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Abstract. In this study, turbine modelling of a geothermal sourced organic 
Rankine cycle (ORC) power plant is aimed. Thermodynamic model of the 
plant is constructed with the help of design and off-design plant data from 
an existing two-cycle power plant in southwestern Anatolia. Utilizing 
statistical analysis tools such as maximum likelihood estimation and 
probability distribution, plant variables are obtained within their standard 
deviations. Stodola curves and probability calculations demonstrate that 
both turbines are most likely to have two stages. Average losses are 2.3 MW 
and 1.2 MW from Turbine-I and Turbine-II respectively throughout the 
different seasons. After the determination of losses, overall turbine 
efficiencies demonstrate a reverse trend with increasing reduced mass flow 
rate. This may be associated with the increased choking of the turbine. 
Correlations estimate rather fixed efficiency values at off-design conditions 
(84% for Turbine-I and 77% for Turbine-II); that is an expected outcome 
since these correlations are influenced mainly by the design isentropic 
efficiency, which is a constant value. On the other hand, these correlations 
are most likely to be proposed for non-choking conditions which are invalid 
for off-design conditions of existing ORC turbines. Datapoint dispersion in 
Turbine-II does not demonstrate a strong correlation with physical 
constraints such as -pressure ratio and reduced mass flow rate- as it does for 
Turbine-I; this phenomenon may need further attention for future work.  

Keywords: Turbine Curve Modelling, ORC, Statistical Model, Plant 
Variables.   

1 Introduction   
Power extraction from geothermal sources has been a subject of attention since the early 

twentieth century due to the increasing demand of electricity. Beginning from the very first 
dry steam application in Larderello [1] in 1911, as of 2019, worldwide installed geothermal 
plant capacity reached around 14,900 MW [2]. Throughout the years, power generation 
methodologies from a geothermal source are diversified parallel to the technologic 
innovations. Depending on the source temperature, flash steam and binary steam methods 
are other most common methods for geothermal applications. Typical application range for 
flash steam includes temperatures beyond 180 ºC, where hot brine flows through the well 
accompanied by a pressure drop that causes vaporization of the geothermal brine. Finally, 
steam is separated from liquid water and cycled for power generation purposes, where liquid 
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water (and residual condensed steam) is pumped back to the source [3]. On the other hand, 
binary steam targets low and moderate source temperature ranges (i.e. 100-180 ºC). In this 
method, enthalpy of extracted brine is transferred in heat exchangers to a second medium 
with a lower boiling point, which is cycled in closed systems. Based on this principle, state 
of art demonstrates two common cyclic systems namely- organic Rankine cycle (ORC) and 
Kalina cycle (KC)-. Kalina cycle operates with ammonia-water mixture as working fluid [4] 
while ORC systems use organic based working fluids as the term implies [5]. Despite the 
long history of Rankine principles and utilization of organic fluid instead of water is not a 
novel idea, there are still challenges in ORC applications to be dealt with. DiPippo [6] 
discussed thermal efficiency ranges of ORC geothermal plants to define optimal design 
characteristics as a function of brine properties such as mass flow rate or extraction 
temperature. Working fluid selection is an important topic, since it is the working fluid which 
determines the thermal compatibility in heat exchangers and expanders [7-9]. Turbine 
modelling at off-design conditions is another important topic in order to achieve optimal 
work output from the plant. Ellipse law of Stodola [10] can be considered as the pioneer in 
context of modelling off-design multistage turbine pressures.  In recent years there also are 
many studies focusing on that issue. Gabbrielli [11] proposed a new design approach for a 
binary geothermal power plant at off-design conditions underlining the thermal degradation 
effect of geothermal brine re-injection process throughout the years on plant performance. In 
that study and several other studies [12-14], off-design isentropic turbine efficiencies are 
calculated with the correlation proposed originally by Keeley [15]. Jüdes et al. [16] 
implemented another empirical correlation to model the part-load behaviour of a steam 
turbine in a cogeneration (CHP) plant. In another study, Fiaschi et al. [17] elaborated design 
of light-duty radial turbines and proposed a 0-D model for design of the ORC turbines. 
Proposed model is also employed for the prediction of off-design turbine performance by 
modelling of turbine curves. Dawo et al. [18] compared different turbine curve modelling 
approaches in order to validate and simulate part-load performance of an existing Kalina 
cycle power plant from Unterhaching/Germany.  

 
The aim of this paper is to model ORC turbine curves sourced by an existing geothermal 

source at off-design conditions under part-load. A thermodynamic model and statistical 
model will be constructed with the help of two-cycle plant data. Utilizing statistical analysis 
tools such as maximum likelihood estimation and probability distribution, plant variables 
such as reduced mass flow rates of working fluid or pressure ratios at turbines will be 
obtained for Stodola curve modelling purposes. With the help of this data, turbine 
characteristics (i.e. number of stages) and curves will be obtained for both cycles and results 
will be compared with proposed correlations from literature -namely Gabbrielli [11] and 
Jüdes [16] -. The novelty of this study lies within the existence of actual design and off-
design plant data from southwestern Anatolia and their utilization for part-load modelling of 
ORC turbines. Outputs of this study -i.e. turbine curve modelling and validation- will be the 
prologue of a plant optimization, which is planned as a further research topic.    
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Fig.1 depicts the plant layout modelled in UNISIM software. Consisting of two separate ORC 
systems, the nominal capacity of the binary geothermal plant is around 22.5 MW. Cycle-I 
differs from Cycle-II by having an extra top-preheater which is utilized for further heating of 
common working fluid n-pentane: !

 

Fig.1: Plant Layout in UNISIM   

2.1 Brief Description of the Plant and Physical Assumptions 

As depicted in the Fig.1, brine is extracted from the wells and sent to the Vaporizer-I where 
it transfers its enthalpy initially to the n-pentane in Cycle-I. Afterwards brine continues to 
transfer energy to both cycles until it gets re-injected (see brine line between 1-9). Cycle-I 
operating with an extra internal heat exchanger (top-preheater) extracts more energy from the 
geothermal source, while Cycle-II works at relatively lower pressure and temperature points. 
Consequently, work output of Turbine-I is relatively higher than Turbine-II.  

The plant has been modelled in UNISIM software based on following physical assumptions: 

-Steady-state conditions are assumed.  

-Pipe pressure drops are neglected, thermal losses from heat exchangers or environments to 
the environment are not taken into the consideration.  

-Non-condensable gases (NCG) are not taken into the account.  
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-Pressure drop at the turbine stages is assumed to be independent from the number of stages 
[10]. 

- Thermodynamic properties of n-pentane are calculated using the Soave-Redlich-Kwong 
(SRK) [19] equation of state.  

- Geothermal brine is modelled as standard water and equation provided by the International 
Association for the Properties of Water and Steam (IAPWS-95) [20] is utilized. 

Various off-design datasets are utilized with different ambient temperatures throughout the 
different seasons of the years for modelling purposes. Utilized data are not measured in a 
controlled environment, as they are the output of the SCADA control system of the plant, 
hence their uncertainties are mainly unknown. Uncertainties have been considered as 1 ºC 
for thermocouples, 1 kg/s for flowmeters and 0.1 bar for pressure gauges.  

2.2 Theoretical Framework of the Turbine Correlations 

Since steam turbines are the subject of attention in this study, it is necessary to elaborate law 
of ellipse (or cone law) in detail. Stodola’s cone approach proposes a methodology for 
prediction of turbine outlet pressure under non-choking flow conditions [10]. 

After empirical studies, Stodola described the relationship between the mass flow rate, 
temperature and pressure as a conic surface on Cartesian system and established a 
relationship between design and off-design conditions utilizing these parameters. 
Mathematical expression of flow ratio can be expressed as follows (acc. Stodola’s ellipse): 
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D and off represent design and off-design conditions in that equation while in and out refers 
to inlet and outlet conditions. m stands for maximum, C is the subscript of term critical. It is 
possible to start the simplification of this equation by assuming a condensing turbine instead 
of backpressure turbine. By this means, outlet critical pressure becomes negligible; if the 
difference between inlet and outlet temperatures are insignificant for design and off design 
cases, temperature related term would also vanish. Maximum pressures for design and off-
design conditions at the inlet and outlet are also identical terms, hence these terms would 
cancel each other.  

Off-design inlet pressure can be expressed as follows in final form: 

%122,%& = #&̇122
3(122,%&	)5 − +
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,
3
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3                                        (2)       
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Where !! is Stodola constant [10]: 
 

)5 =
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                                                                                                                 (3) 

 
In real operating conditions, a vast majority of the turbines work under choked flow 
conditions. Choking flow is associated with reduced mass flow rate rather than bulk mass 
flow rate as follows: 

. =
!̇"##

:9"##,%&;"##,%&
                                                                                                              (4) 

When the flow gets choked, reduced mass flow rate reaches its maximum value. In other 
words, changes in pressure ratio have no effect on the reduced mass flow rate from the 
choking point on -i.e. Stodola curve becomes steeper-. Note that eq. (2) is valid for a single 
stage turbine. As aforementioned, it is assumed that the multi-stage turbine is designed in a 
manner that ensures same pressure ratio in each stage. Accordingly, the pressure ratio on a 
stage can be defined as: 

 /<,=7 =	/<*/&                  (4.1) 

Where !!  represents the overall pressure ratio and n stands for the number of stages. Overall 
pressure ratio is known for both turbines at each different dataset utilized. By a reverse 
engineering approach, following equation is utilized to calculate the value of Yd for each 
turbine depending on the expected number of stages [10]:  

)5 =
(9-

./&))+*
(?%&(9-

./&)))
                                                                                                                (5) 

Theoretical turbine isentropic efficiency is the ratio of irreversible enthalpy transfer to the 
reversible (or isentropic) enthalpy transfer formulated as follows [21] (acc. stream numbers 
in Fig.1 for Turbine-1):  

 0=,# =
@.0..+@..
@.0..+@..,2

                                                                                                                (6) 

Due to the thermal losses from turbines, a direct calculation of the efficiency based on the 
thermocouple data would lead an overestimation of the efficiency. To improve the accuracy 
of turbine efficiency calculations, thermal losses from the turbines to the environment will 
be estimated according to following formula: 

1A = +(23 + (23B!1C ∗ (6 − 1), ∗ 9#D!E+#%&FG7                                                  (7) 
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where TLC is the abbreviation of thermal loss coefficient, (23B!1C  is the correcting factor 
if vapour quality drops below 1 and 9#D!E+#%&FG7 is the temperature difference between the 
environment and turbine inlet.  

Gabbrielli [11] re-mentioned a former correlation in his work for direct estimation of ORC 
turbine isentropic efficiency in a binary geothermal plant:  

0122,=,# = 05,=,#sin	[0.5A B
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C
H.*
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Where wf is an abbreviation for the working fluid. This correlation simply associates off-
design mass flow rate change of the working fluid with density changes at the turbine inlet 
conditions. Jüdes et al. [16] proposed another empirical correlation which is more sensitive 
to mass flow rate changes at off-design conditions: 

0122,=,# = 05,=,# 	[	−1.0176	(
!"##̇
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)J + 2.4443	(
!"##̇
!!̇

)K − 2.1812	(
!"##̇
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)3 +

1.0535	 +
!"##̇
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, + 0.701                                                                                                         (9) 

Outputs from thermodynamic model of the plant will be validated with the help of turbine 
efficiency and outlet pressure correlations elaborated previously.  

2.3 Statistical Model 

Existing datasets are unfortunately not usable for direct validation purposes. Some vital 
information are missing, the most critical of which is the ORC mass flow rates in both cycles. 
Despite that, such values can be derived from the existing datasets and Table-1 summarizes 
missing critical values and utilized methodologies to calculate them.  

Table-1: Calculation Methodologies of Missing Variables 

Variable Description Methodology 

&̇LMN	+	* Flow rate of ORC cycle 1 Energy balance in TPH-1 

&̇LMN	+	3 Flow rate of ORC cycle 2 Energy balance in PH-2 

&̇<D7%1 Brine mass flow distribution 
rate between the cycles (i.e. 
in Splitter) 

Energy balance in TPH-1 
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(*O PH-2 working fluid inlet 
temperature 

Evaluation of thermal resistance of pipes 
between points 12 and 13 in Cycle-1 with 
existing data such as (*3, (*K and (D!E. 
Assuming that the thermal resistance of 
pipes in Cycle-2 is the same,  (*O can be 
obtained from (*P and (D!E. 

As one can clearly extract from Figure-2, such a calculation would result in a huge 
uncertainty on the outputs, due to the propagation of the small uncertainties which are 
naturally connected with the data acquisition process. Therefore, a statistical method has been 
developed to improve the accuracy of model predictions. Distribution shown in Figure-2 has 
been calculated using a Monte Carlo methodology as described Figure-3. Random 
uncertainties are generated considering a normal distribution around plant data.  

 

Fig.2: Probability Distribution of  ṁQRS+	* for a Specific Dataset 
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Fig.3: Statistical Analysis Scheme 

2.3.1 Maximum Likelihood Estimation  

Maximum likelihood estimation (MLE) is a statistical approach for predicting the parameters 
of a probability distribution by maximizing a certain likelihood function, intending to make 
the observed data most likely under the assumed statistical model [22]. Data distribution in 
Figure-2 is obtained by evaluating "̇"#$%	' over different predictions generated by adding 
small random variations to the input variables. A trivial outcome from the Figure-2 shall be 
that different predictions do not have the same possibility to be correct. Figure-4 clearly 
underlines this fact: Since obtaining a negative work output from a power plant is an 
impossible physical phenomenon, it is mandatory to exclude such points from the probability 
distribution.   

 

Fig.4: Probability distribution of  WTUV 
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By such an approach, it is possible to reduce the uncertainties to a certain extent. A feasible 
way of excluding physically unfeasible points is to consider the weighted mean and standard 
deviation of the predictions result over the likelihood of each prediction (Mℎ%): 

&OPQ = 	
∑XDF6G%	F@%

∑ F@%
                                                                                                         (10) 

To evaluate the likelihood of a specific prediction, some points from the datasets -like 
vaporizer outlet temperature- are utilized as physical indicators since they represent the 
outputs of off-design model. These indicators are employed in a manner that determines the 
likelihood of the occurrence of such a case in a physical environment under assumed 
conditions. Table-2 provides the physical indicators employed in the off-design model: 

Table-2: Physical Indicators in the Off-Design Model 

Indicator Description Cycle 

(*H Temperature Outlet – Vaporizer Cycle 1 

0#YMZ	* Turbine Isentropic Efficiency Cycle 1 

6*3 Vapour Quality Outlet – Condenser Cycle 1 

(*[ Temperature Outlet – Vaporizer Cycle 2 

0#YMZ	3 Turbine Isentropic Efficiency Cycle 2 

6*P Vapour Quality Outlet – Condenser Cycle 2 

The overall likelihood of the i-th condition is the product of the likelihoods evaluated for 
each (j-th) additional information: 

Mℎ% =	∏ Mℎ%\\                                                                                                                     (11) 

Different methods are applied depending on the type of variable to be predicted:  
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Temperature: Knowing that temperature is calculated by the model for a specific point 
((GXDF) and the actual temperature measured in the plant in that condition ((!GD), maximum 
likelihood is expected to occur when (GXDF equals the (!GD. It is possible to evaluate such a 
probability like an area under the curve depicted in Figure-5.  

 

Fig.5: Likelihood of temperature distribution (Gaussian) 

If a Gaussian distribution is assumed for the measured values, the mean value would be the 
actual temperature of the fluid. Hence the likelihood can be calculated using the following 
formula: 

Mℎ%\ = STU +(!G= +
∆#567
3

, (GXDF , W#N, − 		STU +(!G= −
∆#567
3

, (GXDF , W#N,            (12) 

Where STU(X, Y, W) is the cumulative function, i.e. the integral of a Gaussian distribution: 

STU(X, Y, W) = 	
*
3
+1 + erf +

^+_
√3a

,, 	]^_ℎ	 erf(X) = 	
3
b ∫ O+7

)
T_

_
H                              (13) 

∆(CGc is the maximum interval that can be added to (!G= without changing the displayed 
number. For instance, if the temperature value is displayed with only one decimal point, 
temperatures like 135.34 and 135.29 will be both displayed as 135.3, hence ∆(CGc 	 would be 
0.1 in this case. 

Efficiency: As it is expected to reach a value of the isentropic efficiency around 0.8, 
efficiencies much higher and lower than this value are considered to be less likely. The 
likelihood can be evaluated using the following equation, which is depicted in Figure-6. 

Mℎ%\ =	
*

*d	G.)	8	)9:
∙ +	1 −	

*
*d	G;<	8	)=:

	,                                                                           (14) 
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likelihood is expected to occur when (GXDF equals the (!GD. It is possible to evaluate such a 
probability like an area under the curve depicted in Figure-5.  

 

Fig.5: Likelihood of temperature distribution (Gaussian) 

If a Gaussian distribution is assumed for the measured values, the mean value would be the 
actual temperature of the fluid. Hence the likelihood can be calculated using the following 
formula: 

Mℎ%\ = STU +(!G= +
∆#567
3

, (GXDF , W#N, − 		STU +(!G= −
∆#567
3

, (GXDF , W#N,            (12) 

Where STU(X, Y, W) is the cumulative function, i.e. the integral of a Gaussian distribution: 

STU(X, Y, W) = 	
*
3
+1 + erf +

^+_
√3a

,, 	]^_ℎ	 erf(X) = 	
3
b ∫ O+7

)
T_

_
H                              (13) 

∆(CGc is the maximum interval that can be added to (!G= without changing the displayed 
number. For instance, if the temperature value is displayed with only one decimal point, 
temperatures like 135.34 and 135.29 will be both displayed as 135.3, hence ∆(CGc 	 would be 
0.1 in this case. 

Efficiency: As it is expected to reach a value of the isentropic efficiency around 0.8, 
efficiencies much higher and lower than this value are considered to be less likely. The 
likelihood can be evaluated using the following equation, which is depicted in Figure-6. 

Mℎ%\ =	
*

*d	G.)	8	)9:
∙ +	1 −	

*
*d	G;<	8	)=:

	,                                                                           (14) 

 

 

 

Fig.6: Likelihood of isentropic efficiency distribution 

Fig.6 depicts initial probability estimations for turbine efficiencies: these values are “initial” 
as the term implies; nevertheless, it is empirically known that it is necessary to exclude the 
cases in which turbine efficiencies are lower than 0.5 and higher than 1.10. Values between 
1-1.10 are also taken into the account owing to the fact that some thermal losses are expected 
from the turbine and its surroundings. 

Vapor Quality: Since the vapor presence at condenser outlet is always avoided to protect 
the mechanical structure of the pump in practical applications, a prediction in which vapor 
quality at the condenser outlet takes a value other than zero is rejected. Hence: 

Mℎ%\ = c
	1, 6 = 0
0, 6 ≠ 0                                                                                                            (15) 

The likelihood of any other variable can be estimated utilizing other physical constraints. 

2.3.2 Curve Fitting 

The methodology so far described aimed to reduce uncertainties in the off-design model and 
to focus on the conditions that are more likely to be physically correct. Nevertheless, a certain 
amount of uncertainty would still be present in the calculated values. Due to this reason, this 
methodology will be extended to turbine curve fitting purposes as well.   

Curve fitting can be simply described as fitting the best mathematical expression to a certain 
dataset using different techniques such as interpolation. In this case, the dataset will be the 
off-design plant data which is previously processed employing likelihood of occurrence as 
described in previous section.  
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As explained in earlier sections, it is possible to estimate the occurrence of the datapoints in 
frame of the relationship between probability and likelihood. Similarly, it may also be 
possible to fit the most probable curve into these datapoints by maximizing the likelihood. 
In order to estimate the most probable curve, one can propose that the overall probability for 
the i-th curve (/c%) is the mean average of the j-th datapoints: 

/c% =	
∑ 97%>>
&

                                                                                                                      (16) 

Gaussian distribution is assumed for the evaluation of /c%\  as explained previously: 

/c%\ = /TU +Xc%\ , XG_9\ , W\,                                                                                           (17) 

where $()*+ is the position of the j-th experimental point, $,-+ is the position of the j-th 
experimental point as evaluated by the i-th curve, %+ is the estimated standard deviation for 
the j-th point and &'(($, +, %) is the probability density function for the normal (i.e. 
Gaussian) distribution. Note that $()*+ and %+ are the weighted mean of the j-th dataset 
calculated according to the procedure described in Figure-3. 

Figures 7 and 8 aim to explain this interpolation methodology visually: 

 

Fig.7: Curve likelihood calculation of a single datapoint 

In the Figure 7, intersections of the two curves ^ and ^e are depicted. Notice that the curve ^e 
is more likely to be correct than ^ because its prediction Xc%\  is closer to XG_9\ . Or in other 

words Xc%?\  has a higher probability density than Xc%\ .  
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Fig.8: An application of likelihood approach on Stodola curve 

The overall probability of the curve can be estimated according to Eqns. (16) and (17) by 
taking the mean average of probability density of each single datapoint considering their 
standard deviations as shown in Fig.8. This approach can be applied to any curve-fitting 
problem. 

3 Results and Discussion 
In this section, estimations regarding turbine characteristics such as the number of stages and 
turbine curves will be presented. Afterwards, turbine isentropic efficiency calculations will 
be compared with Gabbrielli and Jüdes correlations for further validation purposes. The 
relationship between ambient temperature and thermal losses will be discussed as well. 

Fig. 9 shows the probability of turbine number of stages based on Stodola equation. Both 
turbines are expected to be two-stage turbines [23] in real-operation conditions since they are 
the expanders operating with n-pentane, accordingly Fig. 9 demonstrates that the projected 
thermodynamic and statistical models represent valid results in terms of turbine 
characteristics -especially for Turbine-I-: 
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Fig.9: Probability of Turbine Number of Stages 

 

 

Fig.10: Stodola Curves for Turbine-I 

Figure-10 depicts the Stodola curves for 6-Stage and 2-Stage turbine variants in terms of Φ 
(reduced mass flow rate) and pressure ratio (p_ratio). These two stage variants are presented 
due to the fact they represent the highest and lowest possibilities (see Figure-9).   
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As one can extract from the Figure-10, a 2-stage turbine model fits more accurately to the 
calculated off-design datapoints (in their standard deviations) based on existing plant 
datasets.   

 

Fig.11: Stodola Curves for Turbine-II 

In Figure-11, Stodola Curves for Turbine-II are depicted. As for Turbine-I, a 2-Stage turbine 
model fits better to the calculated datapoints from thermodynamic and statistical models. 
Turbine isentropic efficiency values are also estimated with the help of constructed models.  

In real cases there are some losses from the turbines to the environment which are related 
with thermal losses to the environment, mechanical irreversibilities and electrical conversion 
inefficiencies.  

Figure-12 shows the gross work outputs estimated with the help of constructed models - 
taking turbine losses (thermal losses as defined in eq. (7), mechanical losses and electrical 
conversion losses) into the account - against real dataset gross work outputs. Table-3 provides 
the parameters calculated for the estimation of thermal losses: 

Table-3: Thermal losses coefficients calculated by the model 

TLC 3 [kW/K] 

TLC Q mod -48 [kW/K] 

 

 

0
1
2
3
4
5
6
7
8
9

10

0,000 0,010 0,020 0,030 0,040 0,050 0,060

p 
ra

tio
   [

 -
]

φ   [ - ]

2-Stages

6-Stages

15

E3S Web of Conferences 312, 11015 (2021) https://doi.org/10.1051/e3sconf/202131211015
76° Italian National Congress ATI



 

 

 

Fig.12: Gross work output: Existing data vs. Estimations 

Taking turbine loss estimations into the account, results show a decreasing trend of overall 
efficiencies for both turbines with increasing reduced mass flow rates. From another point of 
view, one can also state that overall turbine efficiencies fluctuate around their design 
efficiencies. Gabbrielli and Jüdes correlations also estimate fixed efficiency values around 
0.84 and 0.77 respectively for Turbine-I and II.  

 

Fig.13: Turbine-I Overall Efficiencies vs. Correlation Efficiencies 

After the extraction of overall losses (thermal-mechanical-electrical), overall efficiency of 
Turbine-I shows a decreasing trend with increasing reduced mass flow rate. This may be 
associated with the increased choking of the turbine. Correlations estimate a rather fixed 
isentropic efficiency for off-design conditions; that is an expected outcome since these 
correlations are influenced mainly by the design efficiency, which is a constant value. On the 
other hand, these correlations are proposed for non-choking conditions which is invalid for 
off-design conditions of ORC turbines.   
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Fig.14: Turbine-II Overall Efficiencies vs. Correlation Efficiencies 

Fig.14 replicates the reverse trend between turbine efficiency and reduced mass flow rate. 
Value pairs are a little bit more loosely dispersed throughout the different points in Turbine-
II, this may be a subject of attention for further studies.  
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4 Conclusions 
In this study, off-design modelling of ORC turbines is aimed. With the help of off-design 
datasets from different seasons of different years, thermodynamic and statistical models are 
constructed under part-load conditions. Turbine characteristics such as number of stages and 
Stodola curves are determined. Thermal losses from the turbines are associated with ambient 
temperatures as well as the association of mechanical and electrical conversion losses with 
mechanical and electrical conversion inefficiencies. Obtained overall turbine efficiency 
values are compared with the Gabbrielli and Jüdes correlations from the literature.  

Main conclusions can be summarized as follows:  

• Stodola curves and probability calculations demonstrate that both turbines are most 
likely to have 2 stages.  

• Average losses are 2.3 MW and 1.2 MW from Turbine-I and Turbine-II respectively 
throughout the different seasons.  

• After the extraction of losses, overall turbine efficiencies demonstrate a reverse 
trend with increasing reduced mass flow rate. This may be associated with the 
increased choking of the turbine.  

• Correlations estimate rather fixed efficiency values at off-design conditions (84% 
for Turbine-I and 77% for Turbine-II); that is an expected outcome since these 
correlations are influenced by the design isentropic efficiency, which is a constant 
value. 

• On the other hand, these correlations are most likely to be proposed for non-choking 
conditions which are invalid for off-design conditions of existing ORC turbines. 

• Datapoint dispersion in Turbine-II does not demonstrate a strong correlation with 
physical constraints such as -pressure ratio and reduced mass flow rate- as it does 
for Turbine-I; this phenomenon may need further attention for future work.  
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