
Comparison of enthalpy-porosity and lattice Boltzmann-
phase field techniques for the simulation of the heat trans-
fer and melting processes in LHTES devices

Vesselin Krassimirov Krastev1,∗ and Giacomo Falcucci1

1Department of Enterprise Engineering “Mario Lucertini”, University of Rome “Tor Vergata”, Via del
Politecnico, 1 - 00133 Rome (Italy)

Abstract. Thermal energy torage (TES) is a key enabling technology for the ef-
ficient exploitation of distributed generation systems based on renewable energy
sources. Among the available options, research on latent heat TES (LHTES)
solutions has been particularly active in the last decade, due to their ability to
store and release high amounts of thermal energy in a very narrow temperature
range. LHTES devices are based on phase change materials (PCMs), which act
as thermal sinks or sources during their solid-to-liquid transition and vice-versa.
As such, the development of reliable numerical tools for the prediction of the
heat transfer and phase change characteristics of PCMs is of foremost impor-
tance, to help designing innovative and efficiently integrated LHTES implemen-
tations. In the present paper, the consolidated enthalpy-porosity (EP) method is
compared to a novel lattice Boltzmann-phase field (LB-PF) algorithm in the
simulation of a standard numerical benchmark for paraffin-like PCM melting
problems. Performances and limitations of the two approaches are discussed,
including the influence of model-related and purely numerical parameters. Out-
comes from this study are used to confirm general guidelines for the application
of well established methodologies, as well as to suggest new pathways for out-
of-standard modeling techniques.

1 Introduction

In 2019, the share of renewable energy sources (RES) in gross final energy consumption was
at 19.7% in the EU-27, which is very close to the 2020 EU target of 20 % [1]. Compared with
the 9.6% share in 2004, this might be regarded as a positive development, but the average
value hinders very different performances at a national level. Sweden, for instance, had a
56.4% renewables share (with a 49% 2020 national target), compared to the 8.8% share of the
Netherlands (with a 14% 2020 national target). Furthermore, a much higher effort is needed to
increase the penetration of renewables and set the path towards the ambitious goal behind the
European Green Deal - becoming the world’s first climate-neutral continent by 2050 [2]. To
this aim, the integration of distributed RES technologies with thermal energy storage (TES)
systems has proven to be an effective solution to both reduce the energy consumption and
mitigate the inherent RES local intermittency. For instance, studies from 2011 had already
estimated an energy efficiency growth of 7.5% and CO2 emission reduction of 5.5% if TES
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were to be deployed at a large scale in EU [3]. Recent examples of TES-based optimization
of heating/cooling appliances for residential applications can be found in [4, 5].

For low and moderately high temperature applications (below 300 °C), latent heat TES
(LHTES) technologies have attracted the attention of a continuously growing worldwide
community of researchers in the last two decades [6]. All LHTES systems feature a Phase
Changing Material (PCM) to accumulate/release large amounts of thermal energy in a nar-
row temperature range. Compared to sensible heat TES (SHTES), LHTES generally possess
higher storage densities and allow for a better control of thermal fluctuations within the en-
ergy system. Typical limitations of the PCMs used in LHTES are [7]: low thermal conduc-
tivity (low charging/discharging power), subcooling, chemical stability and cost.

Concerning modeling of PCMs for TES applications, a typical issue is represented by the
different physical behavior between the melting (charging) and solidification (discharging)
stages [8]. More specifically, while solidification is conduction-dominated, the melting stage
generates complex convective motions within the liquid phase which strongly affects the
melting front position in time and thus the overall duration of the phase change process.
As such, analytical solutions for the melting/solidification problem are available only for
a few simplified configurations, thus increasing the need for developing and consolidating
numerical tools as a key factor for the efficient LHTES design and optimization.

A common way to approach the numerical modeling of PCMs is a single-domain method
called enthalpy-porosity (EP) technique [9–11], in which the melting front is not tracked
explicitly. Instead, a scalar liquid fraction is associated with each computational cell or node
in the domain, while a small semi-solid porous region called mushy zone is created at the
solid/liquid interface as a function of the liquid fraction value. Although it has proven to be
reliable for many PCM applications, the EP method performance is known to be significantly
affected by the choice of two modeling parameters: the mushy zone constant and the phase
change temperature interval (∆Tls = Tliquidus − Tsolidus). While the first parameter influence
has been studied quite extensively for different PCM types [12], the interlink with the phase
transition temperature range is currently less obvious.

As such, the first goal of the present work is to assess the combined effects of the
mushy zone constant and the phase change temperature range for a reference 2D melting
case [13, 14], including also the impact of purely numerical parameters such as grid density.
In addition to that, an original lattice-Boltzmann phase field (LB-PF) formulation [15, 16]
is proposed for the modeling and simulation of the same class of PCM melting problems.
Lattice boltzmann algorithms for fluid dynamic simulations are known to be computation-
ally efficient and easily modifiable/extendable to incorporate additional complex physical
and chemical phenomena [17, 18]. Therefore, reasons for considering an LB-based meth-
ods for melting/solidification modeling include: i) faster simulation times for a given set
of thermopysical properties and initial and boundary conditions: ii) lesser dependence on
model-specific parameters, to encompass a wider class of applications. To assess the pro-
posed LB-PF methodology, the same 2D reference case has been simulated, highlighting
differences, stengths and weaknesses compared to EP.

The remainder of the paper is organized as follows: first, the EP technique (as imple-
mented in the ANSYS® Fluent finite-volume software package) and the LB-PF method are
briefly described; after that, the core section of the paper is dedicated to the reference 2D melt-
ing case, including a discussion on the results obtained with the two simulation approaches;
finally, the main outcomes from the present study are summarizes in the Conclusions section.
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2 Materials and Methods

2.1 Enthalpy-porosity method

The ANSYS Fluent CFD package features the standard EP technique for the modeling of
melting/solidification processes [19]. The liquid fraction is computed at each iteration, based
on an enthalpy balance, while the mushy zone is defined as a region where the liquid fraction
lies between 0 and 1 and, at the same time, as a pseudo porous medium in which the porosity
decreases from 1 to 0 as the material solidifies. When the material has fully solidified in a
computational cell, the porosity becomes zero and hence the velocities also drop to zero.

The enthalpy of the material is computed as the sum of the sensible enthalpy h and the
latent heat content ∆H, where:

h = hre f +

∫ T

Tre f

cpdT (1)

with cp = specific heat at constant pressure. The liquid fraction γ can be defined as:

γ = 0, i f T < Tsolidus

γ = 1, i f T > Tliquidus (2)

γ =
T − Tsolidus

Tliquidus − Tsolidus
, i f Tsolidus < T < Tliquidus

The latent heat content can now be written in terms of the latent heat of the material Λ:

∆H = γΛ (3)

Finally, the energy equation is written as:

∂

∂t
(ρH) + ∇ ·

(
ρV⃗H
)
= ∇ · (k∇T ) + S T (4)

with H = h + ∆H, ρ = density, k = thermal conductivity, V⃗ = fluid velocity and S T = source
term. The solution for temperature is essentially an iteration between the energy equation and
the liquid fraction equation. Directly using Equation (2) to update γ usually results in poor
convergence of the energy equation: to avoid this, in ANSYS Fluent the method suggested
by Voller and Swaminathan is used to update the liquid fraction when Tsolidus � Tliquidus [11].
For pure substances (Tsolidus = Tliquidus), the original implementation based on specific heat
is used instead [9].

The momentum sink due to the reduced porosity in the mushy zone takes the following
form:

S M =
(1 − γ)2

γ3 + ϵ
Amush

(
V⃗ − V⃗p

)
(5)

where ϵ is a small positive number (default is set to 10−3) to prevent division by zero, Amush is
the mushy zone constant, V⃗p and is the solid velocity due to the (enetual) pulling of solidified
material out of the domain.

The method described above is general and is able to account for thermal and solutal
buoyancy, turbulent flows (for the liquid phase) and multicomponent mixtures.
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2.2 Lattice Boltzmann - phase field method

To track the fluid dynamics and the thermal evolution within a melting/solidification problem,
a standard 2-population LB approach can be implemented [17, 18, 20]:

fi (x + ci, t + 1) − fi (x, t) =
1
τF

[
f eq
i (x, t) − fi (x, t)

]
+ FB + FDrag (6)

gi (x + ci, t + 1) − gi (x, t) =
1
τT

[
g

eq
i (x, t) − gi (x, t)

]
+ FL (7)

where τF is the (standard) fluid relaxation time, while τT is the thermal relaxation time.
Within this approach, the temperature is a passive scalar, whose effects are transferred towards
the fluid according to specifically tuned forces.

The three forcing terms at the rhs of Equations (6) and (7) represent: FB the buoyancy
effect; FDrag an empirical mesoscopic drag, which enforces zero-velocity inside the solid
region [15]; FL the latent heat release/absorption during melting/solidification phenomena,
respectively. All these forces depend on the time evolution of the phase field ϕ that governs
the melting/solidification front. The discretized rate equation for ϕ is:

ϕ (x, t) = ϕ (x, t − 1) + R (8)

in which, R is the reaction term expressed as in [15]:

R (x, t) = f+K+ (x, t)
[
1 − ϕ (x, t − 1)

] − f−K− (x, t)
[
1 + ϕ (x, t − 1)

]
(9)

where f+ and f− are frequency scales (the inverse of the time scale that rules melting and so-
lidification, respectively) and K+ and K− are melting/solidification switch functions. Further
details on the implementation of K+ and K−, as well as on the forces dependence on ϕ can be
found in [15] and [16].

3 Reference 2D cavity test case

3.1 Problem statement and case setup

The physics and scaling laws of 2D melting in a rectangular cavity with fixed temperature
side walls have been discussed in dertails in the 1988 paper from Jany and Bejan [13]. The
general problem is depicted in Figure 1: a cavity of H × L dimensions, initially filled with
the PCM in solid state (T = Tsolidus), is heated from the left imposing a left wall temper-
ature TW > Tliquidus. Under several assumptions (constant density and constant properties,
Boussinesq-like buoyancy in the liquid phase, laminar convective flow, Pr ≥ 1), Jany and
Bejan demonstrated that the Nusselt number and melting front evolution are entirely gov-
erned by the nondimensional Rayleigh, Stefan and, when Pr approaches 1, Prandtl numbers.

More specifically, a general Nu correlation can be written as follows:

Nu (θ) =
1
√

2θ
+

Nu∞ − 1√
2θ√

1 + 1(
0.0175Ra3/4θ3/2

)2
(10)

where:

Nu∞ = 0.35Ra1/4 (11)
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for Pr >> 1, and:

Nu∞ =
0.35Ra1/4

[
1 +
(

0.143
Pr

)9/16
]4/9 (12)

for any Pr. Note that θ = FoS te is a characterisctic nondimensional time coordinate, with
Fo = αt/H2 being the Fourier number (α = thermal diffusivity, t = physical time coordinate
and H = cavity height).

For a sufficiently high Rayleigh number (say above 105-106), the heat transfer at the hot
(left) wall is characterized by three subsequent regimes, as shown in Figure 1: i) an initial
pure-conduction regime, with a steady decrease of Nu and a vertical wall-parallel melting
front; ii) a mixed regime, with a knee appearing in the upper part of the melting front and
the Nu value reaching a minimum and then increasing towards the pure-convection limit; iii)
the pure-convection limit, with well developed thermal boundary layers on the left wall and
melting front interface and with Nu approaching Nu∞.

(a) (b) (c) (d)

Figure 1: High-Rayleigh number three-regime representation of the 2D melting problem: a) conduc-
tion dominated; b) mixed conduction-convection; c) convection dominated; d) Nusselt number evolu-
tion.

Three configurations have been considered for the purposes of the present work, as shown
in Table 1. Case A is based on a high-Ra/high-Pr configuration, with the octadecane assumed
as a reference PCM. The octadecane is a reasonable surrogate of paraffin-like PCMs and thus
Case A can be viewed as close to a realistic paraffin-based LHTES application. Cases B and
C have been taken into account due to the availability of previous LB-based computational
studies [21], which are functional to the LB-PF methodology assessment.

Table 1: Nondimensional parameters of the considered 2D melting test configurations.

Case A Case B Case C
PCM type Octadecane - -
Pr 50 1 1
S te 0.1 10 10
Gr 2.0 · 106 8.4 · 105 6.8 · 106

Ra 108 8.4 · 105 6.8 · 106

Most of the EP-related part of the present study has been focused on Case A. The EP
implementation within the ANSYS Fluent software has already been described in Section
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2.1. Here some details are added on the computational setup for the Case A simulations. The
unsteady SIMPLE algorithm has been selected for pressure-velocity coupling, with implicit
first-order time integration and up to 50 time step sub-iterations. Second-order discretization
schemes have been applied for spatial gradients and convective terms. In terms of nondimen-
sional time units, a fixed time step length of ∆θ = 4 · 10−7 has been set with a total simulation
time of θ = 0.01. Since octadecane melts between 28 °C and 30 °C, to analyze the effects of
the phase transition temperature range three values of ∆Tls have been considered: 1 °C, 1.5
°C and 2 °C. Regarding Amush, previous reviews on PCM modeling with the EP methos have
highlighted a practical range of 105-108 for paraffin-like materials [12]: as such, here we start
from an intermediate value, 5 · 106, which is then raised up to 107 for each ∆Tsl. The left and
right walls are treated as fixed-temperature walls, while the top and bottom walls are assumed
adiabatic. Note that the fixed temperature condition at both vertical walls is coherent with the
numerical studies reported in [14]. The cavity is squared in shape (H = L = 0.1 m) and three
computational grids have been considered to assess the effects of numerical accuracy: Grid
#1, with 93 × 50 elements, Grid #2, with 143 × 100 elements and Grid #3, with 193 × 150
elements.

For the setup of the LB-PF simulations of Cases B and C, the reader is redirected towards
reference [16].

3.2 Results

Figure 2 summarizes Nusselt number EP results. In Figure 2a, effects of the numerical grid
resolution are highlighted: the average Nu variation across the simulation time span is of
about 10% passing from Grid #1 to Grid #2 and about 5% passing from Grid #2 to Grid #3.
Further refinements did not produce significant variations, so Grid #3 has been selected as
the reference for all the subsequent simulations.

Figures 2b-d show the cross-effects of Amush and ∆Tls. Apparently, graphs for ∆Tls = 1
°C return the best fit with the theoretical Nu scaling, while for ∆Tls = 2 °C the influence of
Amush becomes small but the Nu trend is less consistent, especially during the mixed regime
(Nu recovery is too slow).

To extend the analysis, contours of the liquid fraction γ have been analyzed at θ = 0.01 for
different Amush/∆Tls configurations. For Amush = 5 · 106 and ∆Tls = 1 °C there is a very good
agreement with the theoretical Nu trend, but at θ = 0.01 the melting front has already been
reached the right wall (Figure 3a), which is not consistent with previous numerical studies of
the same Case [14]. Raising Amush improves the melting front position, but introduces also
numerical wiggles (see Figure 3b) due to instabilities in the energy equation.

Based on this, the setup with Amush = 5 · 106 and ∆Tls = 1.5 °C has been selected as the
optimal one for the correct representation of the Nu scaling and melting front evolution. A
snapshot of the liquid fraction and temperature distributions at θ = 0.01 is shown in Figure
4 for the optimal setup: the presence of the left wall and melting interface thermal boundary
layers is apparent from the temperature field.

Figure 5 collects Nu trends predicted by LB-PF for the Cases B and C, including also the
reference correlation and simulations from [21]. Interestingly, both numerical data sets return
a slower Nu dynamics compared to what theoretically expected. However, the Nu recovery
computed by LB-PF is faster and, additionally, the predicted asymptotic convective Nu value
is much more accurate.

Starting from these considerations, a further comparison has been made between LB-PF
and EP, based on Case C. The EP simulation has been performed implementing the optimal
setup previously found for Case A and adapting the thermophysical parameters to match the
Pr, S te and Ra parameters. Surprisingly, Figure 6 reveals that the Nu dynamics predicted by
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(a) (b)

(c) (d)

Figure 2: Nusselt number EP results: a) grid effect, Amush = 5 · 106, ∆Tls = 1 °C; b) Amush effect,
∆Tls = 1 °C; c) Amush effect, ∆Tls = 1.5 °C; d) Amush effect, ∆Tls = 2 °C.

(a) (b)

Figure 3: Details of the γ distribution at θ = 0.01 for: a) Amush = 5 ·106 ∆Tls = 1 °C; b) Amush = 7.5 ·106

∆Tls = 1 °C .
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(a) (b)

Figure 4: Results at θ = 0.01 for Amush = 5 · 106 ∆Tls = 1.5 °C: a) γ distribution; b) temperature
distribution (scale is in K).

(a) (b)

Figure 5: LBPF results comparison with reference theoretical Nu scaling and previous LB simulations:
a) Ra = 8.4 · 105; b) Ra = 6.8 · 106.

LB-PF is still the faster one, although both approaches are in excellent agreement with the
theoretical asymptotic Nu value. A plausible explanation for the slower initial heat transfer
dynamics in both numerical approaches might be found in the Pr number: one of the basic
assumptions behind Equation (10) is Pr ≥ 1, meaning that Pr = 1 is at the limit of its
validity range. It should be also noted that Pr ∼ 1 is not a value of interest for actual LHTES
applications, since it is typical of gaseous susbtances.

4 Conclusions

Outcomes from the study presented in the previous Sections allow to draw the following
concluding remarks:

• the combination of standard EP methodology and state-of-the art commercial CFD pack-
ages essentially confirms its reliablity in the simulation of high Ra/high Pr PCM melting
problems;
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a) Ra = 8.4 · 105; b) Ra = 6.8 · 106.

LB-PF is still the faster one, although both approaches are in excellent agreement with the
theoretical asymptotic Nu value. A plausible explanation for the slower initial heat transfer
dynamics in both numerical approaches might be found in the Pr number: one of the basic
assumptions behind Equation (10) is Pr ≥ 1, meaning that Pr = 1 is at the limit of its
validity range. It should be also noted that Pr ∼ 1 is not a value of interest for actual LHTES
applications, since it is typical of gaseous susbtances.

4 Conclusions

Outcomes from the study presented in the previous Sections allow to draw the following
concluding remarks:

• the combination of standard EP methodology and state-of-the art commercial CFD pack-
ages essentially confirms its reliablity in the simulation of high Ra/high Pr PCM melting
problems;

• using relatively large ∆Tls values (1.5 °C or more) lessens the impact of Amush, but might
slighlty impair the results’ consistency if the reference PCM is a pure substance (i. e. with
very narrow phase transition range);

• using large Amush seems to improve some aspects of the numerical predictions, but is also
very likely to introduce melting front oscillations due to instabilities in the energy equation:
as such, more conservative values (5 · 106 or even less) are preferable;

• in moderate Rayleigh number cases, the proposed LB-PF algorithm has disclosed a clear
potential for added accuracy and flexibility compared to standard EP.

On the LB-PF side, since the explicit LB fluid dynamic algorithm requires very small
time steps (of the order of ∼ 1 · 10−10 in nondimensional θ units), future developments will
be mainly focused on: i) the efficient parallelization of the simulation code; ii) the expansion
of the stability constraints on the fluid and thermal relaxation times. Both development lines
will allow to extend the LB-PF applicability towards high Ra/high Pr regimes of practical
interest.

Figure 6: LBPF vs. EP comparison at Ra = 6.8 · 106.
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