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Abstract. In this paper, an optimization approach of a small horizontal axis wind turbine based on BEM 

theory including De Vries and Shen et al. tip loss corrections is proposed. The optimal blade geometry was 

obtained by maximizing the power coefficient along the blade using the optimal angle of attack and the 

optimal tip speed ratio. The Newton’s iterative method applied to axial induction factor was used to solve 

the problem. This study was conducted for a NACA4418 small wind turbine, at low wind velocity. Among 

the two used tip loss corrections, the De Vries correction was found to be the most suitable for this blade 

optimization method. The optimal design was obtained for a tip speed ratio of 5 and has recorded a power 

coefficient equal to 0.463. 

1 Introduction 

Introduced by Glauert in 1935 [1], blade element 

momentum theory (BEM) was and still is the most used 

mathematical model for blade optimization. The BEM 

theory is a combination of two theories: The first one is 

the axial momentum theory and the second one is the 

blade element theory. The axial momentum theory was 

initiated by Rankine in 1865 [2] and is later improved by 

R.E. Froude in 1889 [3]. In this theory, the propeller is 

regarded as an actuator disc in which the forces are 

distributed continuously in the azimuth direction.  

Meanwhile, the blade element theory, which was 

developed by Drzewiecki in 1892, consists in dividing 

the blade on N elements along the radius so that each 

element was considered as a small airfoil. The 

application of this theory assumed that there is no 

interaction between elements and that the forces acting 

on an element are only due to the lift and drag applied to 

this element airfoil. Because of the theory’s limitations, 

the results are generally remote from the experimental 

ones. In order to improve the BEM theory, many 

corrections were suggested. The most important 

correction is the tip loss correction, that was first 

proposed by Prandtl [4] to correct the assumption of the 

infinite number of blades. Furthermore, Glauert 

established an approximation to Prandtl’s tip loss 

correction that can be used in BEM theory calculations, 

and he assumed that this correction only corrects the 

induced velocities not the mass flux. A refined tip loss 

correction was later developed by De Vries [5], to 

correct both the induced velocities and the mass flux. 

Shen et al [6] adopted the same correction of De Vries, 

but he proposed a new tip loss correction that predicts 

better the loadings in the tip region. 

Another limitation of the BEM theory is that when 

the induction factor exceeds 𝑎𝑐 =0.5, the theory is no 

longer valid. For that, Glauert [1] proposed a correction 

of the thrust near the tip region. In the Shen et al. [6] 

correction, a value of 𝑎𝑐  equal to 1/3 was used. In the 

present study, the followed upper limit of induction 

factor is 0.4.   

In the present work, an optimization of small wind 

turbine blade based on BEM theory combined with De 

Vries and Shen et al. tip loss corrections is presented. 

The obtained blade geometry is then compared with the 

literature and the effects of the tip loss corrections on the 

optimal blade geometry are analyzed. The final optimal 

design of the blade is obtained by calculating the 

maximum power coefficient at different tip speed ratio. 

2 Mathematical model 

2.1 Blade element momentum theory 

The BEM theory consists in dividing the blade into N 

elements. For each element dr of the blade, the equation 

of momentum and angular momentum conservation are 

applied. According to the second part of the BEM theory, 

the thrust and the torque are defined by equations (1) and 

(2), respectively:  

 
2

0.5 nrel
dT BU C cdr=  (1) 

 
2

0.5 trel
dQ BU C crdr=  (2) 

 

Where  is the density of air, B is the number of 

blades, c is the chord length, r is the local radius, 

𝐶𝑛 𝑎𝑛𝑑 𝐶𝑡  are the normal and the tangential loads 

coefficients respectively, and are defined as  𝐶𝑛 =
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𝐶𝐿 cos 𝜑 + 𝐶𝐷 sin 𝜑  and 𝐶𝑡 = 𝐶𝐿 𝑠𝑖𝑛 𝜑 − 𝐶𝐷 cos 𝜑. The 

relative wind velocity 𝑈𝑟𝑒𝑙  and the relative wind angle 𝜑 

are defined as follow:  
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Where U0 is the wind velocity far upstream, Ω is the 

rotor angular velocity, a and a’ are the axial and the 

angular induction factors respectively. 

By applying the first part of BEM theory, the 

equations below are obtained:   

 

 ( )2 2
'4 1'dT a a rdrr =  +  (5) 

 ( ) 2

0 4 ' 1-dQ U r a a r dr =      (6) 

 

By equating the two equations of thrust -(1) and (5)-, 

and those of torque – (2) and (6)-, the axial and 

tangential induction factors are then defined as: 
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With  𝜎    is the solidity of the rotor defined by: 𝜎 =
𝐵𝑐

2𝜋𝑟
.  

2.2 Prandtl tip loss correction 

In order to improve the BEM theory to be valid even for 

a rotor with finite number of blades, Glauert [1] 

presented an approximation to Prandtl’s tip loss 

correction that can be integrated in BEM theory 

calculations. The proposed correction factor F, corrected 

the induced velocities. Hence the equations of thrust and 

torque are modified to be: 
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0
4 ' 1dQ FU a a r dr =  −    (10) 

  

The factor F is usually expressed as:  
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So, the induction factors are also changed to be: 
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And the thrust coefficient is defined as: 

 

( )4 1-TC Fa a=                                    (14) 

2.3 De Vries tip loss correction 

In addition to the induced velocity correction, De Vries 

[5] developed a new correction of mass flux that 

satisfied also the orthogonality of the induced velocity to 

the relative velocity. The new expressions of the 

induction factors are: 
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Using De Vries tip loss correction and Glauert high 

thrust correction, the equation of thrust is corrected and 

becomes: 
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  (17)                                               

Where : 𝑎𝑐 = 1/3. 

2.4 Shen et al. tip Loss Correction  

Similarly to De Vries, Shen et al.[6] corrected both the 

induced velocities and the mass flux. However, Shen 

assumed that another correction was needed for the 

airfoil data near the tip to take into account the three-

dimensional tip loss effects. Hence, a new correction 

factor F1 was presented as a correction to the two-

dimensional airfoil data in the tip region. As a result, the 

forces coefficients expressions in the tip region are 

defined as: 

 

 1

r

n nC FC=  (18) 

 1

r

t tC F C=  (19) 

 

Where the correction factor F1 is defined as: 
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Generally, g is a function of number of blades, tip 

speed ratio, chord distribution, pitch setting, etc. But 

Shen et al. proposed the following simplified form of g: 

 

 ( )exp -0.125 - 21 0.1g B= +    (21) 

 

After correction, the induction factors become: 
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The thrust keeps the same expression of equation 

(17). 

3 Proposed optimization process 

In the present work, an optimization of the wind turbine 

blade is done using BEM theory including De Vries and 

Shen et al. tip loss corrections. In these simulations, the 

induction factor a doesn’t exceed 0.4, so that, a thrust 

correction is not necessary. The losses near the hub 

aren’t of great  importance as those in the tip region [7]. 

Therefore, only the tip region is studied. The correction 

factors F and F1 are then considered equal to 1 along the 

blade except the tip. In the tip region φ tends to zero so a 

simplification of F and F1 is possible: 
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So, F and F1 become: 
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The process consists in dividing the blade into 24 

elements, and maximizing the power coefficient along 

the blade using the optimal angle of attack and the 

optimal tip speed ratio. The calculation of the induction 

factor that provides maximum power coefficient is 

realized by an iterative approach using Newton method. 

The iterative procedure for the calculation of solution is 

given as follow: 

(i) Initializing data. 

(ii) Computing a’ through the followed equation: 
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(iii) Computing the induction factor a with the Newton 

method as follow: 

• If r ≤ 0.8R:    
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• If r > 0.8R: 
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(iv) Verifying the convergence for the coefficient a. 

The tolerance in the present work is 10−5. If there 

is no convergence the step (iii) is repeated. 

(v) Computing the final value of the coefficient a’ 

through equation (27). 

(vi) Computing the relative wind angle φ through 

equation (3). 

(vii) Computing the chord and twist angle through 

followed equations: 
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 opt  = −  (35) 
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Where αopt is the optimal angle of attack. 

     

(viii) Computing the thrust, and torque using equations 

(1) and (2). 

(ix) Computing the extracted power using trapezoidal 

rule: 
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(x) Computing the power coefficient. 

4. Results and discussion 

The calculation of the solution is programmed using 

FORTRAN 95 code. The obtained results are compared 

with the optimized design of [8] obtained by using the 

optimum rotor theory. The characteristics of the rotor 

wind turbine used in this work are the same used by [8] 

and are given in the table1. 

 
Table1. The design characteristics of the used wind turbine 

blade. 

Profile type  NACA4418 

Optimal Angle of attack  6.5° 

Lift coefficient 1.209 

Lift to drag coefficient 44.447 

Radius  0.65 m 

Hub radius 0.05m 

Number of blades 3 

Design wind speed 8 m/s 

Optimal Design tip speed ratio 4 

 

The distributions of the chord and the twist angle 

obtained using this program are given in the Fig.1. 

Along the blade other than the tip, the chord and the 

twist angle have approximately the same distribution as 

the model of [8]. But in the tip region, the design 

obtained by the present work using Shen et al. shows an 

augmentation of chord near the tip, while with the use of 

De Vries the chord decreases in the tip region. Even a 

slight decrease of twist angle is observed in this region 

for both the two tip loss corrections. 

 

 a: Chord 

                                                                                                  
b: Twist angle 

Fig.1. Optimal Chord (a) and Twist (b) distributions using De 

Vries and Shen et al. tip loss corrections at λ = 4. 

The tip correction of Shen et al. gives an anticipated 

result. The design obtained is questionable from an 

aerodynamic point of view. In [7], this problem is due to 

the fact that in the expression of the correction factor F1, 

g must be a function of B,  and chord distribution. But, 

with a lack of data g is simplified and is given in terms 

of B and  only. So, the F1 doesn’t depend on c, and as 

F1 decreases in the tip region the chord increases.  As a 

result, De Vries tip loss correction is selected to be used 

in the present blade optimization approach.   

Fig.2. presents the distributions of torque and thrust 

forces of the optimum rotor resulted from both the 

present work using De Vries tip loss correction and the 

optimum rotor theory. Near the hub the torque tends to 0, 

that means that the power produced in this region is not 

important as it was assumed previously. Except the tip 

region, for the two models, the torque starts to increase 

slowly, and the thrust increases linearly. But, in the tip 

region, while the forces of the optimum rotor keep 

increasing, those of the present work reach a maximum 

value and then curve due to the correction effects. The 

decrease of loads near the tip in the present model is due 

to the tip vortex that reduce the lifting capability. Along 

the blade except the tip region the proposed model 

presents better results for thrust and torque compared to 

those of the optimum rotor theory model. In the tip 

region the problem of the over-predicted forces given by 

the optimum rotor theory is solved by the present work.  

 

 
Fig.2. The torque dQ and the thrust dT distributions of the 

optimum rotor using De Vries correction. 
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The power coefficient obtained by the optimum rotor 

theory is equal to 0.465, but after correction a coefficient 

of 0.461 is obtained. So, the inclusion of De Vries tip 

loss correction in the optimization process decreases Cp 

by 0.4%.  

The design tip speed ratio is varied thereafter in order 

to get maximum power. The proposed program work for 

a range of 2  . Fig.3, shows the variation of power 

coefficient with tip speed ratio. The maximum power 

coefficient of 0.463 is obtained at =5.   

Finally, the new model obtained after optimization 

has the chord and twist distribution illustrated in Fig.4.   

 

 
Fig.3. Variation of power coefficient with design tip  

speed ratio λ = 5. 
 

 
Fig.4.  Optimal Chord and Twist distributions obtained at 

at a wind speed of 8m/s. 

 

 

 

 

5. Conclusion 

The proposed approach for the wind turbine blade 

optimization was applied for NACA4418 small wind 

turbine. The De Vries tip loss correction is found to be 

the most appropriate one for the present blade 

optimization approach. The inclusion of tip loss 

correction decreases the power coefficient by 0.4%. The 

maximum power extraction of 0.463 is recorded at tip 

speed ratio of 5. In the future work, a CFD study of the 

obtained optimal design will be done in order to validate 

the paper’s results. 
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