lies in the fact that in this case engines do not operate at a unique combination of settings: 6 
different operating conditions are present, which makes it necessary to preliminarily individuate operating condition 
clusters and associate each instance to the pertaining cluster, so that all measurements can be normalized with 
respect to the corresponding cluster mean and standard deviation values: in this manner it becomes possible to 
compare sensed parameters independently from operational settings. 

All significant parameters to be retained for further analysis show a visible degradation trajectory towards end of 
life, with common trend for all sensors but sensor 9 and sensor 14 (Fig.1). 

 

 
FIGURE 1. Examples of degradation trajectories with common trends (left plot) and uncommon trends (right plot). 

 

Proposed Methodology 

After parameter selection, there is the need to filter remaining parameters to reduce the impact of noise on 
subsequently implemented algorithms. A moving mean filter has been employed for this scope. 

Filtered sensor measurements retained after preliminary analysis will be used as inputs to train a model capable 
of predicting desired responses for a set of different data.  

Of course, the response of interest is remaining useful life (i.e. output of the models), at first simply defined as 
progressive time to failure, or 

 
                                                                                             RUL(t)=|t-tmax| 2) 

 
Though, it can be noticed that performance decay is not appreciable in an engine early stage of life, becoming 

much more evident and steep after some degree of usage is reached.  
This would result in very low accuracy when predicting RUL for test engines which have run only few cycles, 

since their degradation path is not noticeable yet. 
Such issue can be dealt with by modeling a piecewise linear RUL function, which shows a constant output at the 

beginning of the equipment employment followed by a linear segment preceding failure, reflecting real behavior.  
This means that, once individuated the point at which the RUL knee appears, a constant value is attributed to 

RUL for each cycle before the knee, as supported from many literature sources [4-12-13].  

In the present work, it has been assumed that degradation becomes manifest in the last 125 cycles before failure, 
resulting in a RUL function shaped as in the picture below (Fig.2). 

 
 

 
FIGURE 2. Piecewise linear RUL for each engine in training dataset. 

 
The first approach consists in training several regression models in Matlab Regression Learner, with a 25% 

holdout validation method. That means that only 75% of training data fed into the algorithm will be used to train the 
model, while remaining 25% serves to test and thus validate it. 

The most suitable regression models for the problem at hand, in terms of performance in predicting validation 
sets, appear to be either Tree Regression or Gaussian Process Regression. 

Tree based models split the data multiple times according to certain cutoff values in the features. Through 
splitting, different subsets of the dataset are created, with each instance belonging to one subset.  

The final subsets are called terminal or leaf nodes and the intermediate subsets are called internal nodes or split 
nodes [14]. 

To predict the outcome in each leaf node, the average outcome of the training data in this node is used: 
 
                                                                   ŷ= f̂(x)= ∑ cmI{x∈Rm}M

m=1                                                                3) 
 
with M subsets, cm constant for each subset and I{x∈Rm} is the identity function that returns 1 if x is in the subset 
Rm and 0 otherwise. 

Each instance falls into exactly one leaf node (that is Rm).  
If an instance falls into a leaf node Rl, the predicted outcome is cl, where cl is the average of all training instances 

in leaf node Rl. 
Splitting points are chosen so as to minimize squared error of predictions in the two subsets identified with the 

split. 
A medium tree with minimum leaf size of 12, a coarse tree with leaf size of 36 and 50 and an optimizable tree 

have been trained. In fact, although a finer tree could behave better when trained, it should be considered that trees 
with too small leaf size may incur in overfitting and perform worse when applied to a test dataset.  

Then, a Gaussian Process Regression with both exponential and squared exponential kernel function is modeled. 
Gaussian Process Regression is a non-parametric regression which incorporates Bayesian approach in the 

creation of the model. 
Given a set of data X = {xi} and observations Y = {yi}, i = 1,...,n, such that 
                                                                                 
                                                                                yi = f(xi) + ε                                                                              4) 
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and ε additive gaussian noise with 0 mean and σ2 variance, the distribution of latent functions f(xi) is assumed to be 
a gaussian process, that means that P(f|x1,…,xn) = N(0, K). 

K is the covariance matrix obtained from the covariance function (kernel) k. 
A common shape for kernel function is squared exponential, expressed by the following equation: 
 

                                                                        k(xi,xj|θ) = σf
2exp[- 1

2
(xi-xj)

T
(xi-xj)

σl
2 ]                                                     5) 

 
where σf

2 is the prior variance and σl a length scale parameter (θ defines the vector of kernel parameters). 
Another possible assumption for kernel function is that of exponential kernel, defined as 

 
                                                                              k(xi,xj|θ) = σf

2exp[- r
σl

2 ]                                                                6) 

 
where r is the Euclidean distance between xi and xj. 
The model is trained when its hyperparameters are such that they maximize the likelihood of training dataset 

[15]. 
Once assumed a mean function and the kernel function of the prior distribution, acquiring new data X* allows to 

update the posterior distribution of possible fitting functions in a Bayesian perspective, that is: 
 

             [Y
f*]  ~ N(0, [

(K+σ2I) k
kT k(X,X*)

]    

 
which represents the joint distribution over observed Y and f* and consequently allows to calculate the 

conditional probability P(f*|f,X,X*) 
The second method employed to predict RUL of test engines resorts to ANNs. 
Different network architectures were built and trained for dataset FD001 and FD002: in particular, 4 multilayer 

perceptrons with one hidden layer and varying number of neurons and a cascade-forward network were applied to 
dataset FD001, while FD002 was tested with four different MLP with one hidden layer, three MLP with 2 hidden 
layers and a MLP with 3 hidden layers.  

Data fed as input is randomly split up into a training portion, a validation and a testing portion. Default values for 
training, validation and testing fractions are 0.7, 0.15, 0.15. 

All previously mentioned networks gave a MSE lower than 300 and a R-squared higher than 0.91 with validation 
subset. 

The recourse to higher complexity networks required an increment in training time, not accompanied by an 
equivalent improvement in performance: in fact, this consideration is supported by the common assumption that 
MLP with single hidden layer is a potential universal approximator for continuous mapping functions from one 
finite space to another [16]. 

The net is trained by backpropagation with Levenberg-Marquardt algorithm, which is an iterative method used to 
solve nonlinear least squares problems: in order to minimize a determined loss function (generally MSE) it updates 
the network parameters according to the following equation: 

 
                                                                   wi+1 = wi − (JT⋅J + µI) −1⋅(2JT⋅ei)                                                          7) 
 

where the Hessian has been approximated with JTJ, ei is the error associated to the i-th instance  and µ is the 
damping factor, whose value determines whether the algorithm approximates more closely a steepest descent or a 
Gauss method: µ is decreased after each successful step (reduction in performance function) and is increased only 
when a tentative step would increase the performance function.  

In this way, the performance function is always reduced at each iteration of the algorithm [17].  
Training arrests whether the minimum magnitude of gradient descent is reached or maximum number of epochs 

(in the sense of iterations) or alternatively maximum µ. 
Figures 3A, 3B and 3C depict a flowchart for the three reported algorithms. 
 
 

 
FIGURE 3A. Tree Regression flowchart. 
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2 ]                                                                6) 

 
where r is the Euclidean distance between xi and xj. 
The model is trained when its hyperparameters are such that they maximize the likelihood of training dataset 

[15]. 
Once assumed a mean function and the kernel function of the prior distribution, acquiring new data X* allows to 

update the posterior distribution of possible fitting functions in a Bayesian perspective, that is: 
 

             [Y
f*]  ~ N(0, [

(K+σ2I) k
kT k(X,X*)

]    

 
which represents the joint distribution over observed Y and f* and consequently allows to calculate the 

conditional probability P(f*|f,X,X*) 
The second method employed to predict RUL of test engines resorts to ANNs. 
Different network architectures were built and trained for dataset FD001 and FD002: in particular, 4 multilayer 

perceptrons with one hidden layer and varying number of neurons and a cascade-forward network were applied to 
dataset FD001, while FD002 was tested with four different MLP with one hidden layer, three MLP with 2 hidden 
layers and a MLP with 3 hidden layers.  

Data fed as input is randomly split up into a training portion, a validation and a testing portion. Default values for 
training, validation and testing fractions are 0.7, 0.15, 0.15. 

All previously mentioned networks gave a MSE lower than 300 and a R-squared higher than 0.91 with validation 
subset. 

The recourse to higher complexity networks required an increment in training time, not accompanied by an 
equivalent improvement in performance: in fact, this consideration is supported by the common assumption that 
MLP with single hidden layer is a potential universal approximator for continuous mapping functions from one 
finite space to another [16]. 

The net is trained by backpropagation with Levenberg-Marquardt algorithm, which is an iterative method used to 
solve nonlinear least squares problems: in order to minimize a determined loss function (generally MSE) it updates 
the network parameters according to the following equation: 

 
                                                                   wi+1 = wi − (JT⋅J + µI) −1⋅(2JT⋅ei)                                                          7) 
 

where the Hessian has been approximated with JTJ, ei is the error associated to the i-th instance  and µ is the 
damping factor, whose value determines whether the algorithm approximates more closely a steepest descent or a 
Gauss method: µ is decreased after each successful step (reduction in performance function) and is increased only 
when a tentative step would increase the performance function.  

In this way, the performance function is always reduced at each iteration of the algorithm [17].  
Training arrests whether the minimum magnitude of gradient descent is reached or maximum number of epochs 

(in the sense of iterations) or alternatively maximum µ. 
Figures 3A, 3B and 3C depict a flowchart for the three reported algorithms. 
 
 

 
FIGURE 3A. Tree Regression flowchart. 
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FIGURE 3B. Gaussian Process Regression flowchart. 

 

 
FIGURE 3C. Neural Network flowchart. 

 
The trained models are then applied to test datasets to predict Remaining Useful Life of test units. Since actual 

RUL of test instances is known, it will be used to evaluate the performance of the tested algorithms, in terms of 
prediction Root Mean Square Error and Mean Absolute Error. 

 
 

RESULTS AND DISCUSSION 

The following histograms display the performance of all trained predictive models when applied for test dataset 
predictions, showing the distribution of prediction errors on all instances and global algorithm performance in terms 
of RMSE and MAE. 
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When predicting RUL of test engines by means of a Tree Regression algorithm, it can be noticed (Figures 4a, 5a) 
that a slight performance improvement is attained when leaf size is increased, since the model becomes more 
capable of generalizing [18]. 

Gaussian Process Regression with exponential and squared exponential kernel predicted test outputs with similar 
accuracy as the coarse tree, with a RMSE ~ 20 and MAE ~ 14.6 for dataset FD001 and RMSE ~ 17.6 and MAE ~ 13 
for FD002 tests (Figures 4b, 5b). 

 
 

 
FIGURE 4A. RMSE, MAE and error distribution for Tree Regression on test dataset FD001. 

 

            
FIGURE 4B. RMSE, MAE and error distribution for GPR on test dataset FD001. 

 

 

 

 
FIGURE 5A. RMSE, MAE and error distribution for Tree Regression on test dataset FD002. 

  
         

FIGURE 5B. RMSE, MAE and error distribution for GPR on test dataset FD002. 
 

The following plots (Figures 6a, 6b) show the actual RUL compared with RUL predictions obtained with each 
regression model described above for each unit in both datasets. 
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FIGURE 6A. RUL predictions for test dataset FD001 with Tree Regression and GPR. 

 

 
FIGURE 6B. RUL predictions for test dataset FD002 with Tree Regression and GPR. 

 

The performances of ANNs for FD001 and FD002 test units predictions are shown in the following pictures 
(Figures 7a, 7b): 

 
 

   

 
FIGURE 7A. RMSE, MAE and error distribution for different NN predictions of test dataset FD001.  

 

 
FIGURE 7B. RMSE, MAE and error distribution for different NN predictions of test dataset FD002.  

 

RUL predictions are shown in Figure 8a (FD001 dataset) and Figure 8b (FD002 dataset). 
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FIGURE 8A. RUL predictions for test dataset FD001 with ANNs.  

      

 
FIGURE 8B. RUL predictions for test dataset FD002 with ANNs.  

 

The level of accuracy achieved with all proposed methods is in line with those reported in current literature 
studies. 

Among all tested algorithms, the best predictive performance was achieved with the lightest MLP for test 
engines of dataset FD001: so the network with best prediction accuracy is a multilayer perceptron with one hidden 
layer and five nodes. 

In general, the error increase with increasing depth of tree regressions and number of hidden neurons in the 
networks, as can be evinced from plots in Figs. 4-7 and Tables 2-3, confirms the reduced generalization capability of 
too fine trees and NNs with too many hidden nodes, as a consequence of probable overfitting when trained. 
 

TABLE 2. Algorithm performances on FD001 test dataset. 
 RMSE  MAE 

MEDIUM TREE REGRESSION 23.11  17.86 
COARSE TREE REGRESSION (LEAF SIZE 36) 20.55  15.47 
COARSE TREE REGRESSION (LEAF SIZE 50) 20.09  15.82 

OPTIMIZABLE TREE (LEAF SIZE 20) 22.69  16.50 
GPR EXP KERNEL 20.02  14.66 

GPR SQUARED EXP KERNEL 20.17  14.65 
MLP 14 NEURONS 22.96  16.70 
MLP 30 NEURONS 22.35  15.86 
MLP 5 NEURONS 17.83  12.50 

MLP 10 NEURONS 18.94  13.80 
CASCADE-FORWARD NET 20.92  15.31 

 

 
TABLE 3. Algorithm performances on FD002 test dataset. 

 RMSE MAE 

MEDIUM TREE REGRESSION 21.57 15.04 
COARSE TREE REGRESSION (LEAF SIZE 36) 19.52 14.05 
COARSE TREE REGRESSION (LEAF SIZE 50) 19.51 14.03 

OPTIMIZABLE TREE (LEAF SIZE 24) 18.99 14.27 
GPR EXP KERNEL 17.63 12.87 

GPR SQUARED EXP KERNEL 17.63 13.17 
MLP14 NEURONS 17.66 12.95 
MLP30 NEURONS 17.70 12.90 
MLP50 NEURONS 17.86 13.26 
MLP10 NEURONS 17.56 12.79 

MLP [30 15] 17.38 12.75 
MLP [15 30] 17.56 13.00 
MLP [50 20] 17.52 12.86 

MLP [50 30 10] 18.09 13.26 
 
   

CONCLUSIONS 

Inside the framework of Industry 4.0, implementation of accurate prognostic algorithms for failure prediction is a 
key factor towards the transition from a time-based maintenance policy to a condition-based maintenance, with 
annexed benefits in terms of reduced maintenance costs, reduced equipment failure and unscheduled maintenance 
occurrences, optimization of equipment life cycle exploitation. 
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In such contest, the development and refinement of diagnostic and prognostic tools is fundamental to perform the 
task of condition monitoring. 

When developing PHM algorithms, available data should be analyzed at first to identify which of them is 
meaningful as performance indicator, being effectively related to equipment degradation and hence could be useful 
in forecasting system evolution and predicting failure. 

This work has investigated the development of data-driven algorithms for assessment of RUL estimates of 
turbofan engines, on the basis of fleet data available at NASA PCoE (NASA dataset FD001 and FD002), obtained 
from C-MAPSS simulation: RUL prediction of test engines suffering from HPC fault with exponential degradation 
trend has been carried out with recourse to regression models and ANNs.  

Different regression models and NN architectures have been implemented and applied to test datasets, namely 
tree regression with varying tree growth, GPR with different kernel functions and MLP with one to three hidden 
layers and varying number of nodes. 

Generally, they have exhibited similar performance in terms of MAE and RMSE of RUL predictions with 
respect to actual known values, with highest accuracy achieved with recourse to MLP (lowest RMSE 17.38 and 
lowest MAE 12.50). 

However, prediction performances could be further refined, especially for those test cases whose RUL has been 
predicted with low accuracy: in these cases, an in-depth inspection of data should be taken at first, to try to locate the 
source of error and consequently reduce its impact with proper pre-processing.  

Moreover, further development could concern the optimization of algotithm performance itself on the basis of an 
optimal combination of hyperparameters, which should be investigated. 
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