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Abstract. Process monitoring techniques in chemical process systems help to improve product quality and 
plant safety. Multiscale classification plays a crucial role in the monitoring of chemical processes. However, 
there is a problem in coping with high-dimensional correlated data produced by complex, nonlinear processes. 
Therefore, an improved multiscale fault classification framework has been proposed to enhance the fault 
classification ability in nonlinear chemical process systems. This framework combines wavelet transform 
(WT), kernel principal component analysis (KPCA), and K nearest neighbors (KNN) classifier. Initially, a 
moving window-based WT is used to extract multiscale information from process data in time and frequency 
simultaneously at different scales. The resulting wavelet coefficients are reconstructed and fed into the KPCA 
to produce feature vectors. In the final step, these vectors have been used as inputs for the KNN classifier. 
The performance of the proposed multi-scale KPCA-KNN framework is analyzed and compared using a 
continuous stirred tank reactor (CSTR) system as a case study. The results show that the proposed multiscale 
KPCA-KNN framework has a high success rate over PCA-KNN and KPCA-KNN methods.

1 Introduction  
Process monitoring is essential for ensuring consistent 
product quality and safety in chemical process systems. 
The root causes of process faults should be identified 
earlier so the system can be restored to its normal 
operating conditions by corrective measures. Various 
process monitoring methods have been developed, and 
they are broadly classified into model-based and data-
driven methods [1-3]. The primary function of process 
monitoring is fault detection and fault diagnosis. After 
detecting the fault, the fault classification must be 
identified, which is intended to determine which fault has 
occurred, and the cause of the irregular conditions 
observed. Once the fault type is determined, the correct 
troubleshooting measures may be taken immediately, 
ultimately preventing greater economic losses and 
casualties. 

The complexity of chemical process systems has 
increased in recent years as a result of improved on-line 
sensor technology, automation, and well-equipped 
computerized measurement devices. These processes 
generate a large amount of highly correlated nonlinear 
data, making it difficult to develop a correct mathematical 
model for such processes is difficult [4]. The data-driven 
approach requires transforming a large amount of data 
into a specific form of information representation to 
enable the accurate detection and diagnosis of faults [5]. 

These methods can extract meaningful information from 
process data making them suitable for large-scale 
complex industrial processes [6, 7]. Over the last decade, 
researchers have been able to develop data-driven 
multivariate statistical process monitoring (MSPM) 
methods such as the principal component analysis (PCA) 
[8] and partial least squares (PLS) [9, 10]. 

Conventional MSPM techniques such as PCA and 
PLS are frequently used for the monitoring of chemical 
processes. The key limitation of both methods is the 
presence of a linear correlation among the process 
variables and the gaussian distribution of data, limiting 
their usefulness [11]. Kernel-based PCA (KPCA) is 
introduced to deal with nonlinear systems and improve 
classification ability. The majority of available methods 
rely upon the data collected on a fixed scale, whereas the 
multi-scale approach can depict information in different 
scales using wavelet transform (WT). WT is the most 
influential multiresolution analysis tool, categorically 
decomposing the input signals into several different 
resolution levels [12]. To address the multiscale nature in 
process monitoring, a multiscale PCA (MSPCA) 
framework has been proposed by integrating wavelet 
analysis with PCA [13]. In recent years, multiscale 
process monitoring has been extensively studied with 
various modifications such as dynamic [14], recursive 
[15], nonlinear [16], and orthogonal nonlinear [17]. 
Recently, a multiscale framework for real-time process 
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monitoring has also been proposed that effectively detects 
the faults in the continuous stirred tank reactor (CSTR) 
system [18]. MSPCA methods have also been developed 
to deal with incipient faults in process data by combining 
PCA with wavelet analysis [19] and ensemble empirical 
mode decomposition (EEMD) [20]. 

This paper proposes a new fault classification 
framework using a wavelet-based multiscale KPCA and 
K nearest neighbors (KNN) classifier. KNN is a non-
parametric classifier that classifies a sample of data based 
on the distance between this sample and some pre-labeled 
training samples. The paper is organized as follows. 
Section 2 presents the background, which includes a brief 
introduction of WT and KPCA. The methodology of the 
proposed method is discussed in section 3. The results and 
discussion are included in Section 4, while Section 5 
concludes the paper. 

2 Background 
2.1 Wavelet transform 
Wavelet transform (WT) is usually used in multi-scale 
process monitoring to decompose original process data 
into multi-scale components. WT provides many 
advantages over traditional single-scale techniques since 
it distinguishes deterministic and stochastic features from 
the process's initial measurements [21, 22]. This allows 
for a more meaningful interpretation of the process 
phenomena in their time-frequency bands [23]. All basis 
functions , ( )a bψ λ  within WT are obtained from a mother 
wavelet ( )ψ λ  via dilation and translation processes 
 

         1/2
, ( ) ,a b

ba a b
a

λψ λ ψ− − =  
 

               (1) 

where a and b are discretized scale and position 
parameters, respectively. The multi-scale representation 
involves transmitting the signal at different scales through 
a low pass and high pass filter. The scaled version of the 
original signal is achieved by projecting it on an 
orthonormal basis function family represented as 
 

/2 /2( ) 2 (2 )j j
ij t t sϕ ϕ− −= −                         (2) 

The approximation coefficient and detail coefficients 
of each level are obtained by means of the signal 
projection on the various wavelet functions represented as 
 
          /2 /2( ) 2 (2 )j j
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The original signal is obtained by adding the final 
scaled signal and all detail signals and represented as 
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where J and n are the level of decomposition and original 
signal length, respectively. 

2.2 Kernel principal component analysis 
Traditional PCA can only be effectively applied to a linear 
set of observations. However, if the data has more 
complicated structures that cannot be easily expressed in 
a linear subspace, standard PCA is not beneficial. Kernel 
PCA helps to generalize standard PCA to a non-linear 
dimensionality reduction.  

To derive the KPCA, consider an input matrix
[ ]1 2, ,.... T

NX x x x= , where jx  is the observation vector at a 
time i . The data is transferred to the linear feature space 
F , and the covariance matrix is determined as follows 
[24]: 
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where ɸ(.) is the nonlinear mapping function that projects 
the input vectors from the input space to F. Like PCA, 
PCs can be computed by solving the eigenvalue problem 
[24]: 
 
                       Fv C vλ =                                (6) 

where λ≥0 and v represents the eigenvalues and 
eigenvector of FC . CFv can be expressed as follows: 
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Considering that all solutions v  with 0λ ≠  lies in the 
span 1( ),...., ( )Nx xφ φ , coefficients ( 1,...., )ia i N=  that satisfy

1
( )

N

i i
i

v a xφ
=

=∑  exist. Now eq. (6) becomes a follows [24]: 
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For 1,....k N=  and by the introduction of kernel matrix K 
with ( ), ( )ij ij i jK K x xφ φ  = =  , then eq. (8) becomes as 
follows [24]: 
 

          2NK Kλ α α=                 (9) 

where [ ]1,...
T

Na aα = . For faulty samples, the kernel PCs 
(KPCs) can be calculated as follows [24]: 
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where 1...k l=  (l refers to the number of KPCs retained)   
The T2 statistic can be used to determine variations of the 
KPCA model and calculated as follows: 
 

           2 1
1 1[ ,....., ] [ ,....., ]T

l lT t t t t−= Λ                (11a) 

The T2 threshold can be calculated as 
 

          2
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l NT F
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−
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                        (11b) 

In the feature space, the SPE can be computed as 
 

                2 2

1 1

n l

i i
i i

SPE t t
= =

= −∑ ∑                      (12a) 

The threshold for SPE is determined as 
 

             2
lim hSPE gx≈                    (12b) 

This limit is based on the box equation achieved by 
adjusting the weighted distribution of the reference 
distribution utilizing training. Taking into account a and 
b the estimated mean and variance of the SPE. g and h are 
the weight assigned to the SPE size and degree of 
freedom, respectively, and are computed using, / 2g b a=  
and 22 /h a b= . 

3 Methodology 
The main idea behind the proposed framework is to 
develop multiscale fault classification for nonlinear 
chemical processes. First, each variable is decomposed  

and reconstructed individually by applying WT. Next, 
kernel PCA is performed on the wavelet coefficients for 
each selected scale to find out the feature vectors. 
Appropriate numbers of component loading vectors are 
retained using the cumulative percent variance (CPV) 
technique at each selected scale. In this work, three scales 
(s=3) are used for WT of the original signal. After 
reducing the original data dimension using KPCA, which 
finds a set of orthogonal discriminant vectors, a KNN 
classifier is used to describe the faulty patterns. For the 
KNN application, the likelihood of the test sample is 
adaptively estimated without any preliminary assumption, 
except for k, which is selected to produce the best results 
for train data. To classify test samples, all train data points 
must be saved, and the distances between the test sample 
and all training samples must be measured and sorted. 
Then, the k nearest to the neighbors is selected for the 
final decision. 

4 Results and discussion 
CSTR systems are frequently used in the chemical and 
food industries. As control of CSTR is a challenging 
problem, several researchers often use CSTR to evaluate 
the effectiveness of process monitoring techniques. Fig. 1 
illustrates a schematic of the CSTR system with cascade 
control. In this system, a first-order irreversible 
exothermic reaction occurs, in which reactant A enters the 
reactor, and product B flows out, as shown below. 

A B→     (13) 

The cooling liquid in the jacket removes the heat from 
the exothermic reaction. The reactor's liquid level and 
temperature are controlled by manipulating the outlet 
flow and cooling liquid flow, respectively. The following 
equations represent the dynamic model of this CSTR 
system. 

 

 

 
Fig. 1. The CSTR system with cascade control 
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Process data are generated by simulating the CSTR 
system with a period of one minute for normal and faulty 
operating conditions. 1000 samples of fault-free process 
data were recorded with normal operating conditions 
(NOCs). Eight fault scenarios were simulated, and 1,000 
samples were recorded for each fault pattern. All 
simulated faults are listed in Table 1, including the 
process disturbances, sensor bias, and process faults. The 
proposed MSKPCA fault detection and classification 
approach are compared with PCA and KPCA methods to 
evaluate the performance. For the proposed MSKPCA 
method, only the monitoring results based on the 
approximation function (A3) are presented, whereas 
monitoring results based on all detail functions (D1, D2, 
and D3) are discarded as these functions include the 
noises. 

Table 1. Description of the simulated faults in the CSTR system. 
Case Description of faulty variables 

1 A step-change in the temperature of the feed 
stream, Ti 

2 A step-change in the cooling liquid 
temperature, Tci 

3 Ramp change in the initial concentration of 
reactant A in the feed stream, Ci 

5 A step-change in the flow rate of outlet 
stream, F 

5 Random variation in the initial concentration 
of reactant A in the feed stream, Ci 

6 Ramp change in the cooling liquid 
temperature, Tci 

7 Ramp change in the heat transfer coefficient, 
E0/R 

8 Ramp change in the activation energy, UAC 

This paper studied the multi-class classification 
problem using PCA, KPCA, and multiscale KPCA with 
KNN classifier. The proposed method was implemented 
to classify the faults of the CSTR system. 

A comparative summary based on the classification 
results obtained using PCA, KPCA, and MSKPCA with 
KNN classifier is listed in Table 2. The table listed the 
diagnosis accuracy rate by utilizing the selected fault of 
the CSTR system. Comparing with PCA and KPCA, the 
classification performance of multiscale KPCA has 
significant improvement. From Table 2, it can be 
observed that the accuracy of fault classification using 
multiscale KPCA-KNN framework is about 70%, while 
the accuracy of fault 8 was raised to 79%, which is 
significantly higher than KPCA and traditional PCA 
methods. For the KPCA-KNN fault classification 
framework, the diagnosis accuracy is around 60%. In this 
case, fault 8 again shows a maximum accuracy rate that is 
74.1%. Whereas, in the case of PCA-KNN based fault 
classification framework, the diagnosis accuracy is 
around 40% less than the other two comparative 
frameworks. 

 

                                           Table 2. Comparison of different diagnosis success rates. 

Fault scenarios 
Fault diagnosis accuracy (%) 

PCA-KNN KPCA-
KNN 

MSKPCA-
KNN 

Case 1 41.6 61.5 60.8 

Case 2 41.8 62.0 62.2 

Case 3 41.0 64.5 69.1 

Case 4 41.6 59.0 60.7 

Case 5 40.3 63.7 73.9 

Case 6 40.4 62.8 66.7 

Case 7 39.3 61.1 66.6 

Case 8 40.4 74.1 79.0 

In the multiscale KPCA process monitoring 
technique, after the decomposition of process data using 
wavelet analysis into various multiple scales, KPCA is 
performed on these multi-scaled fault data, which offers 
important supplemental classification information KPCA. 

Without proper variable weightage, all variables are used 
simultaneously, and the data sets are masked with 
irrelevant information. The integration of WT with KPCA 
improved the extraction of features relevant to the 
abnormal operation in both the time and frequency 
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domain and led to better classification. In addition, the 
high misclassifications rate for PCA shows the advantage 
of the nonlinear technique when the fault data are highly 
overlapped. 

5 Conclusions 
This paper has presented PCA, KPCA, and multiscale 
KPCA with KNN classifier-based for fault diagnosis 
system. The effectiveness of these classification 
frameworks is demonstrated by using the CSTR system as 
a case study. From the results, the combination of multi-
scale feature extraction using WT with KPCA and KNN 
method for classification proved the proposed method 
suitable for implementation in fault diagnosis system of 
chemical processes. The results showed that the 
performance of the classifier by multi-scale KPCA-KNN 
was better than the others. Further research can extend by 
using different multiscale classification techniques to 
more complex and complicated chemical processes. 
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