
* Corresponding author: shuham@utp.edu.my  

Parametric Optimization of a Two Stage Vapor    
Compression Refrigeration System by Comparative 
Evolutionary Techniques 

Shuhaimi Mahadzir1* and Rasel Ahmed1 

1Chemical Engineering Department, Universiti Teknologi PETRONAS, Malaysia 
Centre for Process Systems Engineering, Institute of Autonomous System, Universiti Teknologi PETRONAS, Malaysia  

Abstract: Multistage refrigeration system plays a vital role in industrial refrigeration for the 
chemical, petrochemical, pharmaceuticals and food industries. Modern chemical industries are 
complex, and the problems are commonly multi-dimensional, non-linear and time-consuming. This 
study presents the application of evolutionary computation techniques, namely PSO (particle swarm 
optimization), GA (Genetic Algorithm) and SA (Simulated Annealing) to solve a design problem of 
a two-stage vapor compression refrigeration system. Two objectives are evaluated, namely the 
minimization of total energy consumption and maximization of the coefficient of performance 
(COP) of the system. The basis of design for the two-stage refrigeration system is built from and 
validated against data from published literature. The mass flow ratio, evaporator and condenser 
temperature, parameters for subcooling and desuperheating, and the coefficient of performance for 
the basis of design show acceptable results. The errors are below 5% against the data from published 
literature, which are within errors of significant figures in the calculations. In this work, the 
optimum solutions show a reduction of the required amount of energy consumption by 30.8% and 
an increase of the COP by nearly 77% with respect to the basis of design. Further improvements are 
made to the optimization procedures to prevent early convergence and to increase the search 
efficiency for finding the global optima. The findings by PSO, GA and SA are in agreement, and all 
evolutionary techniques achieved proper convergence of the two objective functions. It is also found 
that PSO requires lower computational effort, less computation time and is also easier to implement 
compared to GA and SA.      

1 Introduction   
Vapor compression refrigeration systems (VCRS) are 
widely used in air-conditioning as well as industrial 
refrigeration system for the chemical, petrochemical, 
pharmaceuticals and food processes. Modern life would 
be unthinkable without refrigeration. Global energy 
consumption is expected to increase by 50% between 
2010 and 2040 [1], while the refrigeration system is 
projected to consume approximately 30% of global 
electric energy by 2050 [2]. The refrigeration system 
requires energy input to create cooling by removing heat 
from a low- temperature reservoir. In this case, 
optimization has been considered as a significant tool to 
minimize the required energy and cost as well as 
maximize the efficiency of industrial refrigeration 
systems [3],[4].  
 
Zhao et al. (2013) developed a model-based optimization 
technique for VCRS to minimize total operation cost 
with respect to the constraints of mechanical limitations, 
component interactions, environment conditions and 
cooling load demands [5]. Their proposed algorithm is  

designed to store the best populations in each generation 
that satisfy the physical constraints with maximum 
fitness value for finding a feasible solution. According to 
their findings, the overall energy savings per day is  
8.45%, and they noticed 3.43% dissimilarity between 
simulated and experimental results [5]. Arshad and co-
workers (2019) used GA to optimize the exergy 
efficiency, COP and exergy destruction of VCRS 
considering parallel and series flow configurations. For 
the optimal operating conditions, COP and exergy 
efficiency is almost 15.1% and 1.41% higher for parallel 
flow than the series flow configuration [4]. The 
performance of a two-stage VCRS has been analyzed by 
Torella [6] and Baakeem et al. [7]. Baakeem performed 
system optimization using Conjugate Directions Method 
by maximizing the coefficient of performance (COP). It 
was possible to enhance COP by increasing the sub-
cooling parameter, decreasing desuperheating parameter 
and by using different refrigerants. However, refrigerant 
R134a does not produce a good performance with the 
COP only achieving a maximum of 6.01 at 10°C 
evaporator temperature and 40°C condenser temperature, 
respectively.  
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Model Validation and analysis of VCRS 

The optimization of a two-stage vapor compression 
refrigeration system uses the basis of design as per the 
published literature by Bakeem et al. [7]. Table 1 
provides the condition for the basis of design.   

Table 1: Condition for the base model 
Process Parameter Value Unit 
Evaporator temperature 0 °C 
Condenser temperature 45 °C 
Outdoor temperature 35 °C 
Indoor temperature 25 °C 
Compressor efficiency 91% Unitless 
Cooling load 1 kW 
Evaporator HFCs 0.5 KWm-2 K-1 

Condenser HFCs 0.5 KWm-2 K-1 
Evaporator (Ammonia) 1.1 KWm-2 K-1 
Condenser (Ammonia) 0.5 KWm-2 K-1 
 
The optimization model also considers the 
desuperheating and subcooling effect by introducing a 
flash chamber in the intermediate pressure stage. As 
illustrated in Figure 1, refrigerant R134a leaves the 
evaporator as saturated vapor (point a) and then 
compressed to the intermediate pressure (point b2) where 
it reaches the superheated vapor phase. Then the mixed 
desuperheated refrigerant went to the suction of the high 
stage compressor (point c) and compressed to high 
pressure (point d2), and the refrigerant goes to the 
superheated phase again. Here, mixed means the 
combined flow of the refrigerant from the outlet of the 
low stage compressor, and the refrigerant stream that is 
coming from the flash chamber. 

 

Figure 1. Basis of design for a two-stage vapor compression 
refrigeration system 

The superheated refrigerant loses some enthalpies 
through the point to the condenser, and after entering to 
the heat exchanger of condenser, it cools down to 
saturated liquid (point e). At the exit point of the 
condenser (point e), the refrigerant splits into two 
streams. One stream enters an expansion valve (point f) 
and then goes to the flash chamber. Another stream is 
subcooled first (point g) and then goes through an 
expansion valve. When the stream passes through the 
expansion valve, some part of the refrigerant will 
evaporate because of the throttling effect and vapor is 
produced (point h). The combined vapor and liquid 
streams of the refrigerant enter the evaporator where the 
refrigerant delivers the cooling, and the process 
continues its cycle. The basis of design is reproduced 
and validated by comparing the results from this work 
against the data from published literatures by Baakeem 
[7], Esfahani [8] and Gebreslassie [9]. In this work, the 
coefficient of performance “COP” and refrigerant mass 
flow ratio “r” value for the basis of design is successfully 
validated with the results by Baakeem et al. [7] with the 
deviations in COP and refrigerant mass ratio at 3.28% 
and 0.89% respectively.  The deviations are acceptably 
small and may be due to differences in refrigerant 
property tables used in this work. 

3. Formulation of optimization problem 
The modelling of a two-stage refrigeration system in this 
work follows the assumption that the 
a) system is operating at steady state condition 
b) kinetic and potential energy losses are negligible 
c) pressure loss across the evaporator and condenser are 
negligible 
d) refrigerant leaves the evaporator and condenser as 
saturated condition. 
e) throttling process through expansion valve is 
isenthalpic 
Mass balance: 

                                    0m =∑                              (1)  
Energy balance:  
   
                       0mhWQ =++∑ ∑∑              (2) 

                                                                                             
Heat transfer / cooling done by the evaporator:  
 
                                        (3) 

                                                                                             
The refrigerant mass flow rate through the condenser is 
the summation of the mass flow rate through the 
evaporator and flash chamber. fc,revp,rcond,r m;m;m  
Are the mass flow through the condenser, evaporator and 
flash chamber, respectively: 

fc,revp,rcond,r mmm +=                   (4) 
                                                                                             
Mass flow ratio is the ratio of refrigerant passing through 
the evaporator to the compressor, and it can be defined 
as:  
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Subcooling parameter and desuperheating parameters 
can be defined from the general model developed by 
Torella et al. [6], where the subcooling parameter 
depends on the condenser outlet temperature, evaporator 
inlet temperature and the temperature of the saturated 
liquid on the saturation curve at the intermediate 
pressure. On the other hand, the desuperheating 
parameter depends on the exit temperature of the low 
stage compressor, the suction temperature of the second 
stage compressor and the temperature of the saturated 
vapor on the saturation curve. 
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Work done by the low-pressure stage compressor 
 
                  ( )a2bevp,r1 hhmW −×=                         (7) 

 
Work done by the high-pressure stage compressor  
 
                    ( )c2dcon,r2 hhmW −×=                        (8) 
 
The isentropic efficiency of the compressor, one and 
two, can be defined as:  
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Actual work done by the compressors are corrected 
against the total efficiency of the compressors, which is a 
product of electrical and mechanical efficiency. The 
amount of actual work done by the second compressor 
can be calculated in similar steps to equation (10), and 
the total amount of work by the two compressors is a 
combination of the actual work done by the individual 
compressor. Heat transfer through the condenser can be 
defined as                                                    

                  ( )e2dcond,rcond hhmQ −×=                  (11) 

where 2dh and eh refer to the inlet and outlet enthalpies 
of the condenser. Coefficient of performance (COP) is 
the ratio of cooling duty by the evaporator to the actual 
work done by the two compressors, and it can be defined 
as:                            

                            
ac

evp

W
Q

COP =                                   (12) 

The optimization problem in this work first considers the 
minimization of energy consumption by the compressors 
according to the process equations outlined above and 
the range of operation, as shown in Table 2. The 
procedure is then repeated for maximization of COP.  

During the simulation procedure, both evolutionary 
computations are repeated for three times each using 
different initial values for the populations, iteration and 
other specific properties.  

4. Solution procedures    
Evolutionary computation techniques are stochastic, 
population-based global search, optimization algorithms 
which works based on the inspiration of biological 
evolution. GA, PSO and SA are the three most widely 
used evolutionary computation technique. Figure 2 
outlines the comparative algorithms for the evolutionary 
computational techniques among Genetic Algorithm 
(GA), Particle Swarm Optimization (PSO) and 
Simulated Annealing (SA).  

4.1 Particle Swarm Optimization (PSO)  

Particle swarm optimization is a stochastic, population-
based evolutionary technique. This technique has been 
successfully used to optimize various types of 
constrained and unconstrained, non-linear, multi-
objective and non-differentiable functions [10]. It is a 
simulation algorithm based on the animal’s social 
behavior, mainly birds flocking and fish schooling. In 
PSO a set of initial particle called swarm is generated 
randomly, each particle has it’s own position and 
velocity, as the iteration starts the particles travel 
through the search space and look for the optimum 
solution, each particle of the swarm communicates with 
each other and update their position and velocity 
according to its own best (local best) and swarm’s best 
(global best) position [17]. Here, each particle 
symbolizes a possible solution and a set of particles 
make up a swarm. When any of the swarm members find 
the optimum solution, others will follow it and converge 
to the optimum solution [18]. The search process will 
continue until a termination criterion has been met. PSO 
has a superior property that it can be directly used in 
continuous real number space and does not need the 
gradient value of the objective functions [11].  PSO 
needs less adjustment of parameters and can be easily 
implemented in various types of problems, it also has 
distinctive features of memory, needs low memory space 
and lesser rate of CPU which indicates better 
computational efficiency [15].  

4.2 Genetic Algorithm (GA)  

Genetic algorithm is a population-based evolutionary 
algorithm technique which has been generally used for 
various optimization and search problems [12]. GA uses 
a guided random search in a binary search space that 
generates many solutions to a problem, and the solutions 
are simultaneously refined to produce a set of solutions 
that are near optimum in a reasonable time [13]. This 
procedure works based on the natural processes of 
reproduction and selection in the population, in which 
each individual represents a possible solution [14].  
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Two basic reproduction and variation operation 
(crossover, mutation) has carried out continuously to 
appraise the populations until a termination criterion has 
been met. One iteration of operators is called a 
generation. As the solution representation is parallel to 
chromosomes and operators are alike to genetic 
operators, this process is named as genetic algorithm 
[16].   In this study, each individual represents the 
variable to be optimized, such as the refrigerant mass 
flow ratio, evaporator and condenser temperature, 
parameters ‘a’ and ‘b’ for sub-cooling and 
desuperheating.   
 
Table 2: Comparison of the findings for optimal conditions of 
the base model: 
 
Parameter 
name 

Findings by   
Bakeem 

 This 
study 

Difference 

COP 3.61 3.72 3.28% 
r 1.232 1.243 0.89% 
a 1 1 0 
b 0 0 0 
 

4.3 Simulated Annealing (SA)  

SA is a stochastic local search metaheuristic algorithm 
used to solve combinatorial optimization problems that 
allow continuous convergence to optimal solution [19, 
20]. It consists of several uphill and downhill movement, 
which helps to move from an existing solution to a 
superior solution and increase exploration ability [20]. In 
addition to this, it also decreases the probability of 
getting stuck in a local solution by increasing variety in 
the domain [20].  SA tries to achieve the minimum 
energy status of any materials during simulation. It 
required to heat the process at an initial high temperature 
and decrease it quasistatically until any changes 
happened [21].  In case of stochastic combinatorial 
optimization problem, SA needs careful adjustment of 
the annealing schedule to get optimum performance of 
the algorithm, and the cooling schedule maintains the 
amount of iteration required to perform the simulation 
[22].  

5. Result and Discussion  

For the evolutionary computation of GA, PSO and SA, 
each computation technique is run for three times. Stable 
convergence is achieved for each run. Repeatability of 
the results ensures the robustness of the algorithms. 
Table 3 shows that the best fitness value for minimum 
energy consumption is 0.185 kW, where the energy 
required for the base case is 0.268 kW, resulting in 
almost 31% energy savings against the base case. 
Figures 3 and 4 further show that the fitness values are 
consistent for almost 70 iterations. 
 

Table 3: Improvement of the base case by using GA & PSO 
Name Base 

case  
 Optimized Values Improvement  

  GA PSO SA  

COP 3.72 6.58 6.58 6.58 76.95% 
Energy 0.268 0.185 0.185 0.185 30.79% 
r 1.243 1.23 1.23 1.23  

a 1 1 1 1  

b 0 0 0 0  

Te 0 10 10 10  
Tc 45 40 40 40   
 
The optimum COP of 6.58, compared to the base case 
COP of 3.72, gives 77% better performance of the 
refrigeration system compared to the base case. The 
refrigerant mass flow ratio, r, sub-cooling parameter, a, 
and desuperheating parameter, b, remain unchanged 
because, during the basis of design, the flowsheet has 
been developed to achieve the best COP value at the 
initial level. This work also achieved a 3.28% higher 
COP performance in comparison to the optimum results 
by Baakeem et al. [7] using the Conjugate Direction 
Method. An explicit comparison between the previous 
study done by Bakeem and the recent study has shown in 
table 2 and 5.   
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Figure 3: Convergence curve for minimization of the required 
Energy by GA and PSO algorithm. 
 
Table 4 compares the performance of the three 
evolutionary computation techniques. The GA algorithm 
in this work uses random initialization within the lower 
and upper bound of the variables, while the reproduction 
probability is set at 80% by crossover and 30% by 
mutation. Reproduction increases the number of 
populations, which is then ranked for the selection 
according to the survival of the fittest principle and for 
the elimination of the extra populations produced from 
the reproduction of the populations. 
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Figure 4: Convergence curve for the maximization of COP by 
GA and PSO algorithm. 
 
Consequently, only the best/ elite populations at each 
iteration is stored for further generations. The 
reproduction strategy, such as crossover and mutation, 
maintains diversity and helps to ensure that the optimum 
results are obtained within a very short period of time. 
Furthermore, an extra range factor for the crossover 
(Gamma) was employed, and another mutation 
parameter (Sigma) was used to increase the exploitation 
range and exploration ability of the GA. During the 
optimization procedure, it was found that GA needs 
more population (50) to explore the search space for 

optimum values, and it converged comparatively later 
than PSO and SA (after 30 and 35 generation). However, 
for three consecutive runs, GA shows consistent 
optimization results, which indicates the robustness and 
proper convergence of the algorithm. On the other hand, 
the most significant property of PSO is the simplicity 
and easy programmability, requiring a smaller number of 
equations and input values as compared to GA. In PSO 
each particle has its own velocity and direction and the 
particles of the swarm communicate amongst themselves 
and update their position and velocity according to the 
neighbour/swarm’s position and velocity. Each particle 
of the swarm has the general cognitive and social 
coefficient values, which helps to converge the whole 
swarm together to the optimum values. These properties 
make the algorithm simpler and easily usable. In 
addition to this the SA algorithm shows early 
convergence compared to GA and it requires almost 
same amount of simulation time and initial population as 
PSO. But, it needs more parameters to adjust to get the 
optimum results and proper convergence, which means it 
takes more computation effort to do the fine tuning of 
this algorithm. In case of convergence, we found that 
PSO, SA converged faster than GA and PSO required 
around 30% less computational time than GA and SA. 
Here faster converge is a PSO’s notable feature, and 
robustness is a noble features of GA. Overall, all of these 
3 algorithms are designed properly to produce a good 
result along with perfect optimum convergence.    

Table 4: Comparison of the performance of the Evolutionary Computation Techniques 
Parameter of the Algorithm              PSO          GA           SA   
 Energy COP Energy COP Energy COP 
Number of populations 20 25 50 50 20 20 
Iteration Number 100 100 100 100 100 100 

Sub-iteration number -- -- -- -- 10 10 
Total running time (Second) 2.5 4 4 5 4 4.5 
Convergence starting point after (nth) 
generation 20 23 30 35 17 31 

Cognitive constant (C1) 1.9 2 -- -- -- -- 
Social constant (C2) 1.8 1.9 -- -- -- -- 
Inertia Weight (w) 1 1 -- -- -- -- 
Damping Ratio (Wdamp) 0.95 0.98 -- -- -- -- 
Crossover percentage -- -- 0.8 0.8  

 
Mutation percentage -- -- 0.3 0.3 0.1 0.1 
Extra Range Factor for Crossover 
(Gamma) -- -- 0.4 0.4 -- 

-- 
Sigma -- -- 0.1 0.1 0.1 0.1 
alpha -- -- -- -- 0.9 0.9 
number of move -- -- -- -- 4 4 
initial temperature  --  -- --  -- 0.1 0.1 
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Table 5: Comparison of optimization result 

Optimized variables  Bakeem et al. [7]               This Work Difference   Unit 
Optimization method  Conjugate Direction 

Method 
  GA PSO SA 

  
 

COP 6.01 6.5827 6.5828 6.5828 8.90% --- 
W 0.17 0.1859 0.1854 0.1854 5.88% KW 
a 1 1 1 1 0% 

 

b 0 0 0 0 0%   

6. Conclusion  
A two-stage VCRS has been analyzed and optimized 
using three evolutionary computation techniques. The 
results from this work show that form the basis of 
design, a two-stage VCRS can save 30.8% energy, and 
the system performance may also be improved by 77%. 
The three optimization algorithms, PSO, GA and SA 
performed better than the solution previously published 
in the literature using Conjugate direction Method, 
which is a direct search technique. During the simulation 
procedures, optimum results has been reached within 3-5 
seconds of computation time. From the overall 
performance of the algorithm, it can be summarized that 
PSO is more straightforward, performs comparatively 
better than GA and SA, it also requires less 
computational effort to do the fine tuning compared to 
the others. 
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