
* Corresponding author: nvgraju@griet.ac.in

Sarcasm Discernment on Social Media Platform

Namasani Sagarika, Bommadi Sreenija Reddy, Vanka Varshitha, Kodavati Geetanjali, N V Ganapathi Raju*, Latha
Kunaparaju

 *Department of Information and Technology, Gokaraju Rangaraju Institution of Engineering and Technology, Telangana, India

Abstract. Past studies in Sarcasm Detection mostly make use of Twitter datasets collected using hashtag-
based supervision but such datasets are noisy in terms of labels and language. To overcome the limitations
related to noise in Twitter datasets, this News Headlines dataset for Sarcasm Detection is collected from
two news website. TheOnion aims at producing sarcastic versions of current events and we collected all
the headlines from News in Brief and News in Photos categories (which are sarcastic). We collect real
(and non-sarcastic) news headlines from Huff Post. Sarcasm Detection on social media platform. The
dataset is collected from two news websites, theonion.com and huffingtonpost.com. Since news headlines
are written by professionals in a formal manner, there are no spelling mistakes and informal usage. This
reduces the sparsity and also increases the chance of finding pre-trained embeddings. Furthermore, since
the sole purpose of TheOnion is to publish sarcastic news, we get high-quality labels with much less noise
as compared to Twitter datasets. Unlike tweets that reply to other tweets, the news headlines obtained are
self-contained.

1. Introduction

The modern world can be described as a data-driven
environment. The amount of data generated by a single
network device has increased exponentially. The amount
of data transmitted is vast due to the large number of
devices linked to the internet. The information that is
shared and distributed has a significant impact on
people's lives [1] .

The Research is about caustic remarks, assertions, and
pronouncements found in articles/posts on social media
sites, as the title suggests. Sarcasm is a common
linguistic phenomenon in online publications that
expresses personal and highly felt feelings.

People have been known to utilize social media to
propagate false information, spread rumors, and make
meaningless interpretations of events. People start this
problem by posting material that can mislead people or
lead to misunderstandings regarding specific topics.
Many NLP applications, such as attitude analysis and
opiate detection, benefit from detecting sarcasm [2].

Automatic sarcasm detection is currently viewed as a
straightforward text classification problem in current
research. They ignore the imbalance between sarcastic
and non-sarcastic samples in real applications and do not
employ explicit features to detect sarcasm.

Based on data sets, we assess our proposed model. Our
ensemble technique beats state-of-the-art sarcasm
detection methods and popular unbalanced classification
methods, according to experimental results. We start by
looking at the properties of sarcastic sentences and then
present a collection of features that can be used to detect
sarcasm in social media. This sarcasm detection on
social media platforms is collected from two news
websites: THEONION and HUFFPOST, to overcome
the constraints of noise in Twitter datasets. TheOnion's
goal is to create satirical renditions of current events,
therefore we gathered all of the headlines from the News
in Brief and News in Photos sections (which are
sarcastic). HuffPost provides us with real (non-sarcastic)
news headlines.
The final output is obtained once all the detecting steps
have been completed. Whether or if the information is
ironic. Each record has three characteristics: is sarcastic:
1 if the record is sardonic, 0 if not. article link: a link to
the original news article, headline: the title of the news
article. It's useful for gathering further information. With
the help of the following initiative, we can be more
cautious about what information we find online and
whether to believe it. There might be a lot of confusion
between the facts and rumors if people believe erroneous
information.

2. Literature Survey.

https://doi.org/10.1051/e3sconf/202130E3S Web of Conferences 309, 01037 (2021)

ICMED 2021

901037

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/).

Many researchers have explored and tested the use of
many sorts of features in text datasets, as well as various
approaches for detecting sarcasm. The two types of
sarcasm detection algorithms are supervised and semi-
supervised, respectively. Other approaches for detecting
sarcasm, such as deep learning and bootstrapping, are
also becoming more popular.

To identify sarcasm in Twitter and Amazon product
evaluations, Davidov et al. used the semi-supervised
sarcasm identification algorithm (SASI). This is the first
algorithm for detecting sarcasm that has been proven to
be reliable. In reviews and tweets, they employed
pattern- and punctuation-based features [9] .

Lukin and Walker, on the other hand, used the
Bootstrapping approach to detect sarcasm and
unpleasantness in online conversations using pattern-
based characteristics [11,13].

Bouazizi and Ohtsuki proposed a pattern-based
technique for detecting sarcasm, which included four
features: sentiment-related, punctuation-related, pattern-
related, syntactic, and semantic [12] .

González-Ibáez et al. looked at lexical and pragmatic
characteristics in tweets that were retrieved using
unigrams and dictionary-based methods for categorizing
sarcastic, positive, and negative tweets using two
classifiers: Support vector machine (SVM) and Logistic
regression (LogR) [14].

Fersini et al. proposed Bayesian Model Averaging
(BMA) as an ensemble technique for detecting sarcasm
and irony in Microblogs, taking into consideration
features such as pragmatic particles and PoS tags [15].
Barbieri et al. used a set of criteria to determine whether
tweets were sarcastic or not, including Frequency,
Written-spoken, Intensity, Structure, Sentiments,
Synonyms, and Ambiguity [3-5].

They utilized a cutting-edge computational method
based on supervised machine learning techniques. Novel
multi-strategy ensemble learning method (MSELA) was
also suggested by Liu et al. to identify sarcasm in both
English and Chinese social media. They retrieved several
feature sets for both English and Chinese texts, with
English sarcasm features consisting of punctuation
symbols, lexical and syntactic characteristics, and
Chinese sarcasm features consisting of rhetorical,
homophony, and construction aspects [7,8].

Sarcasm as a contrast between a good feeling and a
terrible circumstance was studied by Riloffet al. They
introduced a new bootstrapping technique that uses SVM
to generate lists of positive and negative scenario words
from sarcastic tweets [9-10].

Zafarani et al. developed a behavioral modelling
framework for detecting sarcasm based on a set of

characteristics that differed depending on the type of
sarcasm [6]

Bharti et al. developed the parsing-based lexicon
generation algorithm (PBLGA) in 2015 to identify
sarcasm in tweets using a hyperbole feature and a natural
language processing technique: PoS Tagging [13].

Ghosh et al. reframed the sarcasm recognition problem
as a Literal/Sarcastic sense disambiguation (LSSD).
They used unsupervised techniques and an SVM
classifier with a modified kernel utilizing word
embedding to analyse twitter data. Bharti et al. created a
Hadoop-based system, a big data strategy, to identify
sarcasm in real time, based on parsing and PoS tagging
[5,15-19] .

3. Methodology.

In this paper, we will try to detect sarcasm using NLP
and machine learning, taking the support of the deep
learning. Being a software code, it’s base coding
language is python because of the efficiency and
advantages that it provides to the programmers. Since
this program focuses on detecting the sarcasm, the
headlines of two magazines are taken as datasets, that is,
TheOnion and HuffPost. Since the TheOnion aims for
only sarcastic news, it is the best choice while HuffPost
focuses on wide-ranging news.
In the past, many people tried to detect sarcasm using
twitter tweets using hashtag-based, but these datasets are
usually noisy, because most of the tweets are the reply to
the other tweets. These makes many things difficult in
terms of labels and language. Since the news headlines
of the magazines are written by professional, we cannot
expect any use of informal language and spelling or
grammatical errors, resulting in reduction of pre-trained
sparsity and increase of pre-trained embeddings.
Steps for detecting sarcasm is as follows:

1. Set-up the environment
In this step, all the necessary python libraries
are loaded to give us the perfect atmosphere for
coding. These include pandas, NumPy, scikit-
learn, matplotlib that are famous for dealing
with datasets in python; keras which helps to
introduce deep learning in python; and lastly,
TensorFlow, a machine learning library that
provides interface to the deep learning
algorithms.

2. Load the Data
In this step, the required data sets are loaded
into the code, on which the code runs in order to
yield the desired output. In this, the loaded data
acts as the input to be processed by the code to
detect sarcasm, to give us the required answer.
 Load the json file: the json file is loaded

into the code
 Convert the dictionary to data frame: the

extracted data from the json file is
converted into data frames, i.e., in form of

https://doi.org/10.1051/e3sconf/202130E3S Web of Conferences 309, 01037 (2021)

ICMED 2021

901037

2

the table, for the convenience of code so
that it can move smoothly.

 Print few sample rows: few rows are
printed to see whether we succeeded in
making the dataframes. The output will
contain three columns: article_link,
headlines and is_sarcastic. Headlines and
article_link are features whereas
is_sarcastic is the label. Article_link will
contain the link of the website from where
the headline is taken, headline will contain
the desired input while is_sarcastic will
give us the output about whether the
particular headline is sarcastic or not. If it
is ’1’ then that means the headline is
sarcastic and if ‘0’ then it means it is not
sarcastic.

3. Drop article_link from dataset
Since our main focus will be headlines,
article_link is unnecessary, so it is better to
drop this column. This will help in increase in
time and space complexity of the code.
 Print few rows: it is better to check the

output to see whether the required column
is dropped or not. In this step, output
should only show headline and is_sarcastic
column.

4. Get length of each headline and add that to
dataset
In this we get the length of each headline, in
other word, the size of each input, and add it as
a new column in the dataset. It will help the
code to understand the size of the data, thus
increasing its efficiency.
 Print few rows: in this step, the output is

checked. The output must contain three
columns, headline, is_sarcastic and
headline_len.

5. Initialize parameters
This step initializes three parameters. They are:
max_feature, maxlen and embedding_size.
Max_feature is the number of the most frequent
words taken from tokenizer which is limited to
only 10000 words. Maxlen is the length of each
sentence which is restricted to 25. And,
embedding_size is the size of embedding vector
which is limited to 200.

6. Apply TensorFlow. Keras tokenizer and get
indices of words.
The tokenizer is declared in this step. The
tokenizer is a TensorFlow. Keras tokenizer with
word limit of 10000. Fit this tokenized into the
headline column so that is can convert the
headlines into the required tokens. Then,
convert the text to sequence through padding.
 Padding sequence: it is the process of

padding each example to maximum length.
The targeted column is then converted to
NumPy array.

There is no need for oversampling or under
sampling because the data is reasonably

balanced in terms of sarcastic and non-sarcastic
labelling.

7. Vocab mapping
In this, each token broken from the dataset is
assigned with a value in ascending order. There
is no word at the 0th index.

8. Create embedding matrix:
A collection of all words and their associated
embeddings is called an embedding matrix. An
embedding matrix is created based on tokens
that is used in creating a model.

9. Define model
Add an Embedding layer, a Bi-directional
(LSTM) layer, flatten it, and then dense and
dropout layers as needed using a Sequential
model instance. Finally, for binary
classification, create a final thick layer with
sigmoid activation. We did not train the
embeddings created from glove data because
we were able to achieve decent results without
it.

10. Compile the model
Compile the model using the adam optimizer in
order to get its accuracy. The
binary_crossentropy is declared in order to
compares the predicted output and actual output
in the form of ‘0’ and ‘1’.

11. Fit the model
The model is fit into the selected batch size,
which is 64.

12. Plot the model graph and the loss cross epochs
A model graph, which is the accuracy model is
printed to give us the output in the form of the
graphs. The accuracy model is a machine
learning model is the metric used to evaluate
which model is the most effective in identifying
correlations and patterns between variables in a
dataset based on the input, or training, data.
Epoch concludes when it has finished training
all the observations in dataset while its loss is a
scalar value that we try to minimize during
model training. The lesser the loss, the more
accurate our projections are.

13. Confusion matrix
A confusion matrix is a table that shows how
well a classification model (or "classifier")
performs on a set of test data for which the real
values are known. It has four basic terms, which
actually gives whole number:

 True positive (TP): these are the cases in which
we predicted a sentence to be sarcastic and is
actually sarcastic.
 True negative (TN): when we predict a sentence
to be not sarcastic and it is actually not sarcastic.
 False positive (FP): the situation in which we
predict a sentence to be sarcastic when it is not a
sarcastic sentence.
 False negative (FN): these represent those
circumstances when we predicted a non-sarcastic
as a sarcastic sentence.

https://doi.org/10.1051/e3sconf/202130E3S Web of Conferences 309, 01037 (2021)

ICMED 2021

901037

3

4. Architecture.

A system architecture is a conceptual model that
specifies a system's structure, behavior, and perspectives.
An architecture description is a description and
representation of a system that is organized in such a
way that it allows for reasoning about the system's
structure and behavior.
The datasets for detecting sarcasm are collected from the
news headlines of two magazines, namely, TheOnion,
and HuffPost that has general news. Data extraction is
the process of converting the json dataset files into data
frames. In this process feature extraction occurs. Later
the headlines are broken into tokens by the process of
tokenization. The sequence model is created on the
embedding layer and bidirectional layer. For the binary
classification, dense layer with sigmoid activation is
used. As the output, the Accuracy model is created and
the test accuracy is shown.

Fig. 1. Architecture of Sarcasm Discernment

5. Implementation and Result Analysis.

In this section, we'll go over a deep analysis of the
modules that are involved in the implementation of this
research.

Cleaning the data:
 Although, it looks that our data is clean but the

headline column has some special symbols that
have to be eliminated.

 So, we are using Regular Expression to
eliminate special symbols.

Feature and label extraction:
 It's time to take our data and extract

characteristics and labels.

 It appears that article link and headline could be
considered features.

 Article link, on the other hand, has no bearing
on the label prediction.

 So, the headline column is the only feature we
have. The only label is sarcastic.

Stemming of features:
 The process of reducing a word to its word

stem, which affixes to suffixes and prefixes or
the roots of words known as a lemma, is known
as stemming.

 Natural language understanding (NLU) and
natural language processing (NLP) both benefit
from stemming (NLP).

Vectorization of features using TF-IDF Vectorizer:
 TF-IDF is an abbreviation for Term Frequency-

Inverse Document Frequency and is a very
common algorithm to transform the text into a
meaningful representation of numbers.

 The technique is widely used to extract features
across various NLP applications.

Model accuracy and loss across epochs
summarize history for accuracy
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.title('model accuracy')
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show();

Fig. 2. Model accuracy across epochs

summarize history for loss
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'validation'], loc='upper left')
plt.show();

https://doi.org/10.1051/e3sconf/202130E3S Web of Conferences 309, 01037 (2021)

ICMED 2021

901037

4

Fig. 3. Model loss across epochs

Accuracy:

Fig. 4. Model accuracy across epochs

Prediction:

Fig. 5. Model prediction

6. Conclusion.

The detection of sarcasm has piqued the interest of many
Natural Language Processing experts. In the previous ten
years, it has made enormous strides. As a result of recent
developments in deep learning and its open knowledge
base, researchers are more swiftly adopting deep
learning techniques and their usage in sarcasm detection.
Feature augmentation using word embedding and its
application in word embedding has enhanced sarcasm
recognition. Researchers are also trying to figure out
how to include context into the learning process. Even
people can't always tell when someone is being sarcastic.
As a result, it appears that the problem remains
unsolvable. Its randomness is still challenging to
replicate in machines.
Following the findings, it is evident that context will
play an important role in detecting sarcasm.
Furthermore, much research has been done on the
importance of context in detecting sarcasm. The
speaker's and listener's knowledge base in the context of
the subject is crucial for sarcasm recognition. Even for
humans, sarcasm is impossible to discern without it. We
could look into a number of things.
Assume we have a central repository that stores
information on users, cultures, and the global context. In

a variety of situations, these parameters are crucial.
Consider the following sentence: "It's sunny outside, and
I'm at my desk." It might be snarky if the user is
American, but for an Indian user who isn't sarcastic, we'd
know that an American would find it hysterical.
Furthermore, we could discern whether the speaker is an
American or an Indian if we knew user-specific
information. Then we'd know if the individual was being
sarcastic or not. Let's imagine we have a statement where
understanding the inferred emotion rather than the
expressed one necessitates knowledge of a universal fact.
As a result, having a global context would aid us in
determining the implicit emotive content.

7. Bibliography.

1. McKinney, Wes. Python for data analysis, O'Reilly Media,
Inc.", (2012).
2. Bird, Steven, Ewan Klein, and Edward Loper. Natural
language processing with Python. " O'Reilly Media, Inc.",
(2009).
3. Li Deng, Yang Liu, 𝐷𝑒𝑒𝑝 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑖𝑛 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝐿𝑎𝑛𝑔𝑢𝑎𝑔𝑒
𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔, publisher: Springer
 4. Aurélien Géron, 𝐻𝑎𝑛𝑑𝑠-𝑂𝑛 𝑀𝑎𝑐ℎ𝑖𝑛𝑒 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑤𝑖𝑡ℎ
𝑆𝑐𝑖𝑘𝑖𝑡-𝐿𝑒𝑎𝑟𝑛 𝑎𝑛𝑑 𝑇𝑒𝑛𝑠𝑜𝑟𝐹𝑙𝑜𝑤: 𝐶𝑜𝑛𝑐𝑒𝑝𝑡𝑠, 𝑇𝑜𝑜𝑙𝑠, 𝑎𝑛𝑑
𝑇𝑒𝑐ℎ𝑛𝑖𝑞𝑢𝑒𝑠 𝑡𝑜 𝐵𝑢𝑖𝑙𝑑 𝐼𝑛𝑡𝑒𝑙𝑙𝑖𝑔𝑒𝑛𝑡 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 1st Edition
5. Ghosh, Debanjan, Weiwei Guo, and Smaranda Muresan.
"Sarcastic or not: Word embeddings to predict the literal or
sarcastic meaning of words." proceedings of the 2015
conference on empirical methods in natural language
processing. (2015).
6. Rajadesingan, Ashwin, Reza Zafarani, and Huan Liu.
"Sarcasm detection on twitter: A behavioral modeling
approach." Proceedings of the eighth ACM international
conference on web search and data mining. (2015).
7.Liu, Peng, et al. "Sarcasm detection in social media based on
imbalanced classification." International Conference on Web-
Age Information Management. Springer, Cham, (2014).
8. Xue, Bai, Chen Fu, and Zhan Shaobin. "A study on
sentiment computing and classification of sina weibo with
word2vec." (2014).
9. Davidov, Dmitry, Oren Tsur, and Ari Rappoport.
"SSRA." Proceedings of the fourteenth conference on
computational natural language learning. (2010).
10. Berkowitz, Dan, and David Asa Schwartz. "Miley, CNN
and The Onion"10.1 (2016).
11. Lukin, Stephanie M., et al. "Argument strength is in the eye
of the beholder: Audience effects in persuasion." arXiv
preprint arXiv:1708.09085 (2017).
12. Bouazizi, Mondher, and Tomoaki Otsuki Ohtsuki. "Pattern
based approach." IEEE Access 4 (2016).
13. Bharti, Santosh Kumar, Korra Sathya Babu, and Sanjay
Kumar Jena. Sentiment recognition in twitter data. 2015
IEEE/ACM International Conference on Advances in Social
Networks Analysis and Mining (ASONAM). IEEE, (2015).
14. González-Ibánez, Roberto, Smaranda Muresan, and Nina
Wacholder. "Identifying sarcasm in twitter: a closer
look." Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human Language
Technologies. (2011).
15. Pozzi, Federico Alberto, Elisabetta Fersini, and Enza
Messina. "Bayesian model averaging and model selection for
polarity classification." International Conference on
Application of Natural Language to Information Systems.
Springer, Berlin, Heidelberg, (2013).

https://doi.org/10.1051/e3sconf/202130E3S Web of Conferences 309, 01037 (2021)

ICMED 2021

901037

5

16. Dhanalaxmi, B., Apparao Naidu, G., Anuradha, K.
Adaptive PSO based association rule mining technique for
software defect classification using ANN, Procedia Computer
Science (2015)
17. Kora, P., Kalva, S.R. Hybrid Bacterial Foraging and
Particle Swarm Optimization for detecting Bundle Branch,
Block,SpringerPlus (2015)
18. Kumar, P., Singhal, A., Mehta, S., Mittal, A. Real-time
moving object detection algorithm on high-resolution videos
using GPUs, Journal of Real-Time Image Processing (2016)
19. Raju, NV Ganapathi, Machine learning based power saving
mechanism for fridge: An experimental study using GISMO III
board.Materials Today: Proceedings (2020)

https://doi.org/10.1051/e3sconf/202130E3S Web of Conferences 309, 01037 (2021)

ICMED 2021

901037

6

