
* Corresponding author: nvgraju@griet.ac.in 
 

Sarcasm Discernment on Social Media Platform 

Namasani Sagarika, Bommadi Sreenija Reddy, Vanka Varshitha, Kodavati Geetanjali, N V Ganapathi Raju*, Latha 
Kunaparaju 

 *Department of Information and Technology, Gokaraju Rangaraju Institution of Engineering and Technology, Telangana, India 

Abstract. Past studies in Sarcasm Detection mostly make use of Twitter datasets collected using hashtag-
based supervision but such datasets are noisy in terms of labels and language. To overcome the limitations 
related to noise in Twitter datasets, this News Headlines dataset for Sarcasm Detection is collected from 
two news website. TheOnion aims at producing sarcastic versions of current events and we collected all 
the headlines from News in Brief and News in Photos categories (which are sarcastic). We collect real 
(and non-sarcastic) news headlines from Huff Post. Sarcasm Detection on social media platform. The 
dataset is collected from two news websites, theonion.com and huffingtonpost.com. Since news headlines 
are written by professionals in a formal manner, there are no spelling mistakes and informal usage. This 
reduces the sparsity and also increases the chance of finding pre-trained embeddings. Furthermore, since 
the sole purpose of TheOnion is to publish sarcastic news, we get high-quality labels with much less noise 
as compared to Twitter datasets. Unlike tweets that reply to other tweets, the news headlines obtained are 
self-contained. 

                        

1. Introduction 

The modern world can be described as a data-driven 
environment. The amount of data generated by a single 
network device has increased exponentially. The amount 
of data transmitted is vast due to the large number of 
devices linked to the internet. The information that is 
shared and distributed has a significant impact on 
people's lives [1] . 
 
The Research is about caustic remarks, assertions, and 
pronouncements found in articles/posts on social media 
sites, as the title suggests. Sarcasm is a common 
linguistic phenomenon in online publications that 
expresses personal and highly felt feelings. 
 
People have been known to utilize social media to 
propagate false information, spread rumors, and make 
meaningless interpretations of events. People start this 
problem by posting material that can mislead people or 
lead to misunderstandings regarding specific topics. 
Many NLP applications, such as attitude analysis and 
opiate detection, benefit from detecting sarcasm [2].  
 
Automatic sarcasm detection is currently viewed as a 
straightforward text classification problem in current 
research. They ignore the imbalance between sarcastic 
and non-sarcastic samples in real applications and do not 
employ explicit features to detect sarcasm.  
 

Based on data sets, we assess our proposed model. Our 
ensemble technique beats state-of-the-art sarcasm 
detection methods and popular unbalanced classification 
methods, according to experimental results. We start by 
looking at the properties of sarcastic sentences and then 
present a collection of features that can be used to detect 
sarcasm in social media. This sarcasm detection on 
social media platforms is collected from two news 
websites: THEONION and HUFFPOST, to overcome 
the constraints of noise in Twitter datasets. TheOnion's 
goal is to create satirical renditions of current events, 
therefore we gathered all of the headlines from the News 
in Brief and News in Photos sections (which are 
sarcastic). HuffPost provides us with real (non-sarcastic) 
news headlines.  
The final output is obtained once all the detecting steps 
have been completed. Whether or if the information is 
ironic. Each record has three characteristics: is sarcastic: 
1 if the record is sardonic, 0 if not. article link: a link to 
the original news article, headline: the title of the news 
article. It's useful for gathering further information. With 
the help of the following initiative, we can be more 
cautious about what information we find online and 
whether to believe it. There might be a lot of confusion 
between the facts and rumors if people believe erroneous 
information. 

2. Literature Survey. 
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Many researchers have explored and tested the use of 
many sorts of features in text datasets, as well as various 
approaches for detecting sarcasm. The two types of 
sarcasm detection algorithms are supervised and semi-
supervised, respectively. Other approaches for detecting 
sarcasm, such as deep learning and bootstrapping, are 
also becoming more popular.  
 
To identify sarcasm in Twitter and Amazon product 
evaluations, Davidov et al. used the semi-supervised 
sarcasm identification algorithm (SASI). This is the first 
algorithm for detecting sarcasm that has been proven to 
be reliable. In reviews and tweets, they employed 
pattern- and punctuation-based features [9] .  
 
Lukin and Walker, on the other hand, used the 
Bootstrapping approach to detect sarcasm and 
unpleasantness in online conversations using pattern-
based characteristics [11,13].  
 
Bouazizi and Ohtsuki proposed a pattern-based 
technique for detecting sarcasm, which included four 
features: sentiment-related, punctuation-related, pattern-
related, syntactic, and semantic [12] .  
 
González-Ibáez et al. looked at lexical and pragmatic 
characteristics in tweets that were retrieved using 
unigrams and dictionary-based methods for categorizing 
sarcastic, positive, and negative tweets using two 
classifiers: Support vector machine (SVM) and Logistic 
regression (LogR) [14].  
 
Fersini et al. proposed Bayesian Model Averaging 
(BMA) as an ensemble technique for detecting sarcasm 
and irony in Microblogs, taking into consideration 
features such as pragmatic particles and PoS tags [15]. 
Barbieri et al. used a set of criteria to determine whether 
tweets were sarcastic or not, including Frequency, 
Written-spoken, Intensity, Structure, Sentiments, 
Synonyms, and Ambiguity [3-5].  
 
They utilized a cutting-edge computational method 
based on supervised machine learning techniques. Novel 
multi-strategy ensemble learning method (MSELA) was 
also suggested by Liu et al. to identify sarcasm in both 
English and Chinese social media. They retrieved several 
feature sets for both English and Chinese texts, with 
English sarcasm features consisting of punctuation 
symbols, lexical and syntactic characteristics, and 
Chinese sarcasm features consisting of rhetorical, 
homophony, and construction aspects [7,8].  
 
Sarcasm as a contrast between a good feeling and a 
terrible circumstance was studied by Riloffet al. They 
introduced a new bootstrapping technique that uses SVM 
to generate lists of positive and negative scenario words 
from sarcastic tweets [9-10].  
 
Zafarani et al. developed a behavioral modelling 
framework for detecting sarcasm based on a set of 

characteristics that differed depending on the type of 
sarcasm [6] 
 
Bharti et al. developed the parsing-based lexicon 
generation algorithm (PBLGA) in 2015 to identify 
sarcasm in tweets using a hyperbole feature and a natural 
language processing technique: PoS Tagging [13]. 
 

Ghosh et al. reframed the sarcasm recognition problem 
as a Literal/Sarcastic sense disambiguation (LSSD). 
They used unsupervised techniques and an SVM 
classifier with a modified kernel utilizing word 
embedding to analyse twitter data. Bharti et al. created a 
Hadoop-based system, a big data strategy, to identify 
sarcasm in real time, based on parsing and PoS tagging 
[5,15-19] . 

3. Methodology. 

In this paper, we will try to detect sarcasm using NLP 
and machine learning, taking the support of the deep 
learning. Being a software code, it’s base coding 
language is python because of the efficiency and 
advantages that it provides to the programmers. Since 
this program focuses on detecting the sarcasm, the 
headlines of two magazines are taken as datasets, that is, 
TheOnion and HuffPost. Since the TheOnion aims for 
only sarcastic news, it is the best choice while HuffPost 
focuses on wide-ranging news. 
In the past, many people tried to detect sarcasm using 
twitter tweets using hashtag-based, but these datasets are 
usually noisy, because most of the tweets are the reply to 
the other tweets. These makes many things difficult in 
terms of labels and language. Since the news headlines 
of the magazines are written by professional, we cannot 
expect any use of informal language and spelling or 
grammatical errors, resulting in reduction of pre-trained 
sparsity and increase of pre-trained embeddings. 
Steps for detecting sarcasm is as follows: 

1. Set-up the environment 
In this step, all the necessary python libraries 
are loaded to give us the perfect atmosphere for 
coding. These include pandas, NumPy, scikit-
learn, matplotlib that are famous for dealing 
with datasets in python; keras which helps to 
introduce deep learning in python; and lastly, 
TensorFlow, a machine learning library that 
provides interface to the deep learning 
algorithms. 

2. Load the Data 
In this step, the required data sets are loaded 
into the code, on which the code runs in order to 
yield the desired output. In this, the loaded data 
acts as the input to be processed by the code to 
detect sarcasm, to give us the required answer. 
 Load the json file: the json file is loaded 

into the code 
 Convert the dictionary to data frame: the 

extracted data from the json file is 
converted into data frames, i.e., in form of 
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the table, for the convenience of code so 
that it can move smoothly.  

  Print few sample rows: few rows are 
printed to see whether we succeeded in 
making the dataframes. The output will 
contain three columns: article_link, 
headlines and is_sarcastic. Headlines and 
article_link are features whereas 
is_sarcastic is the label. Article_link will 
contain the link of the website from where 
the headline is taken, headline will contain 
the desired input while is_sarcastic will 
give us the output about whether the 
particular headline is sarcastic or not.  If it 
is ’1’ then that means the headline is 
sarcastic and if ‘0’ then it means it is not 
sarcastic. 

3. Drop article_link from dataset 
Since our main focus will be headlines, 
article_link is unnecessary, so it is better to 
drop this column. This will help in increase in 
time and space complexity of the code. 
 Print few rows: it is better to check the 

output to see whether the required column 
is dropped or not. In this step, output 
should only show headline and is_sarcastic 
column. 

4. Get length of each headline and add that to 
dataset 
In this we get the length of each headline, in 
other word, the size of each input, and add it as 
a new column in the dataset. It will help the 
code to understand the size of the data, thus 
increasing its efficiency.  
 Print few rows: in this step, the output is 

checked. The output must contain three 
columns, headline, is_sarcastic and 
headline_len. 

5. Initialize parameters 
This step initializes three parameters. They are: 
max_feature, maxlen and embedding_size. 
Max_feature is the number of the most frequent 
words taken from tokenizer which is limited to 
only 10000 words. Maxlen is the length of each 
sentence which is restricted to 25. And, 
embedding_size is the size of embedding vector 
which is limited to 200. 

6. Apply TensorFlow. Keras tokenizer and get 
indices of words. 
The tokenizer is declared in this step. The 
tokenizer is a TensorFlow. Keras tokenizer with 
word limit of 10000. Fit this tokenized into the 
headline column so that is can convert the 
headlines into the required tokens. Then, 
convert the text to sequence through padding. 
 Padding sequence: it is the process of 

padding each example to maximum length. 
The targeted column is then converted to 
NumPy array. 

There is no need for oversampling or under 
sampling because the data is reasonably 

balanced in terms of sarcastic and non-sarcastic 
labelling. 

7. Vocab mapping 
In this, each token broken from the dataset is 
assigned with a value in ascending order. There 
is no word at the 0th index. 

8. Create embedding matrix: 
A collection of all words and their associated 
embeddings is called an embedding matrix. An 
embedding matrix is created based on tokens 
that is used in creating a model. 

9. Define model 
Add an Embedding layer, a Bi-directional 
(LSTM) layer, flatten it, and then dense and 
dropout layers as needed using a Sequential 
model instance. Finally, for binary 
classification, create a final thick layer with 
sigmoid activation. We did not train the 
embeddings created from glove data because 
we were able to achieve decent results without 
it. 

10. Compile the model 
Compile the model using the adam optimizer in 
order to get its accuracy. The 
binary_crossentropy is declared in order to 
compares the predicted output and actual output 
in the form of ‘0’ and ‘1’.  

11. Fit the model 
The model is fit into the selected batch size, 
which is 64. 

12. Plot the model graph and the loss cross epochs 
A model graph, which is the accuracy model is 
printed to give us the output in the form of the 
graphs. The accuracy model is a machine 
learning model is the metric used to evaluate 
which model is the most effective in identifying 
correlations and patterns between variables in a 
dataset based on the input, or training, data. 
Epoch concludes when it has finished training 
all the observations in dataset while its loss is a 
scalar value that we try to minimize during 
model training. The lesser the loss, the more 
accurate our projections are. 

13. Confusion matrix 
A confusion matrix is a table that shows how 
well a classification model (or "classifier") 
performs on a set of test data for which the real 
values are known. It has four basic terms, which 
actually gives whole number: 

 True positive (TP): these are the cases in which 
we predicted a sentence to be sarcastic and is 
actually sarcastic. 
 True negative (TN): when we predict a sentence 
to be not sarcastic and it is actually not sarcastic. 
 False positive (FP): the situation in which we 
predict a sentence to be sarcastic when it is not a 
sarcastic sentence. 
 False negative (FN):  these represent those 
circumstances when we predicted a non-sarcastic 
as a sarcastic sentence.  
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4. Architecture. 

A system architecture is a conceptual model that 
specifies a system's structure, behavior, and perspectives. 
An architecture description is a description and 
representation of a system that is organized in such a 
way that it allows for reasoning about the system's 
structure and behavior. 
The datasets for detecting sarcasm are collected from the 
news headlines of two magazines, namely, TheOnion, 
and HuffPost that has general news. Data extraction is 
the process of converting the json dataset files into data 
frames. In this process feature extraction occurs. Later 
the headlines are broken into tokens by the process of 
tokenization. The sequence model is created on the 
embedding layer and bidirectional layer. For the binary 
classification, dense layer with sigmoid activation is 
used. As the output, the Accuracy model is created and 
the test accuracy is shown. 

 

Fig. 1. Architecture of Sarcasm Discernment 

5. Implementation and Result Analysis. 

In this section, we'll go over a deep analysis of the 
modules that are involved in the implementation of this 
research. 

Cleaning the data: 
 Although, it looks that our data is clean but the 

headline column has some special symbols that 
have to be eliminated.  

 So, we are using Regular Expression to 
eliminate special symbols. 

Feature and label extraction: 
 It's time to take our data and extract 

characteristics and labels.  

 It appears that article link and headline could be 
considered features.  

 Article link, on the other hand, has no bearing 
on the label prediction.  

 So, the headline column is the only feature we 
have. The only label is sarcastic. 

Stemming of features: 
 The process of reducing a word to its word 

stem, which affixes to suffixes and prefixes or 
the roots of words known as a lemma, is known 
as stemming. 

  Natural language understanding (NLU) and 
natural language processing (NLP) both benefit 
from stemming (NLP). 

Vectorization of features using TF-IDF Vectorizer: 
 TF-IDF is an abbreviation for Term Frequency-

Inverse Document Frequency and is a very 
common algorithm to transform the text into a 
meaningful representation of numbers. 

 The technique is widely used to extract features 
across various NLP applications. 

Model accuracy and loss across epochs 
# summarize history for accuracy 
plt.plot(history.history['accuracy']) 
plt.plot(history.history['val_accuracy']) 
plt.title('model accuracy') 
plt.ylabel('accuracy') 
plt.xlabel('epoch') 
plt.legend(['train', 'validation'], loc='upper left') 
plt.show(); 

 

Fig. 2. Model accuracy across epochs 
 

 

 

# summarize history for loss 
plt.plot(history.history['loss']) 
plt.plot(history.history['val_loss']) 
plt.title('model loss') 
plt.ylabel('loss') 
plt.xlabel('epoch') 
plt.legend(['train', 'validation'], loc='upper left') 
plt.show(); 
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Fig. 3. Model loss across epochs 
 

Accuracy: 

 

Fig. 4.  Model accuracy across epochs 
 

Prediction: 

 

Fig. 5. Model prediction 

6. Conclusion. 

The detection of sarcasm has piqued the interest of many 
Natural Language Processing experts. In the previous ten 
years, it has made enormous strides. As a result of recent 
developments in deep learning and its open knowledge 
base, researchers are more swiftly adopting deep 
learning techniques and their usage in sarcasm detection. 
Feature augmentation using word embedding and its 
application in word embedding has enhanced sarcasm 
recognition. Researchers are also trying to figure out 
how to include context into the learning process. Even 
people can't always tell when someone is being sarcastic. 
As a result, it appears that the problem remains 
unsolvable. Its randomness is still challenging to 
replicate in machines. 
Following the findings, it is evident that context will 
play an important role in detecting sarcasm. 
Furthermore, much research has been done on the 
importance of context in detecting sarcasm. The 
speaker's and listener's knowledge base in the context of 
the subject is crucial for sarcasm recognition. Even for 
humans, sarcasm is impossible to discern without it. We 
could look into a number of things. 
Assume we have a central repository that stores 
information on users, cultures, and the global context. In 

a variety of situations, these parameters are crucial. 
Consider the following sentence: "It's sunny outside, and 
I'm at my desk." It might be snarky if the user is 
American, but for an Indian user who isn't sarcastic, we'd 
know that an American would find it hysterical. 
Furthermore, we could discern whether the speaker is an 
American or an Indian if we knew user-specific 
information. Then we'd know if the individual was being 
sarcastic or not. Let's imagine we have a statement where 
understanding the inferred emotion rather than the 
expressed one necessitates knowledge of a universal fact. 
As a result, having a global context would aid us in 
determining the implicit emotive content. 
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