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Abstract. Mathematical model of the problem of vibration of thin-walled
structural elements has been constructed based on Kirchhoff-Love theory.
The problem is reduced, using the Bubnov-Galerkin method, to the
solution of a set of nonlinear integro-differential Volterra type equations
with weakly-singular kernels of relaxation. A numerical method based on
the use of quadrature formulae being used for their solution. The influence
of rheological parameters of the material on the values of critical velocity
and amplitude-frequency characteristics of viscoelastic thin-walled
structural elements is analyzed. It is shown that tacking account
viscoelastic properties of the material of thin-walled structures lead to a
decrease in the critical rate of gas flow.

1 Introduction

The theory of viscoelasticity is attracting more and more interest from researchers due to
the widespread use of new materials in technology and traditional materials in specific
conditions. Evidence of this is the publication of several articles [1-5]. Recently, much
attention has been paid to studying the dynamics of essentially nonlinear viscoelastic
mechanical systems [6-12], [26, 27].

The basic research trend consisted of preliminary reduction of problems using
variational methods of a continuous structure to a system with one-or-two degrees of
freedom, which was then analyzed either numerically or using analytical methods of
nonlinear mechanics. The main attention was paid to determining the qualitative effects
caused by the impact of nonlinear forces.

The problems of bending, strength and dynamics of viscoelastic thin-walled structural
elements were studied by B.A. Khudayarov and his students [13-25], [28-43].

This work is devoted to mathematical modelling and creating an algorithm for the
numerical solution of dynamic problems of hereditary deformable systems.

Consider the dynamics of a thin-walled structure accounting for hereditary properties of
the material according to the generalized Timoshenko theory in a geometrically nonlinear
statement.

Under accepted assumptions, the mathematical model of this problem relative to the

functions w=w(x, y, 1), ¥, =y (X, y,0), ¥, =y, (x, y,t) and @=d(x, y, 1) is described

by the equation under corresponding boundary and initial conditions:
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2 Methods

Let the thin-walled structure be supported by hinges on all edges. Satisfying the boundary
conditions of the problem, we choose expressions for functions w=w(x,y,?),

v, =y (o), ¥, =y, (x, y,t) based on the polynomial approximation in the following

form:
N M nrx  mu
w(x, y,t) =Y 3 Wnm (t)sin—sin )
n=lm=1 a b
N M nTx  mry
Wy (x, y,t) =y S ¥xnm (t)cos—sin
n=lm=1 a b
N-M nrx mry
vy (X,y,t) = nélmzzll//ynm (t)sin - cos 2)

Substituting the first expression (2) into the fourth equation of system (1) and equating
in both sides of this equation the coefficients for the same harmonics of trigonometric
functions, we find the force function:

N M (1'+/')7rX (r+5)7ry

d’(X'Y»f):E sy (1—R*)WierS[Cir]-Scos ; cos . +
1,j=1r,s=1
+4 . cos (j+j)ﬂX cos (r—s);zy +D_. cos (i_j)”X cos (r+5)7ry +
irjs ] a b irjs a b (3)
+54,c08 (1 _;)”X cos (r _ Z) ﬁy]

where
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Substituting (2) and (3) into the first three equations of (1) and performing the Bubnov-
Galerkin procedure with respect to wy,, ¥ ., 1, W o We obtain

irjs = irjs ~

2.2 2
L MPy K Erx k 2 *
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Vi h 2(1+u)b” |\ 4
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l//ykl (0) = l//yOkl, y/ykl (0) = V7y0kl’k = 1,2,..., N,l = 1,2,...,M N

a
where ¥, =7k; coefficient &, =1, if k is odd, if k is even or equal to 0, then

a, = 0; Qgomivs AT€ the dimensionless coefficients.

Introducing into the system (4) dimensionless quantities

g aR(t)

a V

o0

Wkl
h )

while maintaining the previous notation relative to the dimensionless unknowns wy,=
wa(®), Vg =¥ (1) and v, =y, (f) we obtain
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4 Results and discussion

Here, the upper exact limit of the velocity set {V} is chosen as a criterion for determining
the critical rate of gas flow; it ensures the convergence of the Bubnov-Galerkin expansion
(2) for all =0 (Fig. 1), i.e. the following condition is satisfied

N M

w(x,y,t) =Y Y %mm (’)‘/’nm (x,y) <1
n=lm=1

At V>V,,, the oscillatory motion occurs at rapidly increasing amplitudes and can lead to
structure destruction (Fig. 2); at V<V, the vibration amplitude damps (Fig. 3). Note that at
V>V,,, the expansion (2) diverges.

Here, the initial data are taken as: A=0.0104, a =0.1, f=0.0166 (material KAST-B
90%), M=4.71, Mp=0.003, V=1900 m/s (Fig.1), 2300 m/s (Fig.2), 600 m/s (Fig.3).

The results of calculating a thin-walled structure with the hereditary properties of a
material streamlined by a supersonic gas flow at V<V, are presented in Figs. 4 - 6. For this
purpose, the gas flow velocity is assumed to be 800 m/s when studying the behaviour of a
thin-walled structure with various physical and geometric parameters. Unless other data are
specified, the following values are taken as the initial ones: A=0.0104, « =0.1,
B =0.0166 (material KAST-B 90°), Mz=4.71, M;=0.003.

Figs. 4 - 6 show the dependences of functions w, u and v, respectively, on time in the
midpoint of a thin-walled structure not considering (A = 0 - curve 1) and considering the
hereditary properties of the material (A = 0.0099, « = 0.1, =0 .001 (material) KAST-B 0"
- curve 2; A =0.0208, a = 0.1, p = 0.0166 (material KAST-B 45°) - curve 3).

As seen from Fig. 4, an account for hereditary properties of the material leads to
oscillatory process attenuation. Although the solutions to problems with and without
account for hereditary properties of the material in the initial period of time differ little
from each other, over time, the hereditary properties of the material have a significant
impact.
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Fig.1. Deflection dependence on time
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Fig.4. Function w dependence on time: A=0 (1); KAST-B 0° (2); KAST-B 45°(3)
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Fig.6. Function v dependence on time: A=0 (1); KAST-B 0°(2); KAST-B 45° (3)
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Fig.7. Comparison of the modes of vibrations at =33: A=0 (1); KAST-B 0°(2); KAST-B 45°(3)

Figure 7 shows the change in the function w along the length of a thin-walled structure
at t=233. Consideration of hereditary properties shows a decrease in the values of
maximum deflections.

4 Conclusions

Mathematical models of the dynamics problems of thin-walled structural elements are built
considering hereditary properties of the material. The basic resolving integro-differential
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equations of dynamic problems of the hereditary theory are obtained using the Bubnov-
Galerkin method.

The effect of various properties of structure material on the values of critical velocity
and amplitude-frequency characteristics is analyzed.

An analysis of the results revealed some new effects:

- an account for hereditary properties of the material of thin-walled structures leads to a
decrease in the critical rate of gas flow;

- an account for geometrical nonlinearity leads to an increase in critical velocity;

- an account for aerodynamic nonlinearity does not significantly change the value of
critical velocity.
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