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Abstract. Renewable energy has recently been a promising interest as a substitute for fossil fuels due to an 
increasing energy demand as well as a rising concern over the environmental impact of fossil fuel 
consumption around the globe. Biofuel, in particular, is a type of renewable energy, which can be derived 
from various biomass types. In this research, we analyze relative efficiencies using Data Envelopment 
Analysis (DEA) technique from three types of energy-related plants in the Northeastern region of Thailand, 
which are cassava, sugarcane, and palm. The relative efficiency of each province is further analyzed during 
2017 to 2019 for a comparative study. Next, the input criteria are collected including allowable planting 
area, labor cost, and rainfall amount; whereas the included output criterion is the quantity of harvested 
product. Our initial analysis using CCR, BBC, and Scale Efficiency (SE) models of DEA provides the 
baseline of efficient provinces to be benchmarked and directions for improving inefficient provinces, given 
desired input and output criteria in this study. 
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1 Introduction and Motivation  

Renewable energy, such as biomass, solar, and wind has 

recently been a promising interest as a substitute for 

fossil fuels, such as oil and coal, due to an increasing 

energy demand as well as a rising concern over the 

environmental impact of fossil fuel consumption around 

the globe. Many countries have taken a variety of actions 

through strategic policies aiming at meeting energy 

needs more securely and sustainably. For example, the 

United States mandates to have more than 20 billion 

gallons of biofuel under the Energy Security Act by 

2022. The European Union (EU) also aims to achieve 

20% of energy from renewable sources by 2020. Also, 

China issues a long-term development plan of renewable 

energy aiming to increase the capacity of biomass power 

generation for 30 million Kilowatt (kW) by 2020 [1-2]. 

Thailand has also promoted a new economic model 

towards Industry 4.0 development plan by focusing on 

10 targeted, S-curve industries – three of them are 

agricultural, logistics, and biofuel sectors [3]. 

Biomass, in particular, can be obtained from several 

sources including edible crops, non-edible crops, crop 

residues, forests, and waste. In comparison to fossil 

fuels, biomass is easy to grow and replace quickly 

without depleting natural resources. The advantages of 

using biomass are noted for its ability to be stored and 

used on demand, clean energy, renewable, and no carbon 

dioxide side effect. In addition, biomass also has the 

potential to reduce the dependency on fossil fuels, which 

are the main source of carbon dioxide release in the 

atmosphere [4-7]. 

Biofuel supply chain, in particular, involves a 

number of stakeholders, including farms providing 

feedstocks from biomass, pre-processing facilities, 

transshipment depots, bio-refinery plants, fuel-blending 

facilities, and demanding points of gas stations. Thus, 

biomass can be viewed as the upstream of the biofuel 

supply chain, in which the efficiency evaluation needs to 

be properly addressed. Fig. 1 illustrates the differences 

and similarities between traditional industrial and 

bioenergy supply chain. 

In this research, we collect and analyze biomass data 

of three major feedstock for biofuel in the Northeastern 

region of Thailand. In particular, energy plants are 

collected for cassava, sugarcane, and palm during 2017 

to 2019. Then, the relative efficiency of each province is 

further analyzed using Data Envelopment Analysis 

(DEA) for a comparative study. The input criteria are 

collected including allowable planting area, labor cost, 

and rainfall amount; whereas the included output 

criterion is the quantity of harvested product. Our initial 

analysis using CCR, BBC, and Scale Efficiency (SE) 

models of DEA provides the baseline of efficient 

provinces to be benchmarked and directions for 

improving inefficient provinces, given desired input and 

output criteria in this study. 

2 Related Studies and Method 

2.1. Biomass and Bioenergy Supply Chain in 
Thailand 
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Fig. 1. (Top) Traditional industrial logistics; (Bottom) Bioenergy logistics  
 

Renewable energy has attracted the attention of 

researchers around the globe for ensuring future energy 

security and sustainability. Biofuel energy, in particular, 

is one of the renewable energy that has gained ground in 

this regard. According to REN21 [5], biofuels 

employment attracted around 2 million jobs in 2018, in 

which most of these jobs are in the agricultural supply 

chain in developing countries, especially in the case of 

Southeast Asia, including Thailand. REN21 (2019) also 

estimates annual capacity and production of ethanol 

production in 2018 and finds that the top five countries 

are United States, Brazil, China, Canada, and Thailand, 

respectively. Besides, the top five countries for biodiesel 

production are United States, Brazil, Indonesia, 

Germany, and Argentina, respectively. Thus, Thailand 

also has a high potential to enhance its economics 

through bioethanol process. 

In Thailand, the Department of Alternative Energy 

Development and Efficiency (DEDE [8]) plays a key 

role, in which a mission is to promote and support 

sustainable and worthy energy consumption and 

production for exporting and domestic use and to build 

collaborative network for bringing the country into the 

knowledge based society with sustainable economic 

stability and social well beings. Two key performance-

related projects noted are 1) developing community-

based biomass power plants and 2) developing the 

biomass potential database in Thailand.  

In addition, the report by DEDE [9] for Research and 

development (R&D) studies of renewable energy in  

Thailand suggests that there are four groups of research 

studies going on in Thailand – 1) the research on the 

potential of materials focusing on assessing the overall 

potential of biomass as raw materials; 2) research on 

biomass preparation process focusing on finding a way 

to improve the quality of biomasses, such as chipping, 

grinding, pelletizing, and humidity reduction; 3) research 

on electricity and heat production technologies for 

improving production process and quality of 

technologies in producing power and heat from biomass; 

and 4) research on economics and environmental 

impacts of biomass. The authors also note that most of 

the research in Thailand falls under group 3 and there is 

a need to pursue studies in other research areas.  

With regard to biomass and biofuel status in 

Thailand, according to DEDE [8], Thailand has the 
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target for ethanol production in 2036 to be 11.3 million 

liters per day. The actual ethanol production, however, is 

below the target (i.e., 3.51 million liters in 2015, 3.67 in 

2016, 3.94 in 2017, and 4.20 in 2018, respectively). 

Obviously, the trend of ethanol production in Thailand 

will continuously grow in the future and thus a proper 

evaluation of biomass efficiency for each agricultural 

regional area is required. Regarding biomass types in 

Thailand, studies from DEDE [8] also show the potential 

of the biomass for varied types of feedstocks with more 

or less capacity, in which cassava, sugarcane, and palm 

are among the top potential biomass types.    

 

2.2. Efficiency Study with DEA applications 

Multi-Criteria Decision Analysis (MCDM) is a sub-

discipline of operations research and management 

science (OR/MS) that explicitly considers multiple 

criteria in a decision-making environment and has been 

used to support decision-makers facing decision and 

planning problems that a unique optimal solution does 

not exist and/or decision-maker’s preferences are 

involved. Common methods, specifically, include 

various tools, such as Analytic Hierarchy Process 

(AHP), Data Envelopment Analysis (DEA), Technique 

for Order of Preference by Similarity to Ideal Solution 

(TOPSIS), Multi-Attribute Utility Theory (MAUT), 

Multi-Objective Mathematical Programming (MOMP), 

and Goal Programming (GP). These tools have been 

applied and extended in a number of applications (e.g., 

[10-19]).  

DEA, particularly, is a Linear Programming (LP) 

methodology to measure relative efficiency of multiple 

Decision-Making Units (DMUs) or so-called alternatives 

when the problem is presented with multiple input and 

output criteria. After the DEA linear programming 

model is solved, a particular DMU will be considered 

efficient if it obtains a score of one, whereas scores that 

are lesser than one imply relative inefficiency. It is also 

possible that more than one alternatives are found to be 

efficient. According to survey study from Liu et al. [20], 

the DEA literature’s size is expected to continue to grow 

at least double the size of the existing literature. In 

addition, the DEA method has been applied in various 

applications [21-22]. We next discuss the three prevalent 

DEA models commonly used in the literature and the 

DEAP computer program.  

2.2.1 CCR Model 

The CCR model was early developed and named after 

the three researchers (Charnes, Cooper and Rhodes [23] 

to measure the overall technical efficiency (TEoverall), in 

which a Constant Return to Scale (CRS) assumption 

holds. That is, the CRS assumption holds true when the 

DMUs are operated under the condition of the optimal 

size and perfect competition. In particular, equations (1)-

(5) present the CCR model of DEA in a linear 

programming form.  

 

 

Sets 

I: Set of inputs, indexed by i     

J: Set of outputs, indexed by j 

K: Set of DMUs, indexed by k 

 

Parameters 

0,i kx : Amount of input data for input i of DMU k 

0,j ky : Amount of output data for output j of DMU k 

 

Decision variables  

iU : The weight assigned to input i  

jV : The weight assigned to output j   

 

Mathematical model        

  Maximize     overallTE  
0,j k j

j J

y V


              (1) 

Subject to  
0, 1i k i

i I

x U


                    (2) 

, , 0 ;j k j i k i

j J i I

y V x U k K
 

               (3) 

0 ;iU i I                 (4)   

0 ;jV j J                 (5) 

2.2.2 BCC Model 

The BCC model was later developed by and named after 

Banker, Charnes, Cooper [24] to measure the pure 

technical efficiency (TEpure) of DMUs. The BCC model 

is formulated by extending from the dual model of the 

primal CCR model, which transforms the primal 

maximization to dual minimization problem. In contrast 

to CCR model, the BCC allows DMUs to be operated 

under imperfect condition and not necessarily at optimal 

size, which is more practical in real situations. That is, 

the Variable Return to Scale (VRS) assumption holds for 

the BCC model of DEA (Equations (6)-(10)), where   

is the relative efficiency and k is the dual decision 

variable for each DMU.  

 

Mathematical model 

 

Minimize  pureTE                                      (6) 

Subject to: 
0, , ;k i k i k

k K

x x i I 


         (7)   

0j, j, ;k k k

k K

y y j J


        (8) 

1k

k

                       (9) 

  0k                         (10) 
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2.2.3 SE Model 

The SE can be computed to express whether a particular 

DMU is operating at optimal size (i.e., similar to the 

CRS assumption) or whether at imperfect condition (i.e., 

similar to the VRS assumption). That is, if the latter 

holds true, the value of SE can be used to indicate 

whether the DMU operates under Increasing Return to 

Scale (IRS) (i.e., the size is too large) or Decreasing 

Return to Scale (i.e., the size is too small). In particular, 

the SE can be computed as a ratio between the relative 

efficiency obtained from the CCR model and the BCC 

model as shown in Equation (11).  

 

overall

pure

TE

TE
    (11) 

2.2.4 DEAP Computer Program 

We next discuss the Data Envelopment Analysis 

Program (DEAP). The program consists of the 

instruction file, the data file, and the output file; in which 

the CCR model, the BCC model, and the SE model can 

be simultaneously computed to obtain relative 

efficiencies of DMUs of interest. The program is also 

capable of computing how much the input criteria should 

be decreased for inefficient DMUs to be efficient (i.e., 

input-oriented) and how much the output criteria should 

be increased for inefficient DMUs to be efficient (i.e., 

output-oriented) for benchmarking purpose. In this 

research, the computer program DEAP Version 2.1 is 

used for analyzing related efficiency data.  

3 Case Study of Biomass Feedstock 
and Analysis  

3.1. Data Collection 

We next discuss the case study of biomass data obtained 

from the Office of Agricultural Economics (OAE) of 

Thailand, in which the mission is to provide suggestions 

for policy development plans related to agricultural trade 

and international agricultural economic cooperation [25]. 

In particular, data are chosen from the Northeastern 

region of Thailand inclusive of 20 provincial areas as 

follows: A1) Loei, A2) Nong Bua Lamphu, A3) Udon 

Thani, A4) Nong Khai, A5) Bueng Kan, A6) Sakon 

Nakhon, A7) Nakhon Phanom, A8) Mukdahan, A9) 

Yasothon, A10) Amnat Charoen, A11) Ubon 

Ratchathani, A12) Sisaket, A13) Surin, A14) Buriram, 

A15) Maha Sarakham, A16) Roi Et, A17) Kalasin, A18) 

Khon Kaen, A19) Chaiyaphum, and A20) Nakhon 

Ratchasima (Fig. 1). Next, information is gathered for 

cassava, sugarcane, and palm during 2017 to 2019 as 

shown in Tables 1-3, respectively. The input criteria are 

inclusive of I1) allowable planting area, I2) labor cost, 

and I3) rainfall amount; whereas the output criterion is 

the quantity of harvested product for energy crop of O1) 

cassava, O2) sugarcane, and O3) palm, respectively. 

 

 

 
 

Fig. 2. Case study of the Northeastern region of Thailand (Adapted from [25])    
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Table 1. Collected data for biomass during 2017 [25] 

DMUs I1 

Planting Area 

Unit (Rai) 

I2 

Labor Cost 

Unit (Baht) 

I3 

Rainfall 

Unit (mm.) 

O1 

Cassava 

Unit (Ton) 

O2 

Sugarcane 

Unit (Ton) 

O3 

Palm 

Unit (Ton) 
A1 617,721 305 1,545 25,574 3,583,762 1,044,323 

A2 377,254 305 1,608 3,486 3,725,326 223,764 

A3 969,116 305 1,860 26,297 8,343,466 925,753 

A4 100,822 305 2,087 23,187 810,936 51,926 

A5 29,958 305 1,963 38,080 26,072 24,372 

A6 207,176 305 2,369 16,022 845,440 370,380 

A7 41,328 305 2,479 5,323 77,698 96,670 

A8 361,492 305 2,057 2,702 2,636,511 507,843 

A9 175,474 305 1,685 3,390 966,951 334,562 

A10 163,373 305 1,720 5,657 833,413 317,478 

A11 475,635 305 1,760 21,857 181,485 1,575,033 

A12 176,030 305 1,663 7,544 386,678 496,034 

A13 323,631 305 1,427 2,881 2,651,375 386,948 

A14 445,348 305 1,563 7,343 2,472,410 952,503 

A15 289,063 305 1,891 72 1,994,215 383,242 

A16 213,411 305 1,691 1,635 1,876,815 176,199 

A17 672,759 305 1,714 5,037 5,021,133 875,616 

A18 857,249 308 1,561 975 7,587,787 737,716 

A19 1,151,083 305 1,136 5,797 7,183,845 1,840,241 

A20 2,155,739 308 1,386 10,021 7,893,730 5,514,475 

 

Table 2. Collected data for biomass during 2018 [25] 

DMUs I1 

Planting Area 

Unit (Rai) 

I2 

Labor Cost 

Unit (Baht) 

I3 

Rainfall 

Unit (mm.) 

O1 

Cassava 

Unit (Ton) 

O2 

Sugarcane 

Unit (Ton) 

O3 

Palm 

Unit (Ton) 
A1 372,127 315 1,126 31,827 3,524,287 1,115,774 

A2 378,728 310 1,309 5,236 3,663,764 222,125 

A3 959,020 315 1,424 30,700 8,204,646 871,482 

A4 97,624 320 1,707 25,896 797,524 41,243 

A5 31,540 315 1,667 42,774 25,638 20,044 

A6 193,094 318 1,735 17,495 831,326 333,302 

A7 31,131 315 2,757 6,301 76,397 59,590 

A8 356,668 318 1,929 3,508 3,592,793 481,759 

A9 172,657 315 1,796 4,364 950,766 319,787 

A10 171,582 310 1,804 7,239 819,523 343,245 

A11 474,030 320 1,831 27,197 178,420 1,561,688 

A12 178,295 310 1,436 9,017 380,201 503,287 

A13 324,530 315 1,078 4,523 2,607,745 390,032 

A14 446,794 310 792 9,923 2,431,963 969,635 

A15 289,968 310 1,225 121 1,960,807 383,371 

A16 210,337 315 1,210 2,583 1,845,455 196,194 

A17 668,980 318 1,109 6,830 4,936,871 856,325 

A18 215,376 320 1,168 2,437 7,460,999 735,135 

A19 1,133,900 310 912 7,506 7,063,600 1,787,325 

A20 2,073,375 320 1,095 12,489 7,762,504 5,298,895 

 

5

E3S Web of Conferences 302, 01003 (2021) https://doi.org/10.1051/e3sconf/202130201003 
RI²C 2021

mailto:kasin.r@ubu.ac.th
mailto:kasinphd@gmail.com


Table 3. Collected data for biomass during 2019 [25] 

DMUs I1 

Planting Area 

Unit (Rai) 

I2 

Labor Cost 

Unit (Baht) 

I3 

Rainfall 

Unit (mm.) 

O1 

Cassava 

Unit (Ton) 

O2 

Sugarcane 

Unit (Ton) 

O3 

Palm 

Unit (Ton) 
A1 82,966 320 681 34,657 3,519,084 1,124,470 

A2 423,113 315 1,024 5,565 3,832,243 252,398 

A3 1,029,612 320 1,286 30,790 8,309,719 950,032 

A4 84,622 325 1,545 26,936 798,363 42,509 

A5 35,510 320 1,525 46,146 53,982 20,069 

A6 208,786 323 1,252 21,398 941,496 332,932 

A7 38,375 320 2,111 7,082 115,670 65,623 

A8 371,272 323 1,587 4,027 2,638,052 492,214 

A9 162,174 320 1,587 4,225 1,052,388 347,932 

A10 197,762 315 1,598 6,800 1,021,304 355,759 

A11 491,856 325 1,619 27,869 169,503 1,700,045 

A12 185,095 315 1,194 9,855 349,185 524,574 

A13 328,609 320 1,271 5,923 2,273,529 481,394 

A14 488,575 320 1,042 11,813 2,494,540 1,022,085 

A15 312,340 315 1,228 120 1,929,941 438,884 

A16 227,862 320 1,628 2,695 1,912,407 194,487 

A17 721,754 323 1,300 6,813 5,296,986 904,922 

A18 894,427 325 1,018 2,406 7,257,231 786,745 

A19 1,229,592 315 775 7,078 6,808,992 2,169,264 

A20 2,115,752 325 727 12,979 7,277,088 5,325,614 

       

3.2. DEA Analysis and Results 

We next analyzed results from the DEAP computer 

program as shown in Tables 4-6 for data from 2017-

2019, respectively. The overall technical efficiency from 

the CCR model, the pure technical efficiency from the 

BCC model, and the analysis from the SE model are 

presented. Provincial DMUs with either IRS (too-large 

size) or DRS (too-small size) are also analyzed. 

Regardless, other techniques (i.e., heuristics, simulation) 

can also be used and integrated to solve the linear 

programming problem of DEA model as well [26-34]. 

 
Table 4. DEA analysis for 2017 data 

DMUs CCR Model 

(TEoverall) 

BCC Model 

(TEpure) 

SE Type 

A1  1.000   1.000  1.000  - 

A2  1.000   1.000  1.000  - 

A3  1.000   1.000  1.000  - 

A4  0.974   1.000  0.974  irs 

A5  1.000   1.000  1.000  - 

A6  0.833   1.000  0.833  irs 

A7  0.870   1.000  0.870  irs 

A8  0.973   1.000  0.973  irs 

A9  0.943   1.000  0.943  irs 

A10  0.925   1.000  0.925  irs 

A11  1.000   1.000  1.000  - 

A12  0.981   1.000  0.981  irs 

A13  1.000   1.000  1.000  - 

A14  1.000   1.000  1.000  - 

A15  0.919   1.000  0.919  irs 

A16  0.963   1.000  0.963  irs 

A17  0.976   1.000  0.976  irs 

A18  1.000   1.000  1.000  - 

A19  1.000   1.000  1.000  - 

A20  1.000   1.000  1.000  - 

 

Table 5. DEA analysis for 2018 data 

DMUs CCR Model 

(TEoverall) 

BCC Model 

(TEpure) 

SE Type 

A1 1.000 1.000 1.000 - 

A2 0.509 1.000 0.509 irs 

A3 1.000 1.000 1.000 - 

A4 0.669 0.980 0.683 irs 

A5 1.000 1.000 1.000 - 

A6 0.561 0.979 0.573 irs 

A7 0.679 1.000 0.679 irs 

A8 0.499 0.979 0.510 irs 

A9 0.554 0.985 0.562 irs 

A10 0.608 1.000 0.608 irs 

A11 1.000 1.000 1.000 - 

A12 0.852 1.000 0.852 irs 

6

E3S Web of Conferences 302, 01003 (2021) https://doi.org/10.1051/e3sconf/202130201003 
RI²C 2021



A13 0.431 0.989 0.436 irs 

A14 0.778 1.000 0.778 irs 

A15 0.404 1.000 0.404 irs 

A16 0.292 1.000 0.292 irs 

A17 0.686 0.977 0.703 irs 

A18 1.000 1.000 1.000 - 

A19 1.000 1.000 1.000 - 

A20 1.000 1.000 1.000 - 

 

Table 6. DEA analysis for 2019 data 

DMUs CCR Model 

(TEoverall) 

BCC Model 

(TEpure) 

SE Type 

A1 1.000 1.000 1.000 - 

A2 0.738 1.000 0.738 irs 

A3 1.000 1.000 1.000 - 

A4 0.623 0.981 0.635 irs 

A5 1.000 1.000 1.000 - 

A6 0.523 0.981 0.533 irs 

A7 0.225 1.000 0.225 irs 

A8 0.527 0.976 0.540 irs 

A9 0.282 0.988 0.285 irs 

A10 0.273 1.000 0.273 irs 

A11 0.887 0.983 0.902 irs 

A12 0.397 1.000 0.397 irs 

A13 0.477 0.985 0.485 irs 

A14 0.560 0.986 0.568 irs 

A15 0.417 1.000 0.417 irs 

A16 0.450 0.987 0.456 irs 

A17 0.800 0.979 0.818 irs 

A18 1.000 1.000 1.000 - 

A19 1.000 1.000 1.000 - 

A20 1.000 1.000 1.000 - 

 

As illustrated in Table 4, provincial DMUs that 

operate with an efficient condition (i.e., the score for 

relative efficiency of 1) and with the optimal size (i.e., 

the score for SE of 1) during 2017 and should be 

considered the benchmark units are A1, A2, A3, A5, 

A11, A13, A14, A18, A19, and A20. In addition, data 

analyzed for 2018 (Table 5) show that efficient DMUs 

with optimal sizes are A1, A3, A5, A11, A18, A19, and 

A20. Next, based on the 2019 data obtained in Table 6, 

efficient DMUs with optimal sizes are found to be A1, 

A3, A5, A18, A19, and A20, respectively. 

Clearly, an operation for some provincial DMUs 

fluctuates during 2017-2019, whereas certain provincial 

DMUs can operate with all efficient conditions for three 

years. Additionally, the IRS condition for certain 

provincial DMUs suggest that scale inefficiency exists, 

in which the size is considered too large when 

comparing to other DMUs. These analyzed results are 

also categorized for CCR model, BCC model, and SE 

model across all progressive years to illustrate the trend 

with respect to time as shown in Figs 2-4, respectively. 

 

3.3. Discussion 

Analyzed results from the CCR model, the BCC model, 

and the SE model obtained earlier suggest that A1) Loei, 

A3) Udon Thani, A5) Bueng Kan, A18) Khon Kaen, 

A19) Chaiyaphum, and A20) Nakhon Ratchasima are 

efficient across three years from 2017 to 2019. This is 

due to that the analyzed relative efficiency scores are 

shown to be 1.00 for three consecutive years in Figs 3-5. 

Overall, these efficient provinces are found to utilize 

lesser inputs (e.g., planting area, labor cost, rainfall) 

and/or obtain higher outputs (e.g., tons of products) 

when comparing to other peers. Thus, these provinces 

have been operated with efficient condition, in which 

they should be further used as a benchmark DMUs for 

other provinces.  

 In addition, other provinces operated at inefficient 

condition can consider whether a particular input 

criterion should be decreased with a fixed output 

requirement or a particular output criterion can be 

increased under a fixed input.  

 

Fig. 3. Trend of CCR model’s technical efficiency from 2017-2019 
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Fig. 4. Trend of BCC model’s technical efficiency from 2017-2019 
 

 

Fig. 5. Trend of SE model from 2017-2019 

 

4 Conclusion and Future Research  

Biomass represents a significant source of biofuel, which 

is a type of renewable energy getting attention from 

many countries nowadays. In this research, biomass data 

of three major feedstocks for biofuel in the Northeastern 

region of Thailand were collected and analyzed using 

DEA to analyze each provincial efficiency. The input 

criteria of allowable planting area, labor cost, and 

rainfall amount as well as the output criterion of the 

quantity of harvested product were, in particular, 

collected for the top energy crops of cassava, sugarcane, 

and palm during 2017 to 2019. Accordingly, the relative 

efficiency of each provincial alternative was analyzed 

using DEA analysis of CCR model, BCC model, and SE 

model, respectively.  

Analyzed results showed that, among 20 provinces of 

the Northeastern region of Thailand, there were six 

provinces that operated efficiently under the selective 

criteria. These provinces were found to be Loei, Udon 

Thani, Bueng Kan, Khon Kaen, Chaiyaphum, and 

Nakhon Ratchasima, respectively. Thus, these efficient 

provinces could be further used as benchmark DMUs for 

other provinces. Regardless, it is important to note that 

the analyzed results are dependent on selected criteria for 

inputs and outputs, in which the caution should be noted. 

Directions for future research of this study include 1) 

expanding the case study for other regional areas in 

Thailand for further comparative study, 2) exploring 

other types of crops related to energy feedstock, 3) 

investigating other time spans for different years or with 

other time units, such as monthly basis, and 4) assessing 

other criteria types inclusive of both inputs and outputs. 

That is, other economic aspects can be further included 

for the input criteria. In addition, outputs concerning the 

sustainability index can also be enhanced. Additionally, 

we note that this study is the first phase of our research 

framework to investigate the upstream process of the 
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bioenergy supply chain. That is, the results obtained 

from this study will be used as input for further supply 

chain modelling study.  
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