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Abstract. Fouling represents a major problem for Gas Turbines (GTs) in both heavy-duty and aero-
propulsion applications. Solid particles entering the engine can stick to the internal surfaces and form 
deposits. Components' lifetime and performance can dramatically vary as a consequence of this 
phenomenon. These effects impact the whole engine in terms of residual life, operating stability, and 
maintenance costs. In the High-Pressure Turbine (HPT), in particular, the high temperatures soft the 
particles and promote their adhesion, especially in the short term. Unfortunately, predicting the GT 
response to this detrimental issue is still an open problem for scientists. Furthermore, the stochastic 
variations of the components operating conditions increase the uncertainty of the forecasting results. In 
this work, a strategy to predict the effects of turbine fouling on the whole engine is proposed. A 
stationary Gas Path Analysis (GPA) has been performed for this scope to predict the GT health 
parameters. Their alteration as a consequence of fouling has been evaluated by scaling the turbine map. 
The scaling factor has been found by performing Computational Fluid Dynamic (CFD) simulations of a 
HPT nozzle with particle injection. Being its operating conditions strongly uncertain, a stochastic 
analysis has been conducted. The uncertainty sources considered are the circumferential hot core 
location and the turbulence level at the inlet. The study enables to build of confidence intervals on the 
GT health parameters predictions and represents a step forward towards a robust forecasting tool. 

1 INTRODUCTION 

Computer simulations are a powerful tool for the performance prediction of gas turbines. In many applications, a 
high fidelity computer simulation can substitute the real engine [1]. For example, in aeronautical applications, it is 
possible to simulate a complete mission in order to optimize the maintenance and the mission profile for the engine 
itself [2]. Instead, for heavy-duty applications, the load history (energy demand) can be analyzed [3]. In these 
simulations, the engine can be modelled at various levels of detail, from the full 3D description by using the 
computational fluid dynamics (CFD) to the thermodynamic description (0D) using the gas path analysis (GPA). One 
of the most useful applications of these tools regards the prediction of performance degradation of the engine during 
operations [3]. In this track, it is well recognized that the most critical cause of performance degradation is particle 
ingestion. Particles that enter the engine can deposit or erode its internal surfaces, increasing roughness and changing 
the aerodynamics geometries [4]. Even though this occurrence can affect either the cold and hot section, for 
aeronautical applications the latter results to be more susceptible to the phenomenon in the short term [5]. In particular, 
the most critical component is the high-pressure turbine vane, mainly due to the high temperature that occurs during 
operations. 

In the literature, several studies have tried to analyze the effects of particle ingestion by using either GPA and 
CFD. For what concern the GPA, the only way to take into account degradation due to particles deposition and/or 
erosion is by imposing a degradation rate function [6]. Typically, this function is estimated by using data-driven 
techniques [6]. The main drawback of this approach is that the data-driven degradation rate lacks physical meaning. 
This may lead to unrealistic and un-physical results [7]. An example of this type of analysis is the work of Hanaki et 
al [6]. They estimated two correction factors for the compressor corrected mass flow rate and efficiency. These were 
used to calculate the modified compressor maps when degradation occurs. Another example is the work of Igie et al 
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[8], where a reduction of fan capacity and efficiency were enforced to analyze the engine response during a complete 
mission. On the other hand, with the CFD a more realistic and physical prediction of performance degradation can be 
carried out. Here, the main issue is related to the use of deposition/erosion models. Even though many of these models 
are proposed in the literature [9], [10], [11], the physics underneath the phenomena still not completely understand. 
Works concerning particle deposition and erosion in HPT are mainly centred on the influence on film cooling and 
geometry variations. The first was deeply analyzed in the study of Borello et al [12]. They asserted that film cooling 
greatly affects deposition, mainly due to the effects of the jets on the particles' trajectories. The second theme was 
faced in the work of Casari et al [9]. They analyzed the particle deposition on the LS89 HPT vane, concluding that 
the deposit and the flow field are strictly coupled. Specifically, shifting of the shock and perturbation of pressure 
coefficients are the main consequences. More recently, Brandes et al [13] proposed an approach to estimate the 
severity of an engine mission due to erosion by combining computational and experimental results. They conclude 
that the taxi, take-off, and climb are the flight segments that impact the mission severity the most. 

In this work, the authors tried to coupled CFD results with GPA to evaluate an aero-engine response to HPT 
fouling. The GT component treated as a reference is the HPT nozzle of the energy-efficient engine tested by Timko 
[14]. Furthermore, since several types of particles can enter the engine, the specific event regarding flight through the 
volcanic cloud was considered. The degradation rate was estimated by using a CFD analysis with particle ingestion 
on an HPT vane. Since the operating conditions at the exit of the combustor are known to be highly uncertain, a 
stochastic analysis was performed to have a probabilistic distribution of the output. This uncertain distribution was 
used to modify the turbine performance maps to fed the GPA. 

2 ENGINE DESCRIPTION 

The aero-engine architecture chosen for the study is the twin-spool high-bypass unmixed flow turbofan, which is 
considered the best configuration for high subsonic commercial aircraft [15]. Its section view is reported in Fig. 1. In 
turbofan engines, a fraction of the total flow bypasses the core components (compressor, combustion chamber and 
turbine) before being ejected through a separate nozzle. Thus, the total thrust is the sum of two factors: the cold thrust, 
due to the fan, and the hot thrust, which results from the stream entering the engine core. 

Since these engines aim to generate the desired propulsive thrust, the typical performance parameter chosen as 
representative is the Thrust Specific Fuel Consumption (SFC). It is mathematically defined as the engine fuel mass 
flow rate ratio to the amount of thrust developed. Thus, it represents the mass of fuel needed to provide the required 
thrust. Since the purpose of this study is to propose a general strategy, the reference turbofan engine chosen is the 
default one present in the commercial software GasTurb9. This choice is mainly guided by the difficulty to find data 
of real engines in the literature. 

 
 

 
Fig. 1. Section view of the twin-spool unmixed flow turbofan engine 

3 METHODOLOGY 

The aim of this work is to propose a strategy for the robust forecasting of gas turbine performance degradation due 
to fouling. Specifically, the engine response during a flight across a volcanic cloud is considered. Ash clouds can carry 
particulate with concentrations as high as 250 mg/m3, which is considered a dangerous value for aircraft engines [16]. 
The flowchart of the proposed methodology is depicted in Fig. 2. As stated above, the component most influenced by 
this event is the first HPT vane. To compute the effects of volcanic ash deposition on this element, a 2D midspan CFD 
simulation was conducted. The results were then analyzed employing uncertainty quantification techniques to include 
the statistical variation of the operating conditions (𝜇𝜇 and 𝜎𝜎). The outcomes thus obtained were used to identify the 
rate of change of the HPT maps. In this respect, the scaling factor approach (rigid shifting) of the maps was used, even 
though several works consider it a strong hypothesis for degradation study purposes [17]. Since this paper aims to 
propose a strategy for robust forecasting, this assumption does not affect the generality of the approach. Finally, the 
engine response was evaluated by using the GPA with the modified maps. A detailed description of each step is 
reported in the following sections. 

3.1 CFD simulations 

The numerical flow field resolution was carried out using the sonicFoam solver of the open-source software 
OpenFoam-v1706. The solver has been added the support for particle tracking, allowing the exchange of momentum 
and heat with the carrier flow. Particle tracking was performed by using the Lagrangian-Eulerian coupling method. 
Turbulent fluctuations on particles were computed with the discrete random walk approach. 

3.1.1 Geometry and computational domain 

For this purpose, the HPT of the General Electric Energy Efficient Engine (EEE) was chosen as a reference [14]. 
Specifically, the midspan cross-section of the first vane was considered. Furthermore, since this study is a first attempt 
to tackle the robust forecasting in gas turbines, a simplified geometry was examined. Therefore, the cooling system 
was not taken into account. The computational domain was generated around the 2D geometry using Salome-v9.3. A 
2D unstructured grid was used, with a 10-layers prism in the near-wall region. A mesh composed of 80,000 cells was 
chosen after a grid sensitivity analysis. 

 
 

 
Fig. 2. Flowchart of the proposed methodology 
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3.1.2 Continuous phase 

The operating conditions considered for the study reproduces the design point described by the technical report 
written by Timko [14] and summarized in Tab. 1. The profile of the normalized temperature used for the study is the 
same reported in the work of Friso et al [18]. Since a high level of turbulence intensity is expected at the outlet of the 
combustion chamber, the Reynolds stress model proposed by Speziale et al [19] was used to resolve the turbulent flow 
fluctuations. This choice was guided considering the questionable accuracy that arises from the use of two-equations 
models when high turbulence occurs [20]. 

3.1.3 Discrete phase 

Once the flow field was solved, solid particles were seeded from the inlet of the domain with a uniform distribution 
between 1 μm and 30 μm. These values are specific for volcanic ash clouds and can be found in the work of Talvalul 
et al [21]. In deposition studies, particle properties are of main importance. In this work, the values proposed by Ghosal 
et al [22] were considered. In Tab. 1 is reported the amount of mass of ash injected, which was derived considering a 
concentration of contaminant equals 250 mg/m3, representing a very dense ash cloud [16]. 

Particles trajectories were computed by integrating the force balance acting on each of them. Specifically, the 
Basset Boussinesq Oseen (BBO) equation with drag as the only force acting was used [23]. Furthermore, since the 
maximum particles volume fraction of 10 is small enough to consider negligible the effect of particles on turbulence, 
a one-way coupling model was considered between particles and fluid flow [24]. As already mentioned, an important 
parameter governing the adhesion is the surface temperature. For this reason, the heat transfer between the gas and 
the particles is also computed by means of the well-known Ranz-Marshall correlation. 

Each particle is tracked through the domain until it impacts a wall or escapes from the domain. The particle-wall 
interaction was modelled by using the EBFOG [9]. It acts as computing a sticking probability at every impact, then a 
stochastic algorithm decides if the particle sticks or erode the impacted surface. Furthermore, the geometric variations 
due to this occurrence were counted through a mesh morphing technique. Faces of the vane grid where the impact 
take place are displaced outward normally to the wall surface. A subsequent Laplace smoothing was performed to 
preserve the mesh quality. 

3.2 Uncertainty analysis 

The stochastic analysis has been carried out considering two input uncertainties: the circumferential hot core 
location and the turbulence intensity at the inlet. Unfortunately, no data were available in the literature for the reference 
geometry considered to generate the statistical distributions of the inputs. This forced the authors to use the statistics 
already present in the literature for the same engine architecture chosen. Specifically, the statistics of the hot core 
location and the turbulence level measured by Montomoli et al [25] and reported in Tab. 2 was used. 

 
 

Table 1. Boundary conditions 

Phase Patch Quantity Value 

Continuous 

Inlet 

Total pressure 1,325,000 Pa 
Total temperature Distribution from [18] 

Turbulence intensity see Tab. 2 
Mixing length 0.00174 m 

Vane wall 
Temperature adiabatic 

Pressure Zero gradient 
Velocity No slip 

Outlet 
Pressure 802,000 Pa 

Temperature Zero gradient 
Velocity Zero gradient 

Discrete Inlet Particles injected 1,500,000 particles/s 
 
 

Table 2. Input statistics 

Parameter Distribution Mean value Standard deviation 
Hot core location Gaussian 50 % of the pitchline 14 % of the pitchline 
Turbulence level 15 % 5 % 

 
 
Once the stochastic inputs were determined, the algorithm to perform the uncertainty quantification has to be 

established. Among the many techniques present in the literature, the probabilistic collocation method (PCM) was 
chosen. This was mainly guided by the necessity of cutting down the number of CFD simulations to obtain results as 
reliable as possible. The PCM is a technique that belongs to the family of polynomial chaos expansion (PCE) methods 
[26]. It consists of describing the stochastic output 𝒚𝒚(𝒙𝒙, 𝜉𝜉) by an orthogonal polynomials series in the following form: 

 
 

𝒚𝒚(𝒙𝒙, 𝜉𝜉) =∑𝑎𝑎𝑗𝑗(𝒙𝒙)Ψ𝑗𝑗(𝜉𝜉)

𝑁𝑁𝑝𝑝

𝑗𝑗=0

 

 

(1) 

where 𝜉𝜉 is the stochastic part of the inputs, 𝒙𝒙 is the deterministic one, 𝑎𝑎𝑗𝑗 are the deterministic functions and Ψ𝑗𝑗 are the 
multidimensional orthogonal basis polynomials. The expansion order (𝑁𝑁𝑝𝑝) represents also the minimum number of 
deterministic runs that have to be performed for the uncertainty evaluation and it is defined as follows: 
 

 𝑁𝑁𝑝𝑝 =
(𝑛𝑛𝑛𝑛 + 𝑑𝑑)!
𝑛𝑛𝑛𝑛! 𝑑𝑑!  

 
(2) 

where 𝑛𝑛𝑛𝑛 is the number of the uncertain variables and 𝑑𝑑 the order of the polynomials Ψ𝑗𝑗. In this work, an order of 
𝑑𝑑 = 2 was set as suggested by Montomoli et al [25]. In this track, the minimum number of CFD simulations required 
is 𝑁𝑁𝑝𝑝 = 6. To improve the robustness of the results, an oversampling was applied as suggested by Eldered [27]. 
Precisely, a total number of samples equals 𝑁𝑁𝑠𝑠 = 9 was chosen in order to fulfil the input space completely. 

Since Gaussian distribution was assumed for both the uncertain parameters, Hermite polynomials as the orthogonal 
basis are the best choice for modelling the uncertainty propagation as stated by Ghanem and Spanos [28]. Once the 
orthogonal basis was chosen, the sample points were determined by using the zeros of the orthogonal polynomials of 
order (𝑑𝑑 + 1)𝑡𝑡ℎ. These are called collocation points, and each of them is a specific CFD simulation. 

To compute the polynomial coefficients, the Polynomial Chaos Projection approach was used. Therefore, the least-
squares method was applied. The final step of the stochastic analysis consists of the calculation of the statistics of the 
output. For this purpose, the method proposed by Hosder et al [29] was adopted. 

 
 

3.3 Gas Path Analysis 

In this section, the gas turbine thermodynamic model is presented. Its schematic is reported in Fig. 3. From a 
mathematical point of view, the model consists of many individual components: intake, fan, compressor (HPC), 
combustor, high-pressure turbine (HPT), low-pressure turbine (LPT), bypass, and nozzle, each of which requires input 
variables and generate the adequate output variables [30]. In the following paragraphs, after a brief description of how 
the components maps were integrated, all the equations used are discussed. 

3.3.1 Components maps and algorithms 

In their standard format, the fan and the compressor maps cannot be used directly in a performance calculation 
program. The solution to this problem is to introduce auxiliary coordinates (𝛽𝛽-lines) as proposed by Kurzke [31]. 
These lines are parabolas parameterized by an index 𝛽𝛽, that can span from 0 (choke line) to 1 (surge line). The 
parabolas intersect the speed lines and allow to access to the maps quantities. An example of how 𝛽𝛽-lines looks like 
is reported in Fig. 3. 
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Intake. The intake module receives the altitude and the flight Mach number as inputs. The former is used to 
calculate the ambient conditions (𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) at the inlet using the ISA relations [32], whereas the second is used to 
compute the flight conditions in terms of total temperature and pressure: 

 

 
𝑇𝑇1

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎
= (1 +
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Fan. The total quantities computed represents the inlet conditions for the fan. To find the output values of this 

element, the fan maps have to be used. Furthermore, the design operating conditions (supplied by GasTurb9) were 
assumed for this component. With the design pressure ratio (𝜋𝜋𝐹𝐹𝑎𝑎𝐹𝐹) and the design rotational speed (𝑁𝑁𝐿𝐿), the corrected 
mass flow rate (𝛤𝛤𝐹𝐹𝑎𝑎𝐹𝐹) and the efficiency (𝜂𝜂𝐹𝐹𝑎𝑎𝐹𝐹) can be obtained from the maps: 

 

 [𝛤𝛤𝐹𝐹𝑎𝑎𝐹𝐹, 𝜂𝜂𝐹𝐹𝑎𝑎𝐹𝐹] = 𝑀𝑀𝑀𝑀𝑝𝑝𝑠𝑠𝐹𝐹𝑎𝑎𝐹𝐹(𝑁𝑁𝐿𝐿, 𝜋𝜋𝐹𝐹𝑎𝑎𝐹𝐹) 
 (6) 

After that, the estimation of the output quantities is straightforward: 
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where �̇�𝑚𝑡𝑡𝑡𝑡𝑡𝑡 is the air mass flow rate entering the engine, 𝛿𝛿𝐹𝐹𝑎𝑎𝐹𝐹 is the normalized pressure at the inlet and 𝜃𝜃𝐹𝐹𝑎𝑎𝐹𝐹 the 
normalized temperature at the inlet. 
 
 

 
Fig. 3. Schematic compressor map 

 

 
Fig. 4. Flow diagram for the gas turbine engine GPA 

 
In the turbofan, a portion of the total flow bypasses the core unit, forming the cold stream and then the cold thrust. 

A high-bypass configuration as the one considered, admits a bypass ratio (B) between 5 and 8. In order to proceed, 
this quantity has to be also provided by the user. The cold and the hot mass flow rate can be then computed as follows: 
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(8) 

 
Compressor. The high-pressure compressor (HPC) is the first component of the core engine. Its task consists of 

rising flow temperature and pressure before it enters the combustion chamber. Inputs of this component are the 
temperature, the pressure and the mass flow rate exiting from the fan. Here, the first interactive loop begins. The scope 
is to guess the value of beta (𝛽𝛽𝐻𝐻) that meets the continuity constraint using the quantities extracted from the component 
maps: 

 [𝜋𝜋𝐻𝐻𝐻𝐻𝐶𝐶, 𝜂𝜂𝐻𝐻𝐻𝐻𝐶𝐶, 𝑁𝑁𝐻𝐻] = 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝐻𝐻𝐻𝐻𝐶𝐶(𝛽𝛽𝐻𝐻, 𝛤𝛤𝐹𝐹𝐹𝐹𝐹𝐹). 
 (9) 

As can be inferred, knowing the value of beta, all the output quantities can be computed. In the GPA constructed, 
the possibility of bleeding a portion of the HPC flow was also considered. 
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where 𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶  is the thermodynamic power output of the HPC and 𝑐𝑐𝑝𝑝 the constant pressure specific heat of the air. 
 
Combustion chamber. The air delivered by the compressor mixes with the fuel in the combustion chamber. Here, 

the second iterative process takes place. The value of the combustor outlet temperature (𝑇𝑇4𝑐𝑐𝑐𝑐) varies into a specified 
range in order to meet the continuity constraint at the HPT. Since the possibility of bleeding of the compressor flow, 
the computation of the temperature at the inlet of the HPT is computed as follows: 

 

 𝑇𝑇4 =
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 (11) 
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calculate the ambient conditions (𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎 , 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) at the inlet using the ISA relations [32], whereas the second is used to 
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After that, the estimation of the output quantities is straightforward: 
 

 

𝑝𝑝2 = 𝜋𝜋𝐹𝐹𝑎𝑎𝐹𝐹 𝑝𝑝1 
 

𝑇𝑇2 = 𝑇𝑇1 (1 +
𝜋𝜋𝐹𝐹𝑎𝑎𝐹𝐹

𝑘𝑘−1
𝑘𝑘 − 1
𝜂𝜂𝐹𝐹𝑎𝑎𝐹𝐹

) 

�̇�𝑚𝑡𝑡𝑡𝑡𝑡𝑡 = 𝛤𝛤𝐹𝐹𝑎𝑎𝐹𝐹
𝛿𝛿𝐹𝐹𝑎𝑎𝐹𝐹

√𝜃𝜃𝐹𝐹𝑎𝑎𝐹𝐹
  

(7) 

 
where �̇�𝑚𝑡𝑡𝑡𝑡𝑡𝑡 is the air mass flow rate entering the engine, 𝛿𝛿𝐹𝐹𝑎𝑎𝐹𝐹 is the normalized pressure at the inlet and 𝜃𝜃𝐹𝐹𝑎𝑎𝐹𝐹 the 
normalized temperature at the inlet. 
 
 

 
Fig. 3. Schematic compressor map 

 

 
Fig. 4. Flow diagram for the gas turbine engine GPA 

 
In the turbofan, a portion of the total flow bypasses the core unit, forming the cold stream and then the cold thrust. 

A high-bypass configuration as the one considered, admits a bypass ratio (B) between 5 and 8. In order to proceed, 
this quantity has to be also provided by the user. The cold and the hot mass flow rate can be then computed as follows: 
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As can be inferred, knowing the value of beta, all the output quantities can be computed. In the GPA constructed, 
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where 𝑃𝑃𝐻𝐻𝐻𝐻𝐶𝐶  is the thermodynamic power output of the HPC and 𝑐𝑐𝑝𝑝 the constant pressure specific heat of the air. 
 
Combustion chamber. The air delivered by the compressor mixes with the fuel in the combustion chamber. Here, 

the second iterative process takes place. The value of the combustor outlet temperature (𝑇𝑇4𝑐𝑐𝑐𝑐) varies into a specified 
range in order to meet the continuity constraint at the HPT. Since the possibility of bleeding of the compressor flow, 
the computation of the temperature at the inlet of the HPT is computed as follows: 
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Turbine. Given the similarity of the procedure adopted for either the HPT and the LPT, only the former is 
described. The inputs available for the turbine part are the mass flow rate, the thermodynamic power developed, the 
rotational shafts speeds, the temperature and the pressure. The first output calculated is the turbine outlet temperature 
by the use of the power compatibility: 

 

 𝑇𝑇5 = 𝑇𝑇4 −
𝑃𝑃𝐻𝐻

�̇�𝑚𝐻𝐻 𝑐𝑐𝑝𝑝
 (12) 

 
where 𝑃𝑃𝐻𝐻  is the thermodynamic power generated by the high-pressure components (𝑃𝑃𝐿𝐿  for the low-pressure ones). The 
next step involves the use of turbine maps. Specifically, the efficiency of the turbine can be extrapolated. 
 

  𝜂𝜂𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠𝐻𝐻𝐻𝐻𝐻𝐻(𝑁𝑁𝐻𝐻, 𝛤𝛤𝐻𝐻𝐻𝐻𝐻𝐻). (13) 
 
Finally, the pressure ratio and then the outlet pressure can be obtained: 
 

 
 𝜋𝜋𝐻𝐻𝐻𝐻𝐻𝐻 = (1 −

𝑇𝑇4 − 𝑇𝑇5

𝜂𝜂𝐻𝐻𝐻𝐻𝐻𝐻 𝑇𝑇4
)

− 𝑘𝑘
𝑘𝑘−1

 

 
𝑀𝑀5 =

𝑀𝑀4

𝜋𝜋𝐻𝐻𝐻𝐻𝐻𝐻
 

(14) 

 
Nozzle and bypass. To calculate the output values for either the nozzle and the bypass, the expansion ratio is firstly 

compared with the critical one. If choked conditions occur, the thrust is being raised by the pressure contribution. 
Otherwise, only the velocity term contributes. 

 

 

 
𝐹𝐹𝐻𝐻 = �̇�𝑚𝐻𝐻(𝑉𝑉7 − 𝑉𝑉0) + 𝐴𝐴7(𝑀𝑀7 − 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎) 

 
𝐹𝐹𝐶𝐶 = �̇�𝑚𝐶𝐶(𝑉𝑉8 − 𝑉𝑉0) + 𝐴𝐴8(𝑀𝑀8 − 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎) 

 

(15) 

 
The whole algorithm implemented is shown in Fig. 5 
 

4 RESULTS 

In this section, the results obtained in the study are exposed. Firstly, the validation of the GPA against the GasTurb9 
commercial software is treated. This is to assess the reliability of the computed engine response. After that, the 
outcomes of the stochastic analysis are briefly covered. A deeper discussion can be found in the paper of Friso et al 
[18]. Lastly, the engine response consequent to the turbine maps perturbation is evaluated. To compute the engine 
response, a fixed Fan operating point was considered as a constraint. This means a fixed mass flow rate entering the 
core engine, motivated by the time scale considered for the degradation (0.1 s of exposure). 

 

4.1 Gas path validation 

Before proceeding with the engine response, the validation of the GPA algorithm developed is reported. Since the 
commercial code GasTurb9 was used for this purpose, the default software inputs reported in Tab. 3 were chosen. The 
comparison was carried out in terms of temperature distribution along with the engine, SFC, and thrust. The 
Temperature results are reported in Fig. 6. As it can be seen, a perfect matching occurs for the two codes results. The 
same is for the other two quantities. The SFC and the thrust found by GasTurb9 is 19.2 g/(kN s) and 3.3 kN 
respectively, whereas the values found by the in-house code is 20.4 g/(kN s)  and 3.7 kN. The authors ascribe the small 
differences to the hidden parameters in the commercial software, which cannot be integrated into the in-house code. 

 
Fig. 5. GPA algorithm 

 
 

4.2 Engine response 

In this section, the engine response as a consequence of the turbine maps perturbations is analyzed. For this 
purpose, it has to be described how these maps were perturbed. Fig. 7 reports a schematic of the procedure adopted. 
First of all, the first two statistical moments for Γ𝑡𝑡, π𝑡𝑡, and 𝜂𝜂𝑡𝑡 were computed (see Tab. 4). Then, a representative 
probability distribution for the quantities was assumed by using the known statistics. At this point, the equally likely 
events were joined (green and blue dotted lines) to find the probability distribution of the shifting entity. As it can be 
seen, the perturbation is represented by a vector which components are the variations of the parameters due to fouling. 
As sketched in the figure, four shift entities were considered, i.e. the mean, and the 1, 2, and 3 𝜎𝜎 events. These four 
altered maps were then being fed to the GPA. As stated above, the scaling factor approach has been adopted here. 
Different approaches would lead to a different value for the rate of shift of the maps. 

 
 

Table 3. Input for the GPA 

Parameter Value Units 
Altitude 11,000 m 

Mach number 0.8 - 
Ram recovery factor 0.99 - 

Bypass ratio 6 - 
Low-pressure corrected shaft speed 100 %Ncorr,design 

Bleed flow 0 %mH 
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Turbine. Given the similarity of the procedure adopted for either the HPT and the LPT, only the former is 
described. The inputs available for the turbine part are the mass flow rate, the thermodynamic power developed, the 
rotational shafts speeds, the temperature and the pressure. The first output calculated is the turbine outlet temperature 
by the use of the power compatibility: 
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where 𝑃𝑃𝐻𝐻  is the thermodynamic power generated by the high-pressure components (𝑃𝑃𝐿𝐿  for the low-pressure ones). The 
next step involves the use of turbine maps. Specifically, the efficiency of the turbine can be extrapolated. 
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Nozzle and bypass. To calculate the output values for either the nozzle and the bypass, the expansion ratio is firstly 

compared with the critical one. If choked conditions occur, the thrust is being raised by the pressure contribution. 
Otherwise, only the velocity term contributes. 

 

 

 
𝐹𝐹𝐻𝐻 = �̇�𝑚𝐻𝐻(𝑉𝑉7 − 𝑉𝑉0) + 𝐴𝐴7(𝑀𝑀7 − 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎) 

 
𝐹𝐹𝐶𝐶 = �̇�𝑚𝐶𝐶(𝑉𝑉8 − 𝑉𝑉0) + 𝐴𝐴8(𝑀𝑀8 − 𝑀𝑀𝑎𝑎𝑎𝑎𝑎𝑎) 

 

(15) 

 
The whole algorithm implemented is shown in Fig. 5 
 

4 RESULTS 

In this section, the results obtained in the study are exposed. Firstly, the validation of the GPA against the GasTurb9 
commercial software is treated. This is to assess the reliability of the computed engine response. After that, the 
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events were joined (green and blue dotted lines) to find the probability distribution of the shifting entity. As it can be 
seen, the perturbation is represented by a vector which components are the variations of the parameters due to fouling. 
As sketched in the figure, four shift entities were considered, i.e. the mean, and the 1, 2, and 3 𝜎𝜎 events. These four 
altered maps were then being fed to the GPA. As stated above, the scaling factor approach has been adopted here. 
Different approaches would lead to a different value for the rate of shift of the maps. 

 
 

Table 3. Input for the GPA 

Parameter Value Units 
Altitude 11,000 m 

Mach number 0.8 - 
Ram recovery factor 0.99 - 

Bypass ratio 6 - 
Low-pressure corrected shaft speed 100 %Ncorr,design 

Bleed flow 0 %mH 
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Fig. 6. Comparison between the temperature distribution along with the engine. Results from GasTurb9 and the in-house code 

 
 
The engine response to the perturbations is exposed in Tab. 5 in terms of deviations from the clean conditions of 

the SFC, the surge margin (𝛽𝛽), and the turbine entry temperature (TET). Specifically, SFC and TET are reported as 
deviation from the clean conditions, whereas 𝛽𝛽 are the actual values that correspond to the equilibrium points. As can 
be noted, all the parameters rise as the displacement increase. In particular, the increase of 1.4% in the SFC for a 3𝜎𝜎 
event results in a rise in fuel mass flow rate and then total costs. The same for the TET, the increase of which lead to 
a reduction in the lifetime of the engine. Regarding the beta value, in off-design conditions, the equilibrium point 
tends to approach the surge line. For a 3𝜎𝜎 event, a drop of approximately 10 % of the distance between the original 
design point and the surge line occurs. The authors want to stress that these results correspond to exposure of 0.1 s to 
volcanic ash. This means that the change in the operating conditions can take place instantaneously for a flight across 
a volcanic cloud. 

To better understand how the design point moves in the compressor map, Fig. 8 has been reported. Specifically, 
in Fig. 8a) the variations in terms of SFC, core rotation speed (𝑁𝑁𝐻𝐻), and compressor pressure ratio (𝜋𝜋𝐶𝐶) are depicted 
for a 𝜇𝜇 and 3𝜎𝜎 events. When volcanic ash deposits on the HPT vane, both HPC pressure ratio and rotation speed 
increase. This, with fixed Fan operating conditions, results in a shift upward of the HPC operating point (Fig. 8b)). 
The increase in speed leads to an increase in the SFC. 

To summarize, when a flight through a volcanic cloud occurs, different engine responses must be expected. These 
are mainly due to its inherent uncertain operating conditions. Specifically, if fouling of the HPT vane takes place, the 
engine behaves following a sort of lognormal distribution. Restricting the analysis only up to 3𝜎𝜎 events, the operating 
point of the GT may end up working almost instantaneously in near surge conditions (a drop of roughly 10 % in the 
surge margin). Furthermore, an increase in the TET leads to an unexpected reduction in the engine lifetime. Finally, a 
significant rise in fuel consumption affects the total costs of the mission. 

 
 

Table 4. Output statistics from UQ analysis 
Parameter Mean value Standard deviation 

ΔΓ𝑡𝑡 -0.24 % 0.14 % 
Δπ𝑡𝑡 0.15 % 0.09 % 
Δ𝜂𝜂𝑡𝑡 -0.68 % 0.58 % 

 
Fig. 7. Schematic of the stochastic shifting of the HPT maps 

5 CONCLUSIONS 

In this study, the stochastic engine response after a flight through a volcanic cloud has been analyzed. Specifically, 
an uncertainty analysis has been carried out with the results obtained by CFD simulations. The EBFOG deposition 
model has been utilized to account for the particles adhesion effects on the flow field. The results of the stochastic 
analysis have been used to feed a GPA to obtain the whole engine uncertain response. 

From the analysis, it can be inferred that the hypothesis of deterministic operating conditions may result in a 
significant overestimation of engine degradation. In particular, considering the HPT vane as the only source of 
uncertainty, the following considerations can be done: 

 
 The drop in the distance between the surge line and the operating point goes from almost zero (𝜇𝜇 event) 

to 10 % (3𝜎𝜎 event). This may result in unstable operating conditions. 
 

 

Table 5. Stochastic engine response 

Event Parameter Value 

𝜇𝜇 
ΔSFC [%] 1.0 

𝛽𝛽 0.50 
ΔTET [%] 0.184 

1𝜎𝜎 
ΔSFC [%] 1.2 

𝛽𝛽 0.55 
ΔTET [%] 0.197 

2𝜎𝜎 
ΔSFC [%] 1.3 

𝛽𝛽 0.57 
ΔTET [%] 0.211 

3𝜎𝜎 
ΔSFC [%] 1.4 

𝛽𝛽 0.60 
ΔTET [%] 0.263 
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Fig. 8. Variation of operating parameters due to HPT fouling. 

 

 Since the engine lifetime is strictly related to the TET, its erroneous prediction may lead to an 
overestimation of the engine life. In this study, the maximum variation of the temperature (3𝜎𝜎 event) is 
equal to 0.263 %. In the work of Montomoli [25], an uncertainty of 0.6 % on the TET was found to be 
sufficient to reduce the HPT lifetime by 37 %. Thus, the value found in this study is not negligible, and 
may greatly affect performance prediction. 

 As the SFC is strictly related to fuel consumption, then mission costs, its accurate prediction is of main 
importance. This study shows how this value may be highly uncertain, even only by considering the 
stochastic variations at the outlet of the combustor. An alteration of roughly 1.4 % was found in the most 
critical conditions (3𝜎𝜎), and this has direct consequences on the mission costs. 
 

This study highlighted the importance of considering uncertainty in the prediction of gas turbine degradation. In 
its simplicity, this represents the first step towards a new strategy for the robust forecasting of GT performance 
degradation. 

REFERENCES 

1.  S. Martin, I. Wallace and D. G. Bates, J. Eng. Gas Turbines Power, vol. 130, 2008.  
2.  M. Kelaidis, N. Aretakis, A. Tsalavoutas e K. Mathioudakis, J. Eng. Gas Turbines Power, vol. 131, 2009.  
3.  R. Kurz, K. Brun e C. Meher-Homji, 43° Turbomachinery and 30° Pump Symposia, 2014.  
4.  A. Suman, M. Morini, N. Aldi, N. Casari, M. Pinelli and P. Spina, J. Turbomach., vol. 139, 2017.  
5.  M. G. Dunn, J. Turbomach., vol. 134, 2012.  
6.  H. Hanachi, J. Liu, A. Banerjee e Y. Chen, Proceedings of the ASME Turbo Expo 2016: Turbomachinery 

Technical Conference and Exposition, vol. 6, 2016.  
7.  C. W. Allen, C. M. Holcomb e M. de Oliveira, J. Eng. Gas Turbines Power, vol. 141, 2018.  
8.  U. Igie, M. Goiricelaya, D. Nalianda e O. Minervino, Proceedings of the Institution of Mechanical Engineers, 

vol. 230, 2016.  
9.  N. Casari, M. Pinelli, A. Suman, L. di Mare e F. Montomoli, J. Turbomach., vol. 140, 2018.  
10.  J. P. Bons, R. Prenter e S. Whitaker, J. Turbomach., vol. 139, p. 081009, 2017.  
11.  S. Singh e D. Tafti, International Journal of Heat and Fluid Flow, vol. 52, pp. 72-83, 2015.  

12.  D. Borello, L. D’Angeli, L. Salvagni, P. Venturini e F. Rispoli, Proceedings of the ASME Turbo Expo 2014: 
Turbine Technical Conference and Exposition, vol. 5B, 2014.  

13.  T. Brandes, C. Koch e S. Staudacher, J. Turbomach., 2021.  
14.  L. P. Timko, NASA Lewis Research Center, 1990. 
15.  H. Cohen, G. F. C. Rogers e H. I. H. Saravanamuttoo, Gas Turbine Theory, London: Pearson Education 

Limited, 1996.  
16.  R. Clarkson, E. Majewicz e P. Mack, Journal of Aerospace Engineering, vol. 230, pp. 2274-2291, 2016.  
17.  M. Morini, M. Pinelli, P. R. Spina e M. Venturini, J. Eng. Gas Turbines Power, vol. 132, p. 032401, 2010.  
18.  R. Friso, N. Casari, M. Pinelli, A. Suman e F. Montomoli, Proceedings of the ASME Turbo Expo 2020: 

Turbomachinery Technical Conference and Exposition-GT2020-15370, vol. 2B, 2020, V02BT34A012.  
19.  C. Speziale, S. Sarkar e T. Gatski, Journal of Fluid Mechanics, vol. 227, pp. 245-272, 1991.  
20.  I. Lee, H. Ryou, S. Lee e S. Chae, KSME International Journal, vol. 14, pp. 93-102, 2000.  
21.  C. Taltavull, J. Dean e B. Clyne, Advanced Engineering Materials, vol. 18, pp. 803-813, 2016.  
22.  S. Ghosal e S. A. Self, Fuel, vol. 74, pp. 522-529, 1995.  
23.  F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra e T. E. Tezduyar, Computational Mechanics, vol. 

55, pp. 1201-1209, 2015.  
24.  S. Elghobashi, Applied Scientific Research, vol. 52, p. 309, 1994.  
25.  F. Montomoli, A. D’Ammaro e S. Uchida, J. Turbomach., vol. 135, p. 031014, 2013.  
26.  N. Wiener, American Journal of Mathematics, vol. 60, pp. 897-936, 1938.  
27.  M. Eldred e J. Burkardt, 47th AIAA Aerospace Sciences Meeting, p. 0976, 2009.  
28.  R. G. Ghanem e P. Spanos, Stochastic Finite Elements: A Spectral Approach, New York: Springer-Verlag, 

1991.  
29.  S. Hosder, R. Walters e R. Perez, 44th AIAA Aerospace Sciences Meeting and Exhibit, 2012.  
30.  F. Lu, W. Zheng, J. Huang e M. Feng, J. Dyn. Sys., Meas., vol. 138, p. 091009, 2016.  
31.  J. Kurzke, "How to Get Component Maps for Aircraft Gas Turbine Performance Calculations," Proceedings of 

the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, vol. 5, 1996.  
32.  P. Fletcher e P. P. Walsh, Gas Turbine Performance, Blackwell Pub, 2004.  
 
 

12

E3S Web of Conferences 312, 11002 (2021) https://doi.org/10.1051/e3sconf/202131211002
76° Italian National Congress ATI 



 
Fig. 8. Variation of operating parameters due to HPT fouling. 

 

 Since the engine lifetime is strictly related to the TET, its erroneous prediction may lead to an 
overestimation of the engine life. In this study, the maximum variation of the temperature (3𝜎𝜎 event) is 
equal to 0.263 %. In the work of Montomoli [25], an uncertainty of 0.6 % on the TET was found to be 
sufficient to reduce the HPT lifetime by 37 %. Thus, the value found in this study is not negligible, and 
may greatly affect performance prediction. 

 As the SFC is strictly related to fuel consumption, then mission costs, its accurate prediction is of main 
importance. This study shows how this value may be highly uncertain, even only by considering the 
stochastic variations at the outlet of the combustor. An alteration of roughly 1.4 % was found in the most 
critical conditions (3𝜎𝜎), and this has direct consequences on the mission costs. 
 

This study highlighted the importance of considering uncertainty in the prediction of gas turbine degradation. In 
its simplicity, this represents the first step towards a new strategy for the robust forecasting of GT performance 
degradation. 

REFERENCES 

1.  S. Martin, I. Wallace and D. G. Bates, J. Eng. Gas Turbines Power, vol. 130, 2008.  
2.  M. Kelaidis, N. Aretakis, A. Tsalavoutas e K. Mathioudakis, J. Eng. Gas Turbines Power, vol. 131, 2009.  
3.  R. Kurz, K. Brun e C. Meher-Homji, 43° Turbomachinery and 30° Pump Symposia, 2014.  
4.  A. Suman, M. Morini, N. Aldi, N. Casari, M. Pinelli and P. Spina, J. Turbomach., vol. 139, 2017.  
5.  M. G. Dunn, J. Turbomach., vol. 134, 2012.  
6.  H. Hanachi, J. Liu, A. Banerjee e Y. Chen, Proceedings of the ASME Turbo Expo 2016: Turbomachinery 

Technical Conference and Exposition, vol. 6, 2016.  
7.  C. W. Allen, C. M. Holcomb e M. de Oliveira, J. Eng. Gas Turbines Power, vol. 141, 2018.  
8.  U. Igie, M. Goiricelaya, D. Nalianda e O. Minervino, Proceedings of the Institution of Mechanical Engineers, 

vol. 230, 2016.  
9.  N. Casari, M. Pinelli, A. Suman, L. di Mare e F. Montomoli, J. Turbomach., vol. 140, 2018.  
10.  J. P. Bons, R. Prenter e S. Whitaker, J. Turbomach., vol. 139, p. 081009, 2017.  
11.  S. Singh e D. Tafti, International Journal of Heat and Fluid Flow, vol. 52, pp. 72-83, 2015.  

12.  D. Borello, L. D’Angeli, L. Salvagni, P. Venturini e F. Rispoli, Proceedings of the ASME Turbo Expo 2014: 
Turbine Technical Conference and Exposition, vol. 5B, 2014.  

13.  T. Brandes, C. Koch e S. Staudacher, J. Turbomach., 2021.  
14.  L. P. Timko, NASA Lewis Research Center, 1990. 
15.  H. Cohen, G. F. C. Rogers e H. I. H. Saravanamuttoo, Gas Turbine Theory, London: Pearson Education 

Limited, 1996.  
16.  R. Clarkson, E. Majewicz e P. Mack, Journal of Aerospace Engineering, vol. 230, pp. 2274-2291, 2016.  
17.  M. Morini, M. Pinelli, P. R. Spina e M. Venturini, J. Eng. Gas Turbines Power, vol. 132, p. 032401, 2010.  
18.  R. Friso, N. Casari, M. Pinelli, A. Suman e F. Montomoli, Proceedings of the ASME Turbo Expo 2020: 

Turbomachinery Technical Conference and Exposition-GT2020-15370, vol. 2B, 2020, V02BT34A012.  
19.  C. Speziale, S. Sarkar e T. Gatski, Journal of Fluid Mechanics, vol. 227, pp. 245-272, 1991.  
20.  I. Lee, H. Ryou, S. Lee e S. Chae, KSME International Journal, vol. 14, pp. 93-102, 2000.  
21.  C. Taltavull, J. Dean e B. Clyne, Advanced Engineering Materials, vol. 18, pp. 803-813, 2016.  
22.  S. Ghosal e S. A. Self, Fuel, vol. 74, pp. 522-529, 1995.  
23.  F. Rispoli, G. Delibra, P. Venturini, A. Corsini, R. Saavedra e T. E. Tezduyar, Computational Mechanics, vol. 

55, pp. 1201-1209, 2015.  
24.  S. Elghobashi, Applied Scientific Research, vol. 52, p. 309, 1994.  
25.  F. Montomoli, A. D’Ammaro e S. Uchida, J. Turbomach., vol. 135, p. 031014, 2013.  
26.  N. Wiener, American Journal of Mathematics, vol. 60, pp. 897-936, 1938.  
27.  M. Eldred e J. Burkardt, 47th AIAA Aerospace Sciences Meeting, p. 0976, 2009.  
28.  R. G. Ghanem e P. Spanos, Stochastic Finite Elements: A Spectral Approach, New York: Springer-Verlag, 

1991.  
29.  S. Hosder, R. Walters e R. Perez, 44th AIAA Aerospace Sciences Meeting and Exhibit, 2012.  
30.  F. Lu, W. Zheng, J. Huang e M. Feng, J. Dyn. Sys., Meas., vol. 138, p. 091009, 2016.  
31.  J. Kurzke, "How to Get Component Maps for Aircraft Gas Turbine Performance Calculations," Proceedings of 

the ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition, vol. 5, 1996.  
32.  P. Fletcher e P. P. Walsh, Gas Turbine Performance, Blackwell Pub, 2004.  
 
 

13

E3S Web of Conferences 312, 11002 (2021) https://doi.org/10.1051/e3sconf/202131211002
76° Italian National Congress ATI


