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Abstract: Deposition of waxes, asphaltenes, scales or hydrates is one of 
the most challenging operational problems in the oil and gas industry, both 
during production and transportation. Direct inspection procedures, such as 
employing a closed-circuit television system, allow visual assessment of 
the blockage, yet discretely in time and, consequently, of low value for the 
purpose of ensuring production over time. Therefore, an indirect predictive 
maintenance method for systematic evaluation of the internal pipe section 
is herein developed, adding a much needed solution to the current body of 
knowledge. Using continuous field measurements, it is now possible to 
predict when pigging should be performed to avoid significant blockages. 
Moreover, evaluating the maintenance plan risk is another major 
achievement. Finally, the proposed methodology and model were applied 
to a real case-study yielding good results compared to the current 
scheduled maintenance approaches.

1 Introduction 
 
A partial or total blockage has been a critical operational problem both in pipelines [1-8], 
and in wells [9,10] since the early days of the oil & gas industry, when not only paraffinic 
oils were transported [11] but also crude oils with high concentrations of solid particles that 
were likely to deposit [12]. 

Upstream, midstream, and downstream operations are affected as oils of different 
compositions, multiphase flows, emulsions, and even gas production [13] have the potential 
for deposition [14,15]. These particles will aggregate into annular deposits in certain pipe 
sections, significantly reducing the flow rates, if the upstream pumping conditions remain 
unchanged. Ultimately, flow lines can become completely blocked or under-producing 
down to uneconomical thresholds. 

Significant wax deposition problems have been reported and well-documented both in 
technical and research literature. These include costs connected with production downtime 
and pipelines replacement [16-22], as well as costs due to prevention operations [23,24]. 

Yet, the industry’s recent developments significantly increased the magnitude of the 
problem. As onshore and accessible oil reserves tend to get depleted after profuse field 
exploitation, while global oil demand is steadily increasing (peaking at 82 929 661 bbl/d in 
2018), new production fields are quickly shifting to offshore [23], into deep and ultra-deep 
waters [25,26], leveraged by technological advances. As a result, heavier oils are being 
produced and transported in longer subsea lines, under the effects of lower temperatures 
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[24-26]. Under the aforementioned scenario, wax deposition can be regarded as an 
increasingly critical problem for the world’s global energy output.  

Currently, options for mitigating wax deposition effects are prevention and remediation 
techniques [14]. The former include pigging, chemical inhibitors, heating techniques, 
bacterial treatments, operational conditions adjustment (including the flow rate and pressure 
increase), coating materials, insulators, acoustic methods, electric fields, magnetic fields, 
and oscillatory motion, while the latter encompass the first four of the mentioned. However, 
all of those have cost, limited efficiency, and technical specificities which bound their 
scope of application. While pigging operations have been the industry standard for many 
years, their application in deep and ultra-deep waters is quite challenging. In fact, the 
associated production downtime can become costly in long-flow lines [14], while the 
installation of looped flow lines for round-trip pigging requires a significant initial 
investment [27] and the high pressure upon the infrastructure due to the section reduction 
may cause severe damages, especially in older and corroded pipes [28], and accidents with 
stuck instruments occasionally occur [23,25,28]. Another issue with pigging operations is 
related to the difficulty in scheduling them. On the one hand, insufficient pigging will not 
prevent the risk of product loss due to partial blockage of sections and will increase the risk 
of total blockage, as well as the risk of jamming instruments. On the other hand, too 
frequent recurrent operations will lead to unnecessary costs associated with downtime and 
deferred production [23,29]. 

Given the shortcomings with wax prevention techniques and maintenance scheduling, 
inspection procedures have been increasingly used. These include visual inspection with the 
use of closed-circuit video systems or acoustic methods [30]. These approaches can be 
expensive, cannot be used in very long pipelines or wells, and require case-specific data 
analysis. Moreover, video systems may require downtime and defer production. However, 
the most significant hindrance of these techniques is associated with their discrete nature. 
As data cannot be attained continuously, it is of limited value for continuous prevention 
programs. Koptev & Kopteva developed a new non-invasive measuring system, based on 
gamma-ray wave radiation that allows measuring the thickness of the deposits [31]. Under 
current and forthcoming industry conditions, the continuous wax management programs 
will be the basis for maintenance planning. Especially in new inaccessible and lengthier 
production lines, wax deposits no longer can be prevented in economically efficient terms 
or remediated as they occur. They must be predicted precisely.  

The current research developed a methodology for employing real subsea pipeline data 
to accurately estimate the ideal maintenance operations scheduling, considering the desired 
economic and risk criteria. The developments included articulating a theoretical pressure 
drop model to transfer operational data to a K factor definition that could be used in the 
analysis proposing a mathematical framework for linearizing the attained data functions, 
defining operational criteria and associated thresholds, as well as setting an artificial 
intelligence-based predictive maintenance model. Based on real data from a regularly 
pigged pipeline, the model was applied and showed that for the same operational criteria 
the attained maintenance planning allowed heterogeneous, condition-based maintenance 
with fewer operations compared to a typical and predefined maintenance schedule. Beyond 
the economic gains, a continuous sectional loss monitoring was achieved including 
uncertainty measures, which allowed a significant decrease in the risk of a substantial 
blockage. 

This work resumes the outcomes of an ongoing research program and is an expanded 
version of a communication to the 16th International Forum Contest of Students and Young 
Researchers, entitled “Predictive maintenance program for obstructed wells or pipelines”, 
which has been awarded with a Best Speaker distinction. 
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After this introductory section, the article depicts analytical developments towards a 
pressure-drop formula which can be implemented into the program, as well as the 
predictive maintenance model fundamentals. The proposed methodology follows, 
encapsulating the former theoretical framework into a practical set of steps to achieve the 
predictive maintenance model. The proposed methodology is then applied to a real case 
study, providing information about the input data, the methodology of implementation, and 
the received results. Finally, conclusions are drawn. 

2 Theoretical framework 
2.1 Pressure drop method 

To compute the pressure drop due to friction in a pipe, the Darcy-Weisbach equation 
expressed in Equation 1 can be employed. This is an empirical relation for pipe flow 
resistance: 

∆𝑃𝑃 = 𝑓𝑓𝐷𝐷
𝐿𝐿
𝐷𝐷
𝜌𝜌𝑉𝑉2

2
,                                                    (1) 

where ∆𝑃𝑃 = pressure drop (Pa); 𝑓𝑓𝐷𝐷 = Darcy friction factor (-); 𝐿𝐿 = length of the pipe (m); 
𝐷𝐷 = inner diameter (m); 𝜌𝜌= density of the fluid (𝑘𝑘𝑔𝑔 𝑚𝑚−3); and 𝑉𝑉 = fluid velocity (𝑚𝑚 𝑠𝑠−1). 

For laminar flow regime, the viscous forces will be paramount, yielding lower Reynolds 
numbers (Re < 2000); the Darcy friction factor is a consequence of Hagen-Poiseuille’s law, 
being defined by Equation 2: 

𝑓𝑓𝐷𝐷 = 64
𝑅𝑅𝑒𝑒

= 64 𝜇𝜇
𝜌𝜌𝑉𝑉𝐷𝐷

 ,                                               (2) 

where Re = Reynolds number (-); and μ = fluid’s dynamic viscosity (𝑃𝑃𝑎𝑎 𝑠𝑠). 
Whereas a turbulent flow is found, Blasius proposed a simple equation to determine the 

Darcy friction factor for smooth pipe flow. Equation 3 is valid for Reynolds numbers 
between 3 × 103 and 105 (Blasius 1913): 

𝑓𝑓𝐷𝐷 = 0.3164
𝑅𝑅𝑒𝑒0.25  .                                                         (3) 

Colebrook–White proposed a general equation, valid for turbulent flow range (Re > 
4000), which defines the Darcy friction factor as a function of Reynolds number, and the 
pipe’s relative roughness ε/D [32]. Due to the implicit formation of Equation 4, the 
determination of the friction factor requires an iterative solution. 

1
 𝑓𝑓𝐷𝐷

= −2  𝜀𝜀
3.7𝐷𝐷

+ 2.51
𝑅𝑅𝑒𝑒   𝑓𝑓𝐷𝐷

 ,                                            (4) 

where 𝜀𝜀 = pipe roughness (in or m), and D = pipe diameter (in or m). 
 

2.2 Predictive maintenance programs 

Maintenance operations traditionally are either reactive or completely proactive [33]. 
Reactive approaches have been the oil & gas industry standard under the current term of 
“fail and fix” approaches. On the other end, proactive approaches can be referred to as 
scheduled plans and are associated with preventive maintenance [34]. Both approaches are 
of limited economic efficiency. On the one hand, the reactive approach increases the risks 
of serious accidents and downtime. On the other hand, the proactive approach is expensive 
and requires frequent production stops for maintenance operations. 

Moreover, none of the former systematically assesses data to prevent abrupt yet 
foreseeable blockages. Under these circumstances, predictive maintenance can be adopted 
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as an adequate approach to align maintenance operations with actual conditions of pipelines 
and wells. Predictive maintenance makes use of acquired data depicting physical or 
operation indicators to assess the initial signs of malfunction [35]. Therefore, maintenance 
operations can be planned to avoid costly downtimes, significant production losses due to 
sectional reduction, and accidents [33]. 

The Oil & Gas industry is particularly prone to predictive maintenance. Its assets are 
large, complex and hard-to-access, including offshore and subsea installations. Therefore, 
predictive maintenance has already been deployed in digital oilfields, mostly for drilling 
operations, artificial lifts’ electric submersible pumps, and rotating equipment, such as 
compressors [35]. However, the future analytics resources for big data analysis, leveraged 
by artificial intelligence, are deemed to change the paradigm. 

Artificial intelligence embraces a multitude of computer-based techniques, the general 
taxonomy of which includes at least seven different disciplines [36-38]. Those include 
computer vision, expert systems, fuzzy logic, machine learning, natural language 
processing, robotics, and speech recognition. Among the former, machine learning 
techniques have had a profuse application for engineering problems [39], and in the Oil & 
Gas sector in particular. Machine learning techniques, which are usually classified as 
supervised learning, unsupervised learning, and reinforcement learning, develop algorithms 
with the ability for improving through experience with training [40]. Those also show good 
resilience to data errors and outliers, which is critical when dealing with real-time acquired 
data. 

Accordingly, machine learning techniques can be used for autonomous decision-making 
regarding maintenance management [40,41], including managing deposits, increasing 
process reliability, and significantly reducing workforce needs. Examples of how artificial 
intelligence uses predictive maintenance can be found in Mirani & Samuel, with the use of 
unsupervised statistical learning to assess how long can drilling operations be carried out 
when control parameters are out of range [42]. This is an advancement from an early stage 
when only the real-time parameters fitting the stability range and need for maintenance 
were evaluated. Other examples, such as [43,44] include the profuse employment of case-
based reasoning for unveiling diagnostics of well failures based on the previous knowledge, 
which most often is too complex to be directly applied without AI techniques. 

To the best of authors’ knowledge, no predictive maintenance program for deposition 
management has been formulated, depicted, and validated in published literature. This is 
quite surprising considering the magnitude of this problem, as well as the recent 
developments in predictive maintenance, though it does not rule out the possibility of such 
endeavors having been developed in-house within major industry players. Even so, the need 
to offer such a program to the scientific and technical communities can only be regarded as 
critical. 

Employing a predictive maintenance plan minimizes overall intervention costs, as well 
as the blockage risk. Therefore, current research has focused on developing a predictive 
maintenance program. The goal of the program is to predict when maintenance operations 
should be executed by comparing the predicted evolution in a specific parameter with a 
predefined threshold, as defined in Figure 1. 
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Fig. 1. Planning the pigging procedure with a predictive maintenance program. 

 
 
The predicted evolution of the parameter must account for collected data, as well as 

frame it into the knowledge constructed upon training with previous datasets. This 
assessment must be continuously performed with the acquired data. 

To predict the remaining lifespan before reaching the defined threshold, artificial 
intelligence algorithms can be applied to time series models. Determination of this expected 
value can be done according to three types of models: similarity models, which consider the 
run-to-failure history data; degradation models, which are applied when the failure 
threshold is known; and survival models, which take into account the lifetime data.  

For the pipeline blockage problem, since it is assumed that maintenance operations 
maintain flow conditions by limiting the blockage to a certain threshold, degradation model 
with a known failure threshold was used. 

Degradation models, however, can refer to linear degradation models or exponential 
degradation models. The choice among those depends on the collected data and on the 
parameters used for synthesizing and pre-processing the datasets. For the proposed 
methodology to forecast the remaining useful operational life span for an obstructed 
pipeline, a linear degradation model was used to predict when the pigging should be 
performed. This linear degradation model is pre-set in Matlab, and it adheres to the 
continuous linear law, as defined in Equation 5: 

𝑓𝑓 𝑡𝑡 = ∅ + 𝜃𝜃𝑡𝑡 + 𝜀𝜀 𝑡𝑡 ,                                                 (5) 

where 𝜃𝜃 = slope; ∅ = intercept term; 𝜀𝜀 𝑡𝑡  = noise parameter. 
In this case, the linear degradation model will describe the temporal evolution of a 

linear stochastic process dependent on the K factor. 
To implement the model, two data groups are needed: training data and test data. The 

training datasets contain the condition indicator record, continuously sampled over a 
representative lifetime, while the test datasets include a unique table, with the condition 
indicator values over time, as recorded since the last pigging routine.  

Based on current information and pre-recorded training data, the model used can predict 
with a certain degree of confidence when the next pigging routine is due. Specifically, this 
model will output the predicted remaining expected useful operational life after predicting 
when the condition indicator is expected to exceed a certain prescribed threshold. 

The model can be recursively updated as new real field data becomes available. 
The predictive maintenance model steps can be systematized into Figure 2. 
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Fig. 2. Predictive maintenance modelling steps. 

 

3 Proposed methodology 
 
Following the theoretical framework developed and described in 2.1 and 2.2, an 
encompassing methodology is proposed to articulate the former with data acquisition and 
decision making. 

The proposed methodology to predict when to apply pigging procedures can be 
summarized in Figure 3. 

 

 
 
Fig. 3. Proposed methodology for determining when to perform pigging procedures. 
 
The proposed methodology defines two factors (𝐾𝐾𝑙𝑙𝑎𝑎𝑚𝑚  and 𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏 ), which are dependent on 
the volumetric flow rate and the pressure drop. The K factor enables the characterization of 
the available net flow area. As the deposition is taking place, the pipe radius is decreasing 
with time (𝑟𝑟𝑡𝑡), and the velocity also changes (𝑉𝑉𝑡𝑡). The volumetric flow rate is now 
expressed by Equation 6:  

𝑄𝑄 = 𝐴𝐴𝑉𝑉𝑡𝑡 = 𝜋𝜋𝑟𝑟𝑡𝑡2𝑉𝑉𝑡𝑡                                                                (6) 
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When the flow regime is laminar, Equations 1, 2 and 6 can be rearranged into Equation 
7 to determine the 𝐾𝐾𝑙𝑙𝑎𝑎𝑚𝑚  factor (𝑚𝑚3𝑠𝑠−1𝑃𝑃𝑎𝑎): 

𝐾𝐾𝑙𝑙𝑎𝑎𝑚𝑚 = 𝑄𝑄
∆𝑃𝑃

= 0.392699𝑟𝑟𝑡𝑡
4

𝜇𝜇𝐿𝐿
.                                                   (7) 

Whereas a turbulent flow is found, provided that pipes are hydraulically smooth, to 
account for the effect of the deposition in time, Equations 1, 3, and 6 can be developed into 
Equation 8, enabling the definition of the 𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  factor (𝑚𝑚3𝑠𝑠−1𝑃𝑃𝑎𝑎 −1/1.75 ): 

𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏 = 𝑄𝑄
∆𝑃𝑃 1/1.75 =  111.5945 𝑟𝑟𝑡𝑡

4.75

𝜌𝜌0.75𝜇𝜇0.25𝐿𝐿
 
 1/1.75 

.                                (8) 

Concerning the 𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  factor expressed Equation 8, one should note that similar factors 
have been recently proposed by Singh. Yet, the herein proposed uses the flow rate as a 
parameter to foster intelligibility regarding its hydraulic nexus. 

Both for laminar and turbulent regimes, the K factor (𝐾𝐾𝑙𝑙𝑎𝑎𝑚𝑚 and 𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  from Equations 7 
and 8, respectively) shows a decrease as the pressure drop increases for a given flow rate. 
Therefore, the K factor decreases as the deposit grows. 

Employing this methodology sustained in K factors, one can attain both the initial 
𝐾𝐾𝑖𝑖𝑛𝑛𝑖𝑖𝑡𝑡𝑖𝑖𝑎𝑎𝑙𝑙  values for ideal pipe conditions without deposits, as well as continuous sets of K 
values as a function of time.  

The K factors are an efficient way to evaluate the effect of an obstruction on the 
pressure drop growth for a certain volumetric flow rate. Indirectly it can measure how 
easily a fluid can flow between two sections. When the pipe becomes obstructed, the 
equivalent K factor will decrease. 

As explained in section 2.2, to run the predictive maintenance model, a linear 
degradation formula was chosen. Subsequently, the failure threshold is set. This value is 
calculated for the maximum tolerable sectional area obstructed due to deposition. The 
percentual obstruction is calculated according to Equation 9: 

𝑂𝑂𝑏𝑏𝑠𝑠𝑡𝑡𝑟𝑟𝑢𝑢𝑐𝑐𝑡𝑡𝑖𝑖𝑜𝑜𝑛𝑛 = 𝐴𝐴−𝐴𝐴𝑡𝑡
𝐴𝐴

× 100,                                               (9) 

where 𝐴𝐴𝑡𝑡  = useful sectional areal for a given moment t (𝑚𝑚2). 
 

Defining the threshold depends not only on the risk aversion of the operations manager, 
but also on the associated costs. In accordance with the industry standard, it was chosen to 
set a maximum sectional obstruction (as a percentage of the total pipe section) as 
admissible, and continuously assess the remaining operational lifetime until such threshold 
is reached.  

Beyond the scope of this study, but entirely compatible with the proposed methodology, 
the next step can be taken by defining the end of useful life not as a conventional blockage 
ratio but following an economical assessment of maintenance costs and production losses 
due to blockage and downtime, as well an assessment of the risk of possible accidents due 
to significant deposits.  

Since the linear degradation model was chosen, it is necessary to guarantee that the 
input data follows the linear law. The tables with the condition indicators for every hour 
need to be set, both for the training data and the current data (see section 2.2) in order to run 
the predictive maintenance model. 

As new data becomes available, it is possible to estimate the new expected remaining 
useful life with each new data point. In this case, it is needed to perform a for cycle, 
updating the model with each new point.  
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To visualize the predicted values and the associated confidence intervals, a plot with the 
temporal evolution should be presented. This plot enables the decision-maker to decide 
whether a pigging is necessary or not. 

4 Application to a subsea pipeline 

4.1 Input data 

As a case study for illustrating the proposed methodology, it was desirable to use a reliable 
data source that included accurate condition data and a well-developed and well-executed 
standard maintenance program. That could be found in [45], where the case of a subsea 
pipeline with 23,000 m length and an 0.3048 m (12 in) internal diameter, which carries a 
waxy crude oil with 800 kg/m3 density and an average dynamic viscosity of 10 cP, is 
provided and described. 

The oil volumetric flow varied around the mean value of 0.10 m3/s (55,000 BPD) during 
32 days in which the operational conditions are reported in literature [45]. Figure 4 shows 
the temporal evolution of the volumetric flow rate. 

 

 
 
Fig. 4. Volumetric flow rate as a function of time. Real field data based on [45]. 

 
Since the operational temperature reaches values below the wax appearance 

temperature, the deposition occurs inside the pipe. The pressure-drop increases due to the 
reduction of the sectional area. Figure 5 indicates not only the evolution of the pressure 
drop due to the deposition but also the moments when the pigging operation was performed 
to mechanically remove the deposits from the pipeline. 

 

 
 
Fig. 5. Pressure drop as a function of time. Real field data based on [45]. 
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According to the operational data, provided in Figure 5, four periods can be highlighted 
between the pigging routines. Table 1 summarizes the initial and the final instants and the 
respective pressure drop values for those instants. 

 
Table 1. Four operational periods 

Operational 
period id 

Initial instant 
AP* 

Final instant 
BP* 

Pressure drop 
initial instant 
AP* 

Pressure drop 
final instant 
BP* 

 s s Pa Pa 
A 139,984 832,668 1,505,706 2,151,349 
B 856,111 1,450,549 1,440,247 2,135,950 
C 1,473,178 2,078,471 1,422,262 2,133,218 
D 2,117,398 2,700,186 1,362,561 2,208,913 
*AP = after pigging; BP = before pigging 
 
The pigging routines were successively performed once a week (see Fig. 5), which can 

be regarded as a scheduled maintenance program. This maintenance plan has shown very 
efficiently for the quasi-constant flow conditions. Each pigging intervention enabled a 
pressure drop reduction from around 2.2 MPa to 1.4 MPa. According to these values and 
considering the average volumetric flow rate of 0.1 m3/s and applying Equations 8 and 9, it 
was possible to conclude that the pigging routine was scheduled to be performed when the 
pipeline was approximately 20% obstructed. 

4.2 Methodology implementation 

After determining the flow regime and computing the Reynolds number, it was possible to 
conclude that Equation 8 should be applied to determine the K factor. When this pipeline of 
23 km and 12 in is totally clean, the 𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  factor is constant and equal to 3.174E-05 
𝑚𝑚3𝑠𝑠−1𝑃𝑃𝑎𝑎 −1/1.75 . If the pigging routine was completely effective, and no deposit is stick 
to the pipe wall, the 𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  factor assumes the same value. For the four operational periods 
described in Table 1, the 𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  factor was assessed and its temporal evolution since the 
previous pigging operation is presented in Figure 6. 

 
 
Fig. 6. K factor for the four operational periods A, B, C and D. 
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Having developed the K factors concept from the pressure drop method results, datasets 
can be accurately fitted into a linear degradation model after the function is linearized 
accordingly. The function that describes its behavior, in terms expressed by Equation 5 and 
rearranged as in Equation 10, is given by Equation 11: 

𝑓𝑓 𝑡𝑡 = 𝛼𝛼
𝑒𝑒𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  𝑡𝑡 = ∅ + 𝜃𝜃𝑡𝑡 + 𝜀𝜀 𝑡𝑡                                         (10) 

𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  𝑡𝑡 = 𝛼𝛼
𝑙𝑙𝑛𝑛 ∅+𝜃𝜃𝑡𝑡+𝜀𝜀 𝑡𝑡  

,                                             (11) 

where 𝜃𝜃 = slope; ∅ = intercept term; 𝜀𝜀 𝑡𝑡  = noise parameter; and 𝛼𝛼 = location factor. 
 
Setting the predictive maintenance model for the current case-study data, operational 

periods A to D were considered as individual datasets. Its recorded data was used to 
compute the K factor, as shown in Figure 6, yet no data filtering, cleansing, or outlier 
removal was performed before the predictive maintenance model was run, despite the fact 
that an evident outlier exists in the operational period C. 

The reasoning behind this choice lies in the need for assessing whether the machine 
learning-based predictive maintenance model has the ability to deal with inaccurate data 
points. 

As only four datasets are available, a decision was made to assign three of those for the 
training data and the remaining operational period was set as current data, along which the 
remaining useful operational lifetime should be continuously assessed by the trained 
predictive maintenance model. 

In each model run, an option had to be chosen on either performing a static study or a 
dynamic assessment. While the former uses the complete dataset information to predict the 
remaining useful operational lifetime, the latter continuously and recursively re-assesses the 
remaining useful operational lifetime estimate as information is added throughout the 
dataset. Given the fact that the proposed methodology is deemed to be applied for 
determining real-time estimates in an industrial context, the option for the dynamic study 
was chosen. 

The reliability of the results was assessed using the probability distribution function for 
the estimated remaining useful operational life. 

 
5 Results 
Figures 7 to 10 show the expected remaining useful operational life along the data 
recordings in a dynamic and recursive assessment for each operational period, from A to D. 
In all cases, the end of useful operational life is considered when the pipe obstruction 
reaches 20% of the pipe section. For all estimates, beyond the expected value, there also are 
upper and lower bounds for the 95% confidence bound.  
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Fig. 7. Remaining useful operation life for Operational Period A at 20% maximum obstruction.  

 

 
 
Fig. 8. Remaining useful operation life for Operational Period B at 20% maximum obstruction.  

 
 

 
 
Fig. 9. Remaining useful operation life for Operational Period C at 20% maximum obstruction.  
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Fig. 10. Remaining useful operation life for Operational Period D at 20% maximum obstruction.  

 
As information is added, the predictive maintenance model compares all new data to 

date, from the beginning of the record to the current time, with the expectable behavior 
learnt from training and testing with previous datasets. This allows forecasting, at every 
moment how long the system can wait and respect the defined criteria, until a pigging 
operation is performed. 

Despite the fact that the training and test datasets were exiguous, since industry 
applications should ideally comprise thousands of datasets instead of just three, the results 
show very coherent estimations. As time elapses, the expected remaining useful operational 
life decreases and the global operation-to-operation window is only slightly affected by the 
characteristics of each dataset, which can be also observed in Table 2. 

The 95% confidence bounds show the accuracy of the model, since the uncertainty 
around the determined values is small and generally decreasing as information is added and 
the moment for performing the maintenance operation is approached. 

Concerning Figure 9, one shall note that no outliers are observed in the useful 
operational life, despite the fact that obvious outliers were present in the input data. 

To evaluate the reliability of the results, a probability distribution function for the 
estimated life span can be obtained, as depicted in Figure 11 to Figure 14. 

Given that pigging procedures were performed after 162-192 hours of operation, this 
case study real field data from periods A to D, the option was chosen to assess the 
remaining useful operational life using a probability distribution function 120 hours after 
the last operation. This period should correspond to the decision point when the next 
operation should be planned. 
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Fig. 11. Probability distribution function for Operational Period A (t = 120 h) at 20% maximum 
obstruction. 
 

For the Operational Period A (t = 120 h), the expected remaining useful operational life 
is 81 h, with the 95% confidence interval between 57 h and 105 h. The expected total life 
span is 201 h. 

 

 
 
Fig. 12. Probability distribution function for Operational Period B (t = 120 h at 20% maximum 
obstruction. 

 
For the Operational Period B (t = 120 h), the expected remaining useful operational life 

is 74 h, with the 95% confidence interval between 53 h and 96 h. The expected total life 
span is 194 h. 
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Fig. 13. Probability distribution function for Operational Period C (at t = 120 h) at 20% maximum 
obstruction.  

 
For the operational period C (t = 120 h), the expected remaining useful operational life is 

26 h, with the 95% confidence interval between 10 h and 41 h. The expected total life span 
is 146 h. 

 

 
 
Fig. 14. Probability distribution function for Operational Period D (at t = 120 h) at 20% maximum 
obstruction. 

 
For the Operational Period D (t = 120 h), the expected remaining useful operational life 

is 45 h, with the 95% confidence interval between 26.9 h and 62.4 h. The expected total life 
span is 165 h. 

The comparison between the latter values and the performed scheduled maintenance 
program can be found in Table 2. 
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program can be found in Table 2. 
 

Table 2. Comparison between historic data and results predicted by the model 
Operational 
period ID 

The duration 
between pigging 
operations in the 
field (historic 
data) 

The duration 
between 
pigging 
operations 
predicted by the 
model 

Extrapolated 
annual 
pigging 
operation 
frequency 
(historic data) 

Extrapolated 
annual 
pigging 
operation 
frequency 
(predicted by 
the model) 

 h h year-1 year-1 
A 192 201 46 44 
B 165 194 53 45 
C 168 146 52 60 
D 162 165 54 53 
 
These results show that, in general, pigging operations could be slightly postponed 

without significant risk of non-compliance with the end-of-life criteria (9 hours, 29 hours, 
and 3 hours during operating periods A, B and D, respectively). On the other hand, they 
also show that pigging should have been done earlier during operating period C to avoid the 
risk of over 20% partial blockage. 

Extrapolating these operating periods to a year-long period, we can see that instead of 
51 pigging operations only 50 could be performed. Yet, even with fewer pigging 
procedures, the risk of non-compliance with the maximum allowable sectional blockage is 
significantly reduced.  

Application of the proposed methodology to the case study has minimized the number 
of pigging procedures and reduced operational risks, which actively contributes to 
minimizing the flow assurance problems identified in the bibliography (as described in 
Section 1). Since maintenance costs are due to escalating as production trend leans towards 
deep and ultra-deep offshore fields, with much longer flowlines, the economic impacts of 
the former are of paramount importance and are a clear extension of the existing knowledge 
in the field. Likewise, the ability to assign confidence associated with scheduling 
inspections also adds some value to the current state-of-the-art technologies of pipeline 
blockage. 

Moreover, the attained results can be employed for relating each obstruction probability 
in time with the expected economic cost of not performing the pigging operation. Such a 
quantification may assume the formulation synthesized in Equation 12, where the partial 
costs 𝐶𝐶𝑖𝑖 , depend not only on the probability of occurrence, 𝑃𝑃 𝑋𝑋𝑖𝑖 , for which the achieved 
obstruction probability is important, but also on case-specific conditions. These partial 
costs, 𝐶𝐶𝑖𝑖 , include but are not limited to, pumping energy costs, deferred flow, material 
breakdown, downtime and extreme blockage costs, such as repair costs, spills and their 
environmental impact or penalties and fees.  

𝐸𝐸𝑉𝑉 =  𝑛𝑛1 𝑃𝑃 𝑋𝑋𝑖𝑖 × 𝐶𝐶𝑖𝑖                                                 (12) 

By comparing this expected cost of not performing the pigging operation with the cost 
of performing it at any given moment, the decision process can be aided. 

Furthermore, with the herein developed predictive maintenance methodology, decisions 
may be taken in advance. 

It is important to stress out, however, that each company has its own risk strategy and 
acts accordingly when planning pipeline pigging operations, and each production site has 
its own technical and economic context. Therefore, the aforementioned costs and 
probability functions will be case-specific. 
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6 Conclusions 
 
This work proposes, explains, and illustrates a methodology to perform a predictive 
maintenance program for obstructed pipelines while addressing the uncertainties associated 
with the field measurements. 

Noteworthy developments resulting from this study include the definition of 𝐾𝐾𝑙𝑙𝑎𝑎𝑚𝑚  and 
𝐾𝐾𝑡𝑡𝑢𝑢𝑟𝑟𝑏𝑏  factors from the pressure drop method based on laminar or turbulent flow, 
respectively. These factors are used as a practical way for transferring the acquired data to 
predictive maintenance models.  

However, the most significant innovations that can be attributed to the proposed method 
include allowing the optimal maintenance planning for given criteria or a threshold. It has 
been shown that by comparing the methodology even with a well-studied and optimized 
maintenance schedule, it is possible to decrease the number of pigging operations to avoid 
pipe blockages. 

Furthermore, the predictive maintenance methodology provides for a continuous 
assessment of the maintenance needs. This means that, if an event out of the historic data 
knowledge occurs, such as an abrupt change in the flow rate or the fluid properties that can 
accelerate the blockage, the model will act accordingly and recommend a maintenance 
operation in the due time. Contrarily, if beneficial events happen, the model will be able to 
analyze their effects, avoiding pigging actions before those are really required. This enables 
maintenance scheduling under a scenario that uses other preventive techniques, such as the 
injection of flow improvers. Under such a scenario, the proposed methodology allows an 
accurate analysis of K factors along with comparison with several historic datasets, 
enabling complex and multicriteria decisions about the employment and efficiency of 
additional measures while re-scheduling standard maintenance actions. 

One other major advantage is the possibility of assigning confidence bounds to the 
remaining useful operational life estimates. Not only will this be critical for assisting the 
maintenance planning, but also significantly enhances the risk assessment of operations. 

A case study was developed to evaluate the impact of applying a predictive maintenance 
plan compared to the scheduled preventive plan that has been used over many years and has 
shown some advantages when applied even for a short data set. 

Finally, the ability of the model to cope with outliers without previous filtering and 
cleansing is extremely valuable, since it allows direct using real-time acquired datasets. 
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