
Numerical study of nonlinear problems in the 
dynamics of thin-walled structural elements 

Olim Kucharov1, Fozil Turaev1 Sergey Leonov2 and Kholida Komilova1,  
1Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Tashkent, Uzbekistan 
2National Technical University “Kharkiv Polytechnic Institute”, Ukraine 

Abstract. Mathematical model of the problem of vibration of thin-walled 
structural elements has been constructed based on Kirchhoff-Love theory. 
The problem is reduced, using the Bubnov-Galerkin method, to the 
solution of a set of nonlinear integro-differential Volterra type equations 
with weakly-singular kernels of relaxation. A numerical method based on 
the use of quadrature formulae being used for their solution. The influence 
of rheological parameters of the material on the values of critical velocity 
and amplitude-frequency characteristics of viscoelastic thin-walled 
structural elements is analyzed. It is shown that tacking account 
viscoelastic properties of the material of thin-walled structures lead to a 
decrease in the critical rate of gas flow. 

1 Introduction 
The theory of viscoelasticity is attracting more and more interest from researchers due to 
the widespread use of new materials in technology and traditional materials in specific 
conditions. Evidence of this is the publication of several articles [1-5]. Recently, much 
attention has been paid to studying the dynamics of essentially nonlinear viscoelastic 
mechanical systems [6-12], [26, 27]. 

The basic research trend consisted of preliminary reduction of problems using 
variational methods of a continuous structure to a system with one-or-two degrees of 
freedom, which was then analyzed either numerically or using analytical methods of 
nonlinear mechanics. The main attention was paid to determining the qualitative effects 
caused by the impact of nonlinear forces. 

The problems of bending, strength and dynamics of viscoelastic thin-walled structural 
elements were studied by B.A. Khudayarov and his students [13-25], [28-43]. 

This work is devoted to mathematical modelling and creating an algorithm for the 
numerical solution of dynamic problems of hereditary deformable systems. 

Consider the dynamics of a thin-walled structure accounting for hereditary properties of 
the material according to the generalized Timoshenko theory in a geometrically nonlinear 
statement. 

Under accepted assumptions, the mathematical model of this problem relative to the 
functions w=w(x, y, t), ( , , )x x x y t  ,  tyxyy ,,   and Ф=Ф(x, y, t) is described 
by the equation under corresponding boundary and initial conditions:  
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2 Methods 

Let the thin-walled structure be supported by hinges on all edges. Satisfying the boundary 
conditions of the problem, we choose expressions for functions w=w(x, y, t), 

( , , )x x x y t  ,  tyxyy ,,   based on the polynomial approximation in the following 
form: 
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Substituting the first expression (2) into the fourth equation of system (1) and equating 

in both sides of this equation the coefficients for the same harmonics of trigonometric 
functions, we find the force function: 
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Substituting (2) and (3) into the first three equations of (1) and performing the Bubnov-

Galerkin procedure with respect to klw ,  xkl l,  lyk , we obtain 
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4 Results and discussion  

Here, the upper exact limit of the velocity set {V} is chosen as a criterion for determining 
the critical rate of gas flow; it ensures the convergence of the Bubnov-Galerkin expansion 
(2) for all t=0 (Fig. 1), i.e. the following condition is satisfied 
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At V>Vcr, the oscillatory motion occurs at rapidly increasing amplitudes and can lead to 

structure destruction (Fig. 2); at V<Vcr, the vibration amplitude damps (Fig. 3). Note that at  
V>Vcr, the expansion (2) diverges. 

Here, the initial data are taken as: A=0.0104,  =0.1, 0.0166   (material КАSТ-В 
900), ME=4.71, MP=0.003, V=1900 m/s (Fig.1), 2300 m/s (Fig.2), 600 m/s (Fig.3). 

The results of calculating a thin-walled structure with the hereditary properties of a 
material streamlined by a supersonic gas flow at V<Vcr are presented in Figs. 4 - 6. For this 
purpose, the gas flow velocity is assumed to be 800 m/s when studying the behaviour of a 
thin-walled structure with various physical and geometric parameters. Unless other data are 
specified, the following values are taken as the initial ones: A=0.0104,  =0.1, 

0.0166   (material КАSТ-В 900), ME=4.71, MP=0.003.  
Figs. 4 - 6 show the dependences of functions w, u and v, respectively, on time in the 

midpoint of a thin-walled structure not considering (A = 0 - curve 1) and considering the 
hereditary properties of the material (A = 0.0099, α = 0.1, β = 0 .001 (material) KAST-B 00 
- curve 2; A = 0.0208, α = 0.1, β = 0.0166 (material KAST-B 450) - curve 3). 

As seen from Fig. 4, an account for hereditary properties of the material leads to 
oscillatory process attenuation. Although the solutions to problems with and without 
account for hereditary properties of the material in the initial period of time differ little 
from each other, over time, the hereditary properties of the material have a significant 
impact. 

 

 
Fig.1. Deflection dependence on time 
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Fig.2. Deflection dependence on time 

 

 
Fig.3. Deflection dependence on time 

 
Fig.4. Function w dependence on time: A=0 (1); КАSТ-В 00 (2);  КАSТ-В 450 (3) 
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Fig.3. Deflection dependence on time 

 
Fig.4. Function w dependence on time: A=0 (1); КАSТ-В 00 (2);  КАSТ-В 450 (3) 

 
 

 
Fig.5. Function u dependence on time: A=0 (1); КАSТ-В 00 (2); КАSТ-В 450 (3) 

 
Fig.6. Function v dependence on time: A=0 (1); КАSТ-В 00 (2); КАSТ-В 450 (3) 

 
Fig.7. Comparison of the modes of vibrations at t=33: A=0 (1);  КАSТ-В 00 (2); КАSТ-В 450 (3) 

Figure 7 shows the change in the function w along the length of a thin-walled structure 
at 33t  . Consideration of hereditary properties shows a decrease in the values of 
maximum deflections. 

4 Conclusions 

Mathematical models of the dynamics problems of thin-walled structural elements are built 
considering hereditary properties of the material. The basic resolving integro-differential 
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equations of dynamic problems of the hereditary theory are obtained using the Bubnov-
Galerkin method. 

The effect of various properties of structure material on the values of critical velocity 
and amplitude-frequency characteristics is analyzed. 

An analysis of the results revealed some new effects: 
- an account for hereditary properties of the material of thin-walled structures leads to a 

decrease in the critical rate of gas flow; 
- an account for geometrical nonlinearity leads to an increase in critical velocity; 
- an account for aerodynamic nonlinearity does not significantly change the value of 

critical velocity. 
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