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Abstract. Among the possible solutions for large-scale renewable energy 
storage, Power-to-Gas (P2G) and Compressed Air Energy Storage (CAES) 
appear very promising. In this work, P2G and an innovative type of CAES 
based on underwater storage volumes (UW-CAES) are compared from a 
techno-economic point of view, when applied in combination with a 
48 MWe offshore wind power plant, selecting an appropriate location for 
both high productivity and favorable seabed depth. An optimization model 
is employed to study the system design and operation, maximizing the 
lifetime plant profitability, while considering differential installation and 
operation costs, market values of the products (i.e., hydrogen and 
electricity), and technological constraints. In the current economic and 
technological scenario, the resulting P2G system has a nominal power 
equivalent to about 10% of the wind park capacity, with a small hydrogen 
storage buffer. On the other hand, the compressor and the turbine of the UW-
CAES have a nominal power close to the full wind farm capacity, and large 
underwater compressed air tanks are required. Both options significantly 
impact the wind plant management but the most beneficial applications of 
the two systems are different: the P2G results in a compact and flexible unit, 
whereas the UW-CAES is able to exploit a higher average conversion 
efficiency (about 80% round-trip) against a much higher installed power and 
investment cost. Anyway, considering the current framework, the resulting 
economics are still inadequate, but their competitiveness can improve 
compatible with the expected evolution of energy markets in the next future. 

1 Introduction 

The global energy consumption has seen a huge increase in the last centuries, supported 
mainly by fossil fuels, but in the last decades new installations have largely moved towards 
renewable energy sources (RES). In fact, RES installed capacity in the world has almost 
tripled with respect to the beginning of the 2000s, with a huge spread of wind and solar energy 
systems, especially for electricity generation. In conjunction with the greater diffusion and 
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share in the generation mix, the cost-effectiveness of renewable power generation 
technologies has reached historic levels [1]. Onshore/offshore wind and solar photovoltaic 
can now all provide electricity competitively compared to fossil fuel-fired power plants. 
Thus, the integration of renewable technologies, especially non-programmable ones, is the 
most disputed factor in the growth of sustainable electricity supply [2]. First of all, 
dispatching problems must be faced, as the unpredictable variability of generation, which is 
due to the aleatory nature of the sources, entails considerable difficulties for the Transmission 
System Operator (TSO) in guaranteeing the continuous balancing of supply and demand. 
When it is not able to respect the scheduled program, the plant indirectly carries out an 
unbalancing action on the power grid. In addition, problems related to increasing grid 
congestion, unpredictable energy transits in the grid in terms of either quantity or direction, 
and the fact that conventional plants are called upon to play a role in covering concentrated 
load peaks with a general efficiency loss must be faced. Moreover, the greater penetration of 
non-programmable RES affects the electricity market, and in particular the implicit auction 
mechanism that characterizes the definition of electricity prices in the day-ahead market 
(DAM). The spinning reserve provision for balancing services also becomes an issue. For the 
reasons mentioned above, solutions to store and manage energy flows and to extend the 
flexibility of the electric grid are today widely debated and researched. Energy storage 
systems can be allocated into the grid in order to store energy and release it when needed, 
contributing to the balancing of the grid and to making electricity more dispatchable [3,4].  

Among the various possible technologies, two promising options suitable for long-term 
and large-scale storage are studied in this work: a Power-to-Gas (P2G) system, storing 
electricity through the production of green hydrogen, and an innovative Compressed Air 
Energy Storage system based on Under-Water storage volumes (UW-CAES) [5–8]. Both 
storage technologies are investigated in combination with an offshore wind farm composed 
of floating turbines, for which a preliminary sizing procedure is assumed. A techno-economic 
Mixed Integer Linear Programming (MILP) optimization model is developed for design and 
operation evaluation. In fact, the model aims at optimizing the configuration, the size, and 
the hourly operation of each storage plant – separately – to maximize the economic revenues 
over the entire lifetime. The main outcomes in terms of energy balance, economic 
performance, and environmental impact are then analyzed, in order to give an in-depth view 
of these two storage technologies and the potential advantages that their introduction entails. 
A case study is here presented, considering a hypothetical wind farm located in the South of 
Sardinia, with the aim to provide a methodology and a general overview of the different 
behavior of the two solutions. A case-by-case analysis is required for specific applications 
evaluation and the general identification of the most suitable conditions for each energy 
storage solution is left to more extensive works. 

2 System configurations 

The investigated energy storage solution is based on the integration of a floating wind farm 
either with a P2G system or a UW-CAES unit. In the following subsections, a brief overview 
of the involved technologies is provided. 

2.1 Floating wind farm 

Floating wind turbines represent a key research trend in the context of offshore wind energy 
in the recent years. They have the potential to significantly increase the sea areas available 
for offshore wind applications, especially in countries with deep waters, allowing to 
circumvent the positioning limits that fixed-foundation offshore turbines have. Locating wind 
farms further off the shore can also reduce visual impact, provide better accommodation for 
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for offshore wind applications, especially in countries with deep waters, allowing to 
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fishing and shipping routes, and reach areas of stronger and more consistent wind speeds. 
There are various flotation technologies ranging from semi-submersible to spar-buoy or 
tension-leg platform. More than 30 concepts are currently under development from 11 
different countries, mostly in Europe [9]. Data taken from these projects, although affected 
by uncertainty as there has not yet been a full development on the market, seem to 
demonstrate that the levelized cost of electricity from floating turbines is in line with respect 
to fixed-foundation turbines, proving that this technology has the potential to become highly 
competitive and could establish itself on the market in the years to come. Commercial 
floating wind turbines are mostly at the early phase of development, with several single 
turbine prototypes installed since 2007. The first operational floating wind farm was Hywind 
Scotland, developed by Equinor ASA and commissioned in October 2017, consisting of five 
6 MW turbines with a total installed capacity of 30 MW [10,11]. The largest turbine ever 
installed on a floating platform is part of the WindFloat Atlantic project by Principle Power, 
a site under construction off the coast of Portugal, which consists of three V164-8.4 MW 
wind turbines mounted on the semi-submersible WindFloat platforms that are anchored to 
the seabed at a water depth of 100 m. The first of the three platforms was successfully 
connected to the grid on December 31st, 2019. The other two units will be connected 
successively, until they reach a total power of 25 MWe [12]. 

From the point of view of this work, the floating solution is interesting because of the 
required deep seabed for underwater air storage, as discussed in the further paragraphs. 
Indeed, the 400-1400 m depths expected for reasonable pressure levels are in fact not 
compatible with wind farms adopting concrete foundations. 

2.2 Power-to-gas (P2G) 

The idea behind the concept of Power-to-Gas (P2G) consists in exploiting the electricity 
produced by electrical renewable sources for the production of hydrogen through electrolysis 
(see Fig. 1). The energy stored as chemical energy can be exploited in several final uses, 
which can be thermal, fuel for mobility applications, re-conversion to electricity, or synthesis 
of liquid fuels or chemicals. This concept, which integrates several energy sectors by means 
of hydrogen as an intermediate energy vector, is known as sector coupling, and it is the 
driving force of the rising interest in hydrogen technologies because of the high 
decarbonization potential. 

 

 

Fig. 1. Schematization of a P2G chain in a sector coupling approach (from [13]). 

 
Nowadays, only 5% of hydrogen production worldwide comes from water electrolysis. 

The electrolysis process is electrochemical, based on water decomposition and charge 

3

E3S Web of Conferences 312, 01007 (2021) https://doi.org/10.1051/e3sconf/202131201007
76° Italian National Congress ATI



transfers through internal membranes and external electric circuits. The conversion 
(electricity to hydrogen heating value) is potentially high, but several losses reduce the global 
performance. The research effort to reduce cell voltage, increase operating temperature and 
pressure, reduce costs, and increase durability and reliability is really strong, also because of 
a recent raising of interest in the technology, driven by the availability of renewable 
electricity at lower cost [14]. There are three main technologies of electrolytic cells, which 
differ in structural conformation, electrolyte, and operating conditions: Alkaline Water 
Electrolysis (AE), Proton Exchange Membrane Electrolysis (PEME), and Solid Oxide 
Electrolysis (SOE). Despite the higher cost and lower commercial maturity, in this work the 
PEME technology is selected as the most promising one for direct coupling with fluctuating 
renewable energy sources. AE is more established and less expensive, but still suffers from 
load variation issues and compactness, while SOE is not suitable for fast ramping and 
frequent shut-down [14,15]. In particular, recent projects including high temperature 
technologies mention ramp rates of 1 to 3 °C/min and current variations of 0.04-
0.05 A/cm2/min [16,17], while a commercial unit from Sunfire declares 10 minutes as hot 
idle ramp time [18]. In comparison, PEME already reaches hot idle ramp time of tens of 
seconds and cold startup ramp time of few minutes [17]. The system has to match with 
average hour-by-hour power fluctuations of wind power production in the order of magnitude 
of 20-40% of rated power and probability of unexpected zero-wind events of about 10% [19]. 
These ramp requirements could become stricter if the storage unit is also designed to provide 
services to the electric grid. 

The main issues of the P2G concept are related with high investment costs, low 
technology readiness, poor supply chain energy efficiency, and significant transport and 
storage problems of the hydrogen itself. In practice, the low energy density of gaseous 
hydrogen requires high pressure to keep a reasonable tank size, or alternative storage 
solutions (liquefaction, hydrides, …) [20]. Among these, a transition strategy proposed to 
overcome the technical difficulties of hydrogen storage and the absence of a dedicated 
delivery network is the admixing of hydrogen in the natural gas infrastructure (up to 20%vol) 
[21]. The natural gas enriched with hydrogen can then be used by combustors or engines, or 
separated for uses in pure form in the chemical sector and in electrochemical devices, 
contributing to the abovementioned sector coupling and fostering decarbonization. 

 

 

Fig. 2. Review of P2G projects in the world (2019, from [22]). 
 
Despite these criticalities, hydrogen solutions remain relevant because of the possibility 

of decoupling power and energy capacity in the storage phase, the scalability, and the full 
decarbonization achieved with this energy vector (i.e., no carbon in the molecule). 
Consequently, a strong development is foreseen in the next years, in particular in sectors in 
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decarbonization achieved with this energy vector (i.e., no carbon in the molecule). 
Consequently, a strong development is foreseen in the next years, in particular in sectors in 

which electrification is not an efficient or feasible solutions. Numerous demonstration and 
laboratory P2G projects have been developed in the last years. A 2019 review identified 153 
completed, operational, and planned projects for the time span from 1993 to 2050 [22]. In 
particular, 57% of these projects are based on production, storage, and use of pure hydrogen. 
As of 2019, 56 P2G hydrogen projects were in operation for a total capacity of 24.1 MWe, 
21 of which with injection of the product into a natural gas grid. Most of the projects are 
located in central Europe, in particular Germany, Denmark, and the Netherlands, but there 
are also projects in Italy, Spain, United Kingdom, and United States, as shown in Fig. 2. 

2.3 Under-Water Compressed Air Energy Storage (UW-CAES) 

Compressed Air Energy Storage (CAES) is one of the promising methods for large-scale 
storing of renewable electricity. In CAES plants, energy is stored by compressing the air in 
a tank and energy is extracted by expanding it during the discharge phase. Both adiabatic and 
diabatic solutions are possible, depending on the strategy for air heating before expansion, 
i.e., by means of thermal storage or external fuels combustion, respectively. The UW-CAES 
(Under-Water Compressed Air Energy Storage) is a particular CAES system that works with 
underwater tanks, whose structure allows for sea water to enter in the tank itself. The internal 
pressure is then defined by the constant hydrostatic pressure, depending on the depth, and the 
system operates with variable volumes. The system is depicted in Fig. 3 and includes: (i) a 
set of turbomachines (a multistage compressor with intercooling and a turbine); (ii) a thermal 
energy storage (TES) system with different temperature levels and fluids, designed to recover 
a large fraction of the compression heat; (iii) an underwater modular compressed air storage 
structure installed on the seabed and allowing a variable-volume and constant pressure 
operation; (iv) components aimed at ensuring the operation of the plant, such as heat 
exchangers, electrical equipment, pumps, and piping.  
 

 

Fig. 3. UW-CAES configuration coupled to an offshore wind farm (from [5]). 
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A peculiarity of this solution is that the compressor operates at variable loads, following 
an oscillating renewable power input, according to the strategy with which the system is 
regulated. Anyway, the outlet pressure is almost constant, and the flow rate can vary 
dramatically to follow the power fluctuations. Hence, a complex structure is required to avoid 
surge conditions, with parallel compression trains and different technological solutions, as 
discussed in detail in [5]. In addition, the outlet temperature from the compression unit has 
to be high enough for efficient thermal recovery. Different solutions exist for TES, according 
to the temperature levels; in this work, a cascade of three tanks containing molten salts (60% 
NaNO3/40% KNO3, 600-290 °C), diathermal oil (290-80 °C), and sea water (80-30 °C) is 
selected. 

The UW-CAES system requires a seabed depth suitable to guarantee the operating 
pressure of the concrete rigid air tank, which can vary between 40 and 140 bar, and in general 
requires large spaces for the tanks, basically composed of modules with considerable 
volumes, in the order of hundreds or thousands of cubic meters. However, in light of the large 
power generally involved, this technology can potentially provide a service for balancing the 
grid and improving the dispatchability of electricity from renewable sources, offering the 
possibility of accumulating energy and avoiding the use of fossil fuels. 

The CAES concept is under investigation since the 1970s with the aim of storing power 
generated by nuclear plants, with the installation of the first plant in the word in Huntorf, 
Germany in 1978, featuring a nominal power of 290 MW. After the huge increase of 
renewables seen after 2000, this type of technology regained interest due to the variability of 
those sources and the limits on the grid, and over the years there have been projects in various 
countries, such as Italy, Japan, USA, Israel, China, and Germany [6]. In 2015, the University 
of Windsor (Canada), in partnership with Hydrostor, a Toronto-based company, developed 
the world's first UW-CAES demonstration plant [23,24]. However, the difficult regulation of 
the UW-CAES system and, above all, the strong limits in its remuneration in the light of high 
investment costs have not yet allowed this technology to establish itself on the market. 

3 Methodology 

In this section, the sizing methodology for the coupled floating wind farm and energy storage 
unit is presented, considering both the modelling approach and the general assumptions. On 
the one hand, the wind farm size and productivity are estimated by means of a state-of-the-
art simulation tool (System Advisor Model, SAM [25]) that includes a database of wind 
turbines and performance indexes. This approach is assumed to be sufficient, since the focus 
of this work is the storage unit and the wind profile is only the input for simulations, equal in 
all the analyzed cases. 

On the other hand, the P2G and UW-CAES performances are estimated through a techno-
economic optimization based on Mixed Integer Linear Programming (MILP). The models 
are implemented in Matlab® through the Yalmip extension [26] and solved with GurobiTM 
Optimizer “branch-and-cut” algorithms [27]. The model solves the energy balance of the 
system, optimizing the energy flows assigned to each possible output (electricity, hydrogen) 
considering conversion efficiency of the intermediate components, as detailed in sections 3.3 
and 3.4 for P2G and UW-CAES, respectively. In all the cases, the electricity generation from 
the wind farm, the sale prices of electricity and hydrogen, and the performance of the energy 
storage units are provided as input and assumed constant, while the output of the simulation 
are the optimal capacities of the components and the total differential revenue with respect 
to the wind farm operating on the DAM without any energy storage unit. The objective 
function, aiming at maximizing the total differential revenues (∆𝑅𝑅), is shown in Eq. (1). The 
additional investment (CAPEX) and operational (OPEX) costs are taken into account, i.e., 
only the costs of the energy storage units. The Capital Recovery Factor (CRF) approach is 
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used to allocate the CAPEX as a constant instalment over the entire plant lifetime [28]. The 
additional (or the reduced amount of) electricity generated (𝐸𝐸����) with respect to the base 
case (𝐸𝐸����) is remunerated at the DAM electricity price (𝑝𝑝��). Hydrogen is sold at a constant 
price (𝑝𝑝��) considering both the exported amount (𝐸𝐸��,���,���) and the residual amount in the 
storage at the end of the period (∆𝐸𝐸��,��). Thus, the final size of the system is a tradeoff 
between the increasing installation cost of large storage plant and the increasing revenues 
from electricity and hydrogen sold. The optimization model solves the energy balance over 
all the components with an hourly timestep. 

 
max�∆𝑅𝑅� � 

max �����𝐸𝐸� ∙ �𝑅𝑅� � ��𝐸𝐸� �� ��𝐸𝐸����� � 𝐸𝐸����� � ∙ 𝑝𝑝��� � 𝐸𝐸��,���� ∙ 𝑝𝑝����
� ∆𝐸𝐸��,�� ∙ 𝑝𝑝��� 

 

(1) 

Details about the implemented models and the general assumptions are presented in the 
following sections, and then the influence of the main parameters is discussed. Moreover, a 
complete description of the approach used in this work and the corresponding set of 
equations, describing the model for a storage system coupled with RES, can be found in [28]. 

3.1 Wind farm design and operation 

The first step of the analysis is an assessment of possible sites in Italy, in order to define the 
optimal position of the wind farm. In fact, a location near the coast is required to allow a 
correct installation of the floating wind farm (up to 200 m depth) and, at the same time, a 
position that guarantees subsequently high depths (between 400 and 1400 m) to reach the 
operating pressures of the UW-CAES air reservoir. The P2G solution also requires a 
connection to the coast for exporting the hydrogen production. An area with these 
characteristics is found in the south-west of Sardinia, off the island of San Pietro, where the 
seabed depth varies from 200 m to 1000 m between 30 and 40 km from the coast, and it is 
selected for the study. Similar locations are available along both the insular and continental 
coast (mainly the Tyrrhenian Sea and the areas around the Islands), featuring different wind 
profiles or seabed shapes. The numerical results are clearly strongly influenced by the 
selected location, but the general features and optimal use of each storage solution depends 
on their specific structure, as discussed later, while a case-by-case analysis is required to 
correctly evaluate the economics of each solution. 
For the selected area, the hourly wind speed data are available from [29] and the performance 
of the hypothetical offshore wind plant are estimated through the software SAM (System 
Advisor Model) [25]. This allows both to identify a preliminary sizing of the wind farm and 
to simulate the plant operation considering wake losses, plant availability, electrical and 
environmental constraints, and turbine performance losses. Among the wind turbines 
available in the database, 24 Vestas V110-2.0 MW turbines (cut-in speed 3 m/s, cut-off speed 
20 m/s, rated speed 11.5 m/s, rated power 2 MWe) are selected for a total rated power of 
48 MWe. This solution best suits the characteristics of the wind data, resulting in an optimal 
plant configuration based on energy (capacity factor 38.8%, 163 GWhe/year) and economic 
evaluations (LCOE 68.2 €/MWh). The alternative layouts and models suitable for the wind 
distribution result in lower capacity factors (21-35%) or higher LCOE (up to 106 €/MWh). 
The expected wind speed distribution and electricity output profile are shown in Fig. 4.  
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Fig. 4. (a) Position of the selected location with respect to the Sardinia island; (b) wind speed 
distribution and Weibull function approximation of the actual wind data for the considered site (2019, 
[29]); and (c) expected electricity generation from the 48 MWe wind farm [25].  

 
With respect to the nominal installed capacity, the simulated maximum plant generation 

is about 40 MWe due to abovementioned real effects that the tool takes into account. 
The design of the wind farm is then kept constant in all the following simulations of the 

energy storage systems. In addition, the analysis is differential with respect to the benchmark 
case, which considers the wind farm operating on the DAM without any storage system. 

3.2 Power-to-Gas model and assumptions 

Regarding the P2G system, the configuration adopted in this work considers the injection of 
the produced hydrogen in the natural gas grid infrastructure, avoiding the costs and the 
additional complexity of large hydrogen storage and reconversion units (i.e., fuel cell or 
hydrogen gas turbine). In addition, the large capacity of the natural gas grid infrastructure 
makes in principle the system suitable for storing large quantities of renewable energy. The 
simulated configuration, including the optimized quantities, is schematically shown in Fig. 
5. The electricity generated by the wind farm (Ewind) can be directly sold to the power grid 
(Egrid) or sent to the electrolysis modules to produce hydrogen (Eelc). The generated hydrogen 
(EH2,prod) is directly injected into the natural gas grid (EH2,grid), assuming reference natural gas 
flow rates and caps to the hydrogen fraction, as described in section 3.4. Since a limit on the 
allowed hydrogen fraction in the natural gas could be imposed by the TSO, the temporary 
excess of production is stored in compressed-hydrogen metallic tanks (200 bar) after a 
compression step. In particular, a lumped approach with a limit of 10%vol is assumed, 
according to the recent experience of the Italian TSO [30,31]. The compression energy is 
provided by the wind farm itself (Ecmp), while the energy content of the storage is tracked 
(EH2,st). The additional option of electricity generation via P2P, reported with dotted lines in 
Fig. 5, is not considered in this work and will be evaluated in the future according to the 
preliminary results of this study. 
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Fig. 5. The P2G configuration implemented in the model and optimized energy flows. The P2P 
solution is not considered in this work. 

 
The model optimizes the energy flows in each time step, the storage capacity (EH2,st,max), 

and the electrolysis nominal installed power (Pelc,nom). Additional constraints include 
penalties for switching the electrolysis modules on and off (30% of the production is lost in 
the first hour of operation due to low purity and safety procedures) and limits for hydrogen 
injection in the natural gas infrastructure. The plant lifetime is 20 years, resulting in a capital 
recovery factor (CRF) of 9.4%/year (WACC = 7%). 

For the P2G system, the following assumptions are made:  
 The electrolysis unit has an investment cost of 800 €/kWe and operational costs equal 

to 2% of the CAPEX. After 10 years, stacks substitution is planned, corresponding to 
60% of the initial investment. The electricity-to-hydrogen conversion efficiency is 
assumed constant and equal to 65%LHV [14,15,32]. The model considers installing a 
discrete number of modules, each with a nominal capacity of 500 kWe. 

 The hydrogen storage system, including the compression unit, has an investment cost 
of 30,000 €/MWhLHV (about 1000 €/kg), while operational costs equal to 1% of the 
CAPEX are assumed. 

 An additional 2.5% is added to CAPEX to consider internal piping, instrumentation, 
and other minor equipment. 

3.3 UW-CAES model and assumptions 

Regarding the UW-CAES system, its configuration is schematically shown in Fig. 6. The 
electricity generated by the wind farm (Ewind) can be directly sold to the power grid (Egrid) or 
sent to the storage unit to power an air compressor (Ecmp). The compressed air is cooled down 
to recover the compression heat, storing thermal energy in three tanks containing respectively 
salt, oil, and water. The air is finally stored in the underwater reservoir, whose volumetric 
content is tracked (Vst,air). When electricity generation is required, the air from the reservoir 
is heated up and expanded in a turbine, injecting electricity into the grid (Eturb).  

Also in this case, the model optimizes the energy flows in each time step, the storage 
capacity (Vair,st,max) and the installed CAES power island nominal capacity (Pcmp,nom and 
Pturb,nom). The plant lifetime is 30 years, resulting in a CRF of 8.1%/year (WACC = 7%). 

For the UW-CAES system, the following assumptions are implemented:  
 The Power Island operation is affected by the performance of the components and the 

costs as detailed in [5]. Reference mass and energy flows are linearly rescaled by the 
optimization model, while the costs are corrected with a power law featuring a scale 
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exponent equal to 0.66 for the thermal storage and heat exchangers [33]. 
Turbomachinery costs are estimated as a function of the nominal power and of the 
flow rate, according to the approach presented in [5]. The size of the thermal storage 
units is assumed proportional to the underwater air tank, according to the reference 
case in [5]. 

 The underwater air tank has an investment cost of 40 €/m3. The underwater piping 
that connects the power island to the reservoir has an installed cost of 5 €/m and its 
length is estimated according to the coast shape. The pressure in the underwater 
reservoir depends only on the depth of the tank position, influencing costs and 
performance; a reference value of 80 bar is assumed (about 800 m s.l.m.). For this 
depth, the length of the pipe is about 40 km. Both the pipeline and the concrete vessels 
for air are placed at deep water off-shore location, so extra costs due to anchoring 
system, engineering phase and transportation are included as an additional 50% on the 
total installation cost [5].  

 Electrical equipment (transformer, converter) and gearbox costs are included from [5]. 
An additional 10% is added to CAPEX to consider internal piping, instrumentation, 
and other minor equipment. 

 OPEX for the complete system is 2% of CAPEX per year. 
 

 

Fig. 6. Schematization of the UW-CAES configuration implemented in the model with optimized 
energy flows. 

 
A peculiarity of this system is the imposed electrical power consumption to the 

compressor, while the resulting performance index is the amount of air compressed to the 
target pressure. This aspect strongly influences the design and the performance of 
turbomachinery section, hence performance maps calculated in a previous work [5] are 
assumed and link treated air mass flow rate (mair,in) to the power provided to the compressor. 

3.4 Energy markets and constraints 

The main driving force for the operation strategy is the match between the wind farm power 
output and the electricity price. The electricity sale price profile refers to the day-ahead 
market (DAM) results in the Sardinia zone in 2019 [34], with prices ranging most of the time 
between 30 and 80 €/MWhe (see Fig. 7). 
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Fig. 7. Electricity price trend on the day-ahead market, Sardinia zone, 2019 [34]. 
 

In addition to the revenues from electricity sale, the hydrogen price strongly influences 
the economic performance of P2G option. Since there is no implemented open wholesale 
market for hydrogen and many final uses are possible, it is not easy to identify a unique price 
and a range of values is investigated. On the methane market, nowadays the average price is 
between 20 and 30 €/MWhLHV, whereas the expected valorization of hydrogen in the 
transport sector could reach 120 €/MWhLHV or more. The hydrogen price is assumed constant 
during the year, which is the common approach for the natural gas and fuels markets. In 
practice, the price is much more stable than the electricity one, thanks to the frequent use of 
long-term bilateral trades and the possibility of storage. 

Despite the constant price, the capability of the natural gas infrastructure to receive the 
hydrogen changes during the year because of technical constraints. The main issues related 
with hydrogen presence in the natural gas infrastructure are related with materials (e.g., high-
strength steel embrittlement, poor sealing capacity of polymers), combustion control (e.g., if 
not set according to the different gas composition), metering, and regulation limitations (e.g., 
hydrogen limit for vehicular tanks refilling). Anyway, strong research activities are carried 
out in this sector to identify the actual limitations and to adapt the infrastructure and the 
regulation to the evolving scenario. In this work, a maximum percentage of hydrogen equal 
to 10%vol is assumed (with reference to a test carried out by the Italian TSO Snam in Contursi 
Terme in December 2019 [30,31]). A reference natural gas flow profile has also to be defined. 
The flow profile is calculated from a reference medium-pressure (30 bar) natural gas pipeline 
average monthly flow rate (see Fig. 8), since Sardinia technically does not have a network of 
methane pipelines in its territory, at the moment. This lumped approach does not consider 
local concentration issues but allows for defining critical conditions for the system operation; 
in addition, the 10%vol limit is a conservative value with respect to the maximum allowable 
concentration in relation to material resistance and final equipment acceptance [21,35]. 

 

 

Fig. 8. (a) Average natural gas flow rate and (b) energy flow (LHV) of hydrogen to comply with 
10%vol average limit. 
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4 Results 

In this section, the results of a set of cases simulated for the P2G and the UW-CAES systems 
are reported. For each system, a sensitivity analysis provides an insight on the influence of 
the wind farm generation profile, the electricity and hydrogen prices, and the investment 
costs. The most relevant cases of each technology are then compared in order to assess the 
strengths and weaknesses of the technologies. 

4.1 P2G results 

The base-case simulation is performed with reference to 2019 wind profile from [29], but the 
influence of wind profiles is also assessed by means of synthetic profiles functions with the 
same statistical distribution and persistence characteristics. Investment costs, prices, and 
technical parameters are the one presented before, while the impact of their variation is 
described in section 4.1.1. In particular, the revenue from hydrogen is set at 120 €/MWhLHV 
in the reference case. From the technical point of view, the wind farm generation profile 
affects both the design and the operation of the system, resulting in a total installed capacity 
of the electrolysis modules ranging between 3 and 5 MWe, equivalent to 6 - 10% of the wind 
farm nominal power (48 MWe). The volumes of the hydrogen tanks are also very low, in a 
range between 0.5 and 2.5 m3 (i.e., about 1.2 MWhLHV maximum), since the production of 
hydrogen exceeds the maximum limit of injection into the natural gas network only a few 
times during the year (i.e., the storage treats about 1.5% of the produced hydrogen). From 
the point of view of economics, the investment costs range from about 3 to 5 M€ depending 
on the profile used for the design (corresponding to a total specific cost of about 1000 €/kWe), 
with more than 78% of the costs related to the electrolysis module. The P2G system presence 
reduces the revenue from direct electricity sold to the grid, but on the other hand it is 
compensated by hydrogen export that results in about 25% of the total revenue (between 
75 M€/y and 110 M€/y). With this economic framework, the pay-back time of the system is 
15 years, which is way too long to make the investment attractive for investors. It therefore 
emerges that higher hydrogen prices are necessary to have a positive return on the investment. 

4.1.1 Parameters influence 

As far as concern the P2G system, Table 1 summarizes the simulated cases and gives the 
reference value of the most relevant parameters.  

Table 1 - Overview of assumptions ranges for P2G simulation cases. 

Simulation case name 
Hydrogen 

price 
[€/MWhLHV] 

Electrolyzer 
specific cost 

[€/kWe] 

Electrolyser 
efficiency 

[%] 

Electricity 
price profile 

Base case 120 800 65 GME 2019 
Sensitivity 1 90 ÷ 150 400 ÷ 1000 65 GME 2019 
Sensitivity 2 90 ÷ 150 800 65 ÷ 74 GME 2019 
Sensitivity 3 30 ÷ 150 800 65 Modified 
H2 for mobility 90 ÷ 150 800 65 GME 2019 

 
The variation of electrolysis specific investment cost and of hydrogen price (Sensitivity 1) 

is the first scenario considered. In this case, the calculated minimum hydrogen price for 
positive revenues with the lowest electrolysis investment cost (400 €/kWe) is 90 €/MWhLHV 
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The variation of electrolysis specific investment cost and of hydrogen price (Sensitivity 1) 

is the first scenario considered. In this case, the calculated minimum hydrogen price for 
positive revenues with the lowest electrolysis investment cost (400 €/kWe) is 90 €/MWhLHV 

(about 3 €/kg), while for an average investment cost (800 €/kWe) the limit increases to 
110 €/MWhLHV (about 4 €/kg). In this last condition, the pay-back time of the plant results 
between 10 and 6 years with prices between 110 and 150 €/MWh. It is clear that these values 
are not compatible with the current fossil fuels market (50-65 €/MWh for gasoline and Diesel 
fuel, 20-30 €/MWh for natural gas, tax free), but it is a feasible scenario for the ‘greening’ of 
the transport and gas sectors (e.g., biomethane 60 €/MWh), as mentioned before.  

The second investigated option (Sensitivity 2) considers an increase of the performance 
of the electrolysis modules, as expected in the near future thanks to improved technological 
and market maturity. Due to the high contribution of the component to the total investment, 
a strong impact in lowering the hydrogen sale price is expected. In the most favorable 
conditions (high hydrogen price), the model selects to install up to 10 MWe of electrolysis 
(instead of 3-5 MWe in the base case), which corresponds to about 20% of the wind farm 
nominal power. This larger hydrogen production potential also leads to an increase in the 
hydrogen tank size, to manage the production peaks in periods with low natural gas transit, 
but the required storage does not exceed 40 m3. In this case, the pay-back time of the P2G 
system decreases to around 8 years. 

In the third sensitivity analysis (Sensitivity 3), the effect of a different electricity price 
structure, combined with wind availability, is tested: (i) smoothing through moving the 
maximum and minimum peak prices, and (ii) prices reduction in the daily hours (9 a.m.-
5 p.m.) by 40% or 100%. The goal is to simulate, in a deliberately extreme way, the effect 
that a greater penetration of RES  power plants, which influence the price trend on the DAM 
market, may have on the profitability of the system. Both the P2G configuration and the base 
case are recalculated with the new price profiles. The first option does not influence in a 
relevant way the results, with minor changes in the operation of the system, whose storage 
capability is already suitable for managing the variations in the daily operation. On the other 
hand, the second profile yields improved economic conditions for a park with storage options 
with a reduction of the plant payback time potentially up to a value of 6 years.  

Ultimately, a configuration of P2G aimed at an application in the sustainable mobility 
sector is studied. The model is adapted to characterize a slightly different plant configuration, 
modeling a possible supply/demand mechanism for hydrogen. The system no longer feeds 
hydrogen into the natural gas network but exports it by means of pressurized tankers at 200 
bar, with a minimum (600 kg/day) and maximum (2000 kg/day) daily production to be 
respected. The tankers empty the local storage twice per day. Also in this case, the main 
revenue is provided by electricity sale to the electric grid, while the hydrogen price must be 
kept high (120-160 €/MWh) for a profitable operation. The largest impact is on the local 
hydrogen tank that has to manage the production peaks, resulting in volumes up to 150 m3 
and investment costs higher than 2 M€ (28% of the total). The total P2G unit investment cost 
rises to about 1500 €/kWe. 

4.2 UW-CAES results 

A preliminary UW-CAES optimization is performed on shorter periods (i.e., few months) 
and, in all the cases, the optimization model selects the maximum power allowed for 
compressor and turbine, equal to 40 MWe (coinciding with the maximum wind energy 
generation) and 48 MWe respectively. Therefore, these values are assumed as parameters, 
limiting the optimization to operation and storage units sizing, thus also containing the 
computational effort. 

As for P2G, the different wind park generation profiles are tested, but the result is a 
negative economic performance in all the cases, if the assumptions in section 3.3 are 
considered, since a specific cost around 3000 €/kWe is obtained for UW-CAES. A positive 
revenue is obtained reducing the investment cost of the system to 800 €/kWe, which is then 
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assumed in the following analysis. This cost reduction can be seen as a technological 
improvement or as an incentive for the fully dispatchability of the wind park power. The 
actual cost reduction is equivalent to about 50 k€/MWe/year, taking into account the 30-year 
long lifetime, and this is not far from the value offered by the Italian electric TSO TERNA 
for participation in tertiary regulation services (i.e., availability to substitute missing 
generation for long periods). Despite the resulting specific investment costs of the UW-CAES 
technology is basically aligned with P2G system one (around 1000 €/kWe), the optimal 
economics yields high power flows (about 40 MWe vs 3-5 MWe) and high storage volumes 
(20,000-30,000 m3 for the air tank vs. 40 m3 for the hydrogen system, plus the thermal storage 
volume is around 1000 m3). Hence, the two solutions are completely different from the point 
of view of the size and of the operation. 

In any case, pay-back time of the UW-CAES solution is very high (20-30 years), 
evidencing the need for further reduction in the investment cost. The overall investment cost 
is between 30 and 35 M€, with 45% of the cost related to turbomachinery, 37% to thermal 
energy storage, and about 9% to the underwater piping and concrete tanks. 

4.2.1 Parameters influence 

As for the P2G system, some sensitivity analyses are carried out on the UW-CAES solution. 
In particular, the electricity price profile is modified as discussed in section 4.1.1. In this case, 
both approaches modify the economic framework of the UW-CAES system:  

 The profile smoothing further reduces the income from the energy storage unit, which, 
according to the implemented strategy, mainly exploits the price differences 
(arbitrage). In this case, the cash flows are even worse than those of the wind park 
alone. 

 The reduction of the electricity price during the day, on the contrary, supports the 
system, increasing the need of energy shifting that the large power and energy capacity 
of the system can provide. In particular, 50% of the electric output is provided through 
the storage system, against the 20% in the base case, with equivalent operating hours 
for the compressor that increase from 3000 to 4100 per year. It has to be evidenced 
also that the benchmark remuneration (i.e., wind park without storage) is strongly 
reduced (62 M€ vs. 100 M€) by this price structure, favoring the installation of a 
storage system. 

Finally, a variation in the operating pressure of the air tank is considered, which 
influences the depth of the tanks and their size, as well as the compression consumption. This 
analysis requires a more detailed design of the turbomachinery island, here performed 
through a simplified approach, keeping constant the polytropic efficiency of the components. 
The main impact is on the cost of the air reservoir, which reduces almost linearly from 2 M€ 
at 40 bar to less than 1 M€ at 120 bar, with minor changes in the costs of the other 
components, among which the underwater pipe whose length changes from 35 to 50 km. On 
the other hand, the round-trip efficiency has a maximum between 60 and 80 bar (80% RTE), 
reducing to 73% at 120 bar. The global effect is a negligible variation of economics, being 
the only advantage of higher pressures the smaller size of the underwater structures. 

4.3 Comparison 

In Table 2, the results of the two solutions are compared, reporting the range of values for 
the best and worst cases obtained. Firstly, the cost structure of the two options leads to a 
completely different optimal layout:  

14

E3S Web of Conferences 312, 01007 (2021) https://doi.org/10.1051/e3sconf/202131201007
76° Italian National Congress ATI 



assumed in the following analysis. This cost reduction can be seen as a technological 
improvement or as an incentive for the fully dispatchability of the wind park power. The 
actual cost reduction is equivalent to about 50 k€/MWe/year, taking into account the 30-year 
long lifetime, and this is not far from the value offered by the Italian electric TSO TERNA 
for participation in tertiary regulation services (i.e., availability to substitute missing 
generation for long periods). Despite the resulting specific investment costs of the UW-CAES 
technology is basically aligned with P2G system one (around 1000 €/kWe), the optimal 
economics yields high power flows (about 40 MWe vs 3-5 MWe) and high storage volumes 
(20,000-30,000 m3 for the air tank vs. 40 m3 for the hydrogen system, plus the thermal storage 
volume is around 1000 m3). Hence, the two solutions are completely different from the point 
of view of the size and of the operation. 

In any case, pay-back time of the UW-CAES solution is very high (20-30 years), 
evidencing the need for further reduction in the investment cost. The overall investment cost 
is between 30 and 35 M€, with 45% of the cost related to turbomachinery, 37% to thermal 
energy storage, and about 9% to the underwater piping and concrete tanks. 

4.2.1 Parameters influence 

As for the P2G system, some sensitivity analyses are carried out on the UW-CAES solution. 
In particular, the electricity price profile is modified as discussed in section 4.1.1. In this case, 
both approaches modify the economic framework of the UW-CAES system:  

 The profile smoothing further reduces the income from the energy storage unit, which, 
according to the implemented strategy, mainly exploits the price differences 
(arbitrage). In this case, the cash flows are even worse than those of the wind park 
alone. 

 The reduction of the electricity price during the day, on the contrary, supports the 
system, increasing the need of energy shifting that the large power and energy capacity 
of the system can provide. In particular, 50% of the electric output is provided through 
the storage system, against the 20% in the base case, with equivalent operating hours 
for the compressor that increase from 3000 to 4100 per year. It has to be evidenced 
also that the benchmark remuneration (i.e., wind park without storage) is strongly 
reduced (62 M€ vs. 100 M€) by this price structure, favoring the installation of a 
storage system. 

Finally, a variation in the operating pressure of the air tank is considered, which 
influences the depth of the tanks and their size, as well as the compression consumption. This 
analysis requires a more detailed design of the turbomachinery island, here performed 
through a simplified approach, keeping constant the polytropic efficiency of the components. 
The main impact is on the cost of the air reservoir, which reduces almost linearly from 2 M€ 
at 40 bar to less than 1 M€ at 120 bar, with minor changes in the costs of the other 
components, among which the underwater pipe whose length changes from 35 to 50 km. On 
the other hand, the round-trip efficiency has a maximum between 60 and 80 bar (80% RTE), 
reducing to 73% at 120 bar. The global effect is a negligible variation of economics, being 
the only advantage of higher pressures the smaller size of the underwater structures. 

4.3 Comparison 

In Table 2, the results of the two solutions are compared, reporting the range of values for 
the best and worst cases obtained. Firstly, the cost structure of the two options leads to a 
completely different optimal layout:  

 the P2G is a low-power system, with the possibility of exploiting the natural gas 
infrastructure and store a large amount of energy with a small local buffer; 

 the UW-CAES solution is a system with large turbomachinery capacity, being able to 
completely substitute the wind park both in positive (if no wind is available) and in 
negative (by adsorbing all the power if it exceeds the grid requirements); local 
volumes required are large, but mainly located underwater. 

Table 2 – Comparison of the main simulation results for P2G and UW-CAES technologies. 
 P2G UW-CAES 

 min max min max 

Installed Power [MWe] 0.5 11 40(C),48(T) 40(C),48(T) 

Storage [m3] 0 (H2) 80 (H2) 13527 (air) 
2063 (TES) 

32526 (air) 
3004 (TES) 

Investment costs [M€] 1.02 12.38 29.56(*) 32.97(*) 

Specific costs [€/kWe] 512 1315 739(*) 824(*) 

Payback Period [years] 6 20 15 30 

Energy efficiency [%](**) 60 70 73.0 80.7 
(*) Values considering an incentive on the installed capacity. 
(**) For P2G the energy efficiency is considered as electricity-to-hydrogen, while for 
UW-CAES it is the electric round-trip efficiency. 

 
From an economic point of view, both solutions are anti-economic, however the P2G 

system has the best performance at the moment: with an incentive for dispatchable renewable 
energy provision it becomes competitive with the ‘no storage’ option. As already mentioned, 
for both systems the average pay-back times are still too long to be competitive on the market. 
In addition to the specific costs, also the absolute investment required is different, being an 
order of magnitude higher on average for the UW-CAES system. 

The different energy storage strategy is also worth noticing. The P2G system produces a 
fuel able to decarbonize a different sector (i.e., current natural gas applications), but with a 
low economic value (e.g., thermal applications) and low conversion efficiency (about 60% 
electricity-to-hydrogen). The UW-CAES is an electrical energy storage with high round-trip 
efficiency (around 80%) that is able to provide services to the wind park and balance the grid 
when required. Both the solutions can potentially act as long-term energy storage, being the 
self-discharge almost negligible and the power/energy ratio totally free. Anyway, the actual 
optimized operation, under the economic framework used in this work, does not consider the 
seasonal storage as a viable option. 

4.3.1 Impact on GHG emission 

On the one hand, the presence of P2G coupled with the wind farm clearly implies a reduction 
of the renewable electricity provided to the power grid, as part of the generation is converted 
into hydrogen heating value. The missing electricity has to be produced by other power 
plants; for estimating the resulting indirect emissions, it is assumed the average specific CO2 
emission of the Italian generation park, equal to 233 gCO2/kWhe in 2019 [36]. On the other 
hand, the hydrogen injected in the natural gas grid partially substitutes the use of fossil fuels 
in the infrastructure (i.e., both industrial and domestic final uses). A balance between the 
indirect emissions and the avoided emissions for NG substitution (205 gCO2/kWhLHV) can be 
performed. In all the simulated cases, the first contribute dominates with additional value 
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between 5 and 8 ktCO2/y against about 3 ktCO2/y avoided, with a net increase of emissions. 
However, the higher share of renewable energy expected in the next year will reduce the 
average emission factor of the energy sector, mitigating this negative effect. In particular, a 
breakeven specific emission of 125 gCO2/kWhe (corresponding to at least 60% of electricity 
generation from RES) would make the two contributions equal and the introduction of the 
P2G system neutral. 

On the other hand, the UW-CAES system is a Power-to-Power unit that only shifts the 
renewable electricity generation in time, with no avoided emissions. Anyway, due to the 
round-trip efficiency, about 20% of the stored electricity is lost. Consequently, also in this 
case, indirect emissions are caused by the additional electricity generation from other power 
units; with the abovementioned assumptions about the average CO2 emission of the Italian 
power generation park, about 3 ktCO2/y would be additionally emitted, potentially reduced by 
an improved share of zero-emission technologies at national level. 

5 Conclusions 

In this work, energy storage solutions based on either a P2G system with hydrogen injection 
in the natural gas infrastructure or a UW-CAES system have been applied to the same 
48 MWe off-shore wind park, aiming at reducing the generation variability and exploiting 
electricity prices variation along the day and the year. The two solutions turned out to be very 
different, working with installed power capacities and storage volumes of different orders of 
magnitude.  

Apart from the specific values, that strongly depends on the specific case, some general 
features of the systems can be highlighted. The P2G unit has a small nominal power (always 
below 11 MWe, i.e., below the 23% of the wind farm nominal power), is able to exploit the 
large energy capacity of the natural gas grid and contributes to the decarbonization of a 
different energy sector. Anyway, the hydrogen has to be valorized with a high price (3 €/kgH2 
at least, with the most favorable assumptions considered in this analysis) to guarantee a 
positive revenue. The UW-CAES manages higher power flows (the nominal power for the 
compressor and the turbine are 40 MWe and 48 MWe, respectively, that is the maximum 
allowed) being able to fully compensate for unpredictable fluctuation in the wind farm power 
generation and exploiting balancing tasks with high round-trip efficiency (> 73%). On the 
other hand, it requires large volumes and higher initial investment (> 29.6 M€). From the 
point of view of GHG, both systems in the current conditions increase the average emissions 
because of indirect emissions due to the reduced RES provided to the grid.  

Further developments required to complete the comparison will have to consider 
complete layouts with the P2P option for the hydrogen-based solution as well as with 
alternative layouts for the UW-CAES storage systems that have a strong impact on costs. In 
both cases, the provision of services to the electric grid should be included in the economics. 
Despite the different outcomes and applications of the technologies, both P2G and UW-
CAES represent a valid alternative to increase the profitability, dispatchability, and 
exploitation of non-programmable renewable sources. Both require economic support in the 
initial phase of development and market diffusion, through incentives on installations and/or 
through research and development support for the improvement of components. 
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average emission factor of the energy sector, mitigating this negative effect. In particular, a 
breakeven specific emission of 125 gCO2/kWhe (corresponding to at least 60% of electricity 
generation from RES) would make the two contributions equal and the introduction of the 
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On the other hand, the UW-CAES system is a Power-to-Power unit that only shifts the 
renewable electricity generation in time, with no avoided emissions. Anyway, due to the 
round-trip efficiency, about 20% of the stored electricity is lost. Consequently, also in this 
case, indirect emissions are caused by the additional electricity generation from other power 
units; with the abovementioned assumptions about the average CO2 emission of the Italian 
power generation park, about 3 ktCO2/y would be additionally emitted, potentially reduced by 
an improved share of zero-emission technologies at national level. 

5 Conclusions 

In this work, energy storage solutions based on either a P2G system with hydrogen injection 
in the natural gas infrastructure or a UW-CAES system have been applied to the same 
48 MWe off-shore wind park, aiming at reducing the generation variability and exploiting 
electricity prices variation along the day and the year. The two solutions turned out to be very 
different, working with installed power capacities and storage volumes of different orders of 
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Apart from the specific values, that strongly depends on the specific case, some general 
features of the systems can be highlighted. The P2G unit has a small nominal power (always 
below 11 MWe, i.e., below the 23% of the wind farm nominal power), is able to exploit the 
large energy capacity of the natural gas grid and contributes to the decarbonization of a 
different energy sector. Anyway, the hydrogen has to be valorized with a high price (3 €/kgH2 
at least, with the most favorable assumptions considered in this analysis) to guarantee a 
positive revenue. The UW-CAES manages higher power flows (the nominal power for the 
compressor and the turbine are 40 MWe and 48 MWe, respectively, that is the maximum 
allowed) being able to fully compensate for unpredictable fluctuation in the wind farm power 
generation and exploiting balancing tasks with high round-trip efficiency (> 73%). On the 
other hand, it requires large volumes and higher initial investment (> 29.6 M€). From the 
point of view of GHG, both systems in the current conditions increase the average emissions 
because of indirect emissions due to the reduced RES provided to the grid.  

Further developments required to complete the comparison will have to consider 
complete layouts with the P2P option for the hydrogen-based solution as well as with 
alternative layouts for the UW-CAES storage systems that have a strong impact on costs. In 
both cases, the provision of services to the electric grid should be included in the economics. 
Despite the different outcomes and applications of the technologies, both P2G and UW-
CAES represent a valid alternative to increase the profitability, dispatchability, and 
exploitation of non-programmable renewable sources. Both require economic support in the 
initial phase of development and market diffusion, through incentives on installations and/or 
through research and development support for the improvement of components. 
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