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Abstract. Studies on the effect of changing the stiffness coefficient along 
the length of the pipeline on its resonant vibration mode are considered in 
the paper. A computational model of transverse vibrations of the pipeline 
located in soil with different properties is created. Theoretical and 
computational studies to solve the problems of stability of underground 
pipelines located in the soils with different properties under seismic effects 
are carried out. It is revealed that the vibratory process of the pipeline can 
be realized at frequencies close to resonance. The results of the study are 
presented as curves of distribution of displacements of pipeline sections 
along the length at dimensionless frequencies. When the pipeline vibrates 
with a frequency close to the resonant frequency, the displacements of 
pipeline sections can take very large values. It is shown that at frequencies 
close to resonance, the values of moments can be large in the pipeline 
sections, which are the reasons for the loss of pipeline stability. 

1 Introduction 

At present time pipelines are used to deliver water, oil, gas and etc. Underground pipelines 
are buried in the ground, and they stretch over large areas, where they interact with soils of 
different physical and mechanical properties. It significantly increases their exposure to 
damage from all sorts of sources, in particular during seismic activity. 

Therefore, the study of the stability of underground pipelines during earthquakes is 
relevant. The solution of the problem of seismodynamics of underground pipelines, taking 
into account the intersection of soils with different properties along the pipe axis, serves to 
determine the possible seismic hazard. 

To date, in domestic and foreign science, there are theoretical and experimental studies 
for determining the stress-strain state [1-16] and stability [17-24] of underground pipelines 
interacting with the surrounding soil under seismic effects. A theory of propagating seismic 
waves in an underground pipeline and surrounding soil called the wave theory of seismic 
resistance of underground pipelines is proposed in [12]. According to linear and nonlinear 
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laws, this theory is used to analyze only longitudinal vibrations of a pipeline interacting 
with homogeneous soil. In all the above investigations, when considering the interaction of 
the underground pipeline with the surrounding soil, the variability of the interaction 
parameters along the length of the pipeline is not considered. This is especially important 
for long pipelines buried in the ground and stretched over large areas, where soil conditions 
change significantly. In this case, the behavior of the pipeline mainly depends on the choice 
of the law of its interaction with the surrounding soil, which in the simplest cases is 
characterized by the interaction coefficients determined from experiments [5, 7, 11, 12]. 

Transverse vibrations are of interest for long pipelines because they cause a loss of 
stability and such a phenomenon as buckling of pipelines. A methodology for the study of 
transverse vibratory processes in underground pipelines is developed in this paper when 
considering the variability of the interaction parameters along the length of the pipeline to 
establish the cause of the loss of stability of underground pipelines. 

2 Methods  

Let us consider the case when the pipeline contacts the surrounding soil at two interaction 
areas k1 (0<x<l1) и k2 (l1<x<l), where l is the total length of the pipeline. Set the origin in 
the initial section of the pipeline and direct the axis х along the pipeline axis. When the time 
t1=(H–2R)/c (where R is the depth of the pipe; с is the speed of the wave propagation) a 
wave formed at the depth Z=H falls on the pipeline. The wave front is perpendicular to the 
pipeline axis. If we do not consider the time of the wave flow around the pipeline and the 
secondary waves of reflection and diffraction, then at time t≥t1 the distributed load will act 
along the length of the pipeline k1 (w1–u0) when 0<x<l1 and k2 (w2–u0) when l1<x<l, where 
w1(x,t), w2(x,t) are the transverse displacements of pipeline sections, u=u0(t)=u00(ct–H+2R) 
is the displacement of soil particles behind the wave front in the plane Z=H–2R. 

The equations of transverse vibrations of the pipeline for each section have the form 
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where EI is bending rigidity of the pipeline; m is the linear mass. 
Equations (1) and (2) satisfy the boundary conditions 
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Also, it is necessary to satisfy the conditions of continuity of displacements, angles of 
rotation, moments and shearing forces at the transition boundary 
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laws, this theory is used to analyze only longitudinal vibrations of a pipeline interacting 
with homogeneous soil. In all the above investigations, when considering the interaction of 
the underground pipeline with the surrounding soil, the variability of the interaction 
parameters along the length of the pipeline is not considered. This is especially important 
for long pipelines buried in the ground and stretched over large areas, where soil conditions 
change significantly. In this case, the behavior of the pipeline mainly depends on the choice 
of the law of its interaction with the surrounding soil, which in the simplest cases is 
characterized by the interaction coefficients determined from experiments [5, 7, 11, 12]. 

Transverse vibrations are of interest for long pipelines because they cause a loss of 
stability and such a phenomenon as buckling of pipelines. A methodology for the study of 
transverse vibratory processes in underground pipelines is developed in this paper when 
considering the variability of the interaction parameters along the length of the pipeline to 
establish the cause of the loss of stability of underground pipelines. 

2 Methods  

Let us consider the case when the pipeline contacts the surrounding soil at two interaction 
areas k1 (0<x<l1) и k2 (l1<x<l), where l is the total length of the pipeline. Set the origin in 
the initial section of the pipeline and direct the axis х along the pipeline axis. When the time 
t1=(H–2R)/c (where R is the depth of the pipe; с is the speed of the wave propagation) a 
wave formed at the depth Z=H falls on the pipeline. The wave front is perpendicular to the 
pipeline axis. If we do not consider the time of the wave flow around the pipeline and the 
secondary waves of reflection and diffraction, then at time t≥t1 the distributed load will act 
along the length of the pipeline k1 (w1–u0) when 0<x<l1 and k2 (w2–u0) when l1<x<l, where 
w1(x,t), w2(x,t) are the transverse displacements of pipeline sections, u=u0(t)=u00(ct–H+2R) 
is the displacement of soil particles behind the wave front in the plane Z=H–2R. 

The equations of transverse vibrations of the pipeline for each section have the form 
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where EI is bending rigidity of the pipeline; m is the linear mass. 
Equations (1) and (2) satisfy the boundary conditions 
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where R  is the wave length; A is the amplitude of the vibrations. 
The process is considered to be steady, then the solutions of equations (1) and (2) have the 
form 
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Then the solutions of equations (1) and (2) can be represented in the form: 
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where Ai, Bi are arbitrary constants; Yi (z) are Krylov functions 
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Taking into account the boundary conditions (3), the displacement X1(x) has the form 
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We put the function X2(x) in the following form: 
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Substituting the expressions for the constants А2 and А4 into formulas (9) and (11), we 
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From boundary conditions (4), it follows 
 

).()()](1[
4 144122114

1

1
1 xZAxZAxZcX 


  

 
Conditions (5) give 
 

      

      

      

      .
4

2
2

,
4

2
2

,
4

2

,
4

1
4

1123
21

1
11141132

3

4

1132
2

2
1

1
11241142

2

3

114
2

3
1

1
113411122

4
2

1
114411221114

1

1
1

lZclZAlZAB

lZclZAlZAB

lZclZAlZAB

clZAlZAlZcB





























 

 
Substituting expressions Вi into formulas (5), we establish the form of the function X2(x) 

   xRxRAxRAX 044222 )(  , 
where 

     

   

( )2 2 1 1 2 1 1 1 1 2 2 1
2 3

( ) ( ,2 1 1 3 2 1 3 1 1 4 2 12 4

R Z l Z x l Z l Z x ln

Z l Z x l Z l Z x l

    

 
   

    

     

     

     
 

     

   

( ) 24 4 1 1 1 2 1 3 1 1 2 2 1
3

2 ( ) ( ,2 1 1 3 2 1 1 1 1 4 2 14

R Z l Z x l Z l Z x l

Z l Z x l Z l Z x l

   


    

    

     

     

     
 

 

   

   

1 1( ) 1 ( ) ( )0 1 1 1 1 2 1 1 2 14 44 41 2

1 1( ) (4 1 1 2 2 1 3 1 1 3 2 13 2 24 41 2 1 2

1 , / .1 1 1 4 2 1 1 234 1 2

c c
R x Z l Z x l Z x l

c c
Z e Z x l Z l Z x l

c
Z l Z x l

  
 

   
   

    
 

     

    

  

         

     

  

 

 
Using the boundary conditions (5), we compose equations for determining the constants 

А2 and А4 
)()()( 04422 lRlRAlRА  ,  )()()( 04422 lRlRAlRА IIIIII  . 

From this system, we determine А2 and А4. 

6

E3S Web of Conferences 264, 02035 (2021)	 https://doi.org/10.1051/e3sconf/202126402035
CONMECHYDRO - 2021



From boundary conditions (4), it follows 
 

).()()](1[
4 144122114

1

1
1 xZAxZAxZcX 


  

 
Conditions (5) give 
 

      

      

      

      .
4

2
2

,
4

2
2

,
4

2

,
4

1
4

1123
21

1
11141132

3

4

1132
2

2
1

1
11241142

2

3

114
2

3
1

1
113411122

4
2

1
114411221114

1

1
1

lZclZAlZAB

lZclZAlZAB

lZclZAlZAB

clZAlZAlZcB





























 

 
Substituting expressions Вi into formulas (5), we establish the form of the function X2(x) 

   xRxRAxRAX 044222 )(  , 
where 

     

   

( )2 2 1 1 2 1 1 1 1 2 2 1
2 3

( ) ( ,2 1 1 3 2 1 3 1 1 4 2 12 4

R Z l Z x l Z l Z x ln

Z l Z x l Z l Z x l

    

 
   

    

     

     

     
 

     

   

( ) 24 4 1 1 1 2 1 3 1 1 2 2 1
3

2 ( ) ( ,2 1 1 3 2 1 1 1 1 4 2 14

R Z l Z x l Z l Z x l

Z l Z x l Z l Z x l

   


    

    

     

     

     
 

 

   

   

1 1( ) 1 ( ) ( )0 1 1 1 1 2 1 1 2 14 44 41 2

1 1( ) (4 1 1 2 2 1 3 1 1 3 2 13 2 24 41 2 1 2

1 , / .1 1 1 4 2 1 1 234 1 2

c c
R x Z l Z x l Z x l

c c
Z e Z x l Z l Z x l

c
Z l Z x l

  
 

   
   

    
 

     

    

  

         

     

  
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3 Results and Discussion 

Consider the results of calculations. Figures 1 – 3 show the curves of the distribution of 
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Fig. 1. Distribution of the moment AEJMlM /2  along the pipeline length x/l at frequencies 
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Fig. 2. Distribution of pipeline deflections along the pipeline length x/l at frequencies close to the 
first resonance frequency 15.3 : 1 – 5 , 2 – 5.4 , 3 – 4 , 4 – 5.3  
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Figure 3. Distribution of the moment AEJMlM /2  along the pipeline length x/l at frequencies 
close to the first resonance frequency 15.3 : 1 – 5 , 2 – 5.4 , 3 – 4 , 4 – 

5.3  

The vibratory process of the pipeline can be realized at frequencies close to the roots of 
the equation, at which the denominators for the functions X1(x,ω) and X2(x,ω) equal to zero. 
In figure 2 shows the curves of the distribution of displacements (referred to the value A) of 
pipeline sections along the length at dimensionless frequencies close to two resonance 
frequencies depends on various values of the ratios ω1/ω and ω2/ω ( mkii /2  ). In the 
calculations, it was assumed that l1/l=0.5. When the pipeline vibrates with a frequency close 
to the resonant frequency, the displacements of pipeline sections can take very large values. 
In the case under consideration, the presence of a section with different stiffness 
coefficients doesn't significantly affect the resonant vibration mode. Similar curves for 
moments are shown in figures 1 and 3. It can be seen that at frequencies close to the 
resonance, the values of moments can be large in the pipeline sections, which are the 
reasons for the loss of pipeline stability. 

4 Conclusions 

The results obtained when studying vibratory processes in underground pipelines using the 
developed software product allow us to recommend them for specific calculations and 
design of underground pipelines under seismic conditions. A number of numerical results 
were obtained depending on the frequencies close to two resonance frequencies. So, we can 
conclude that at pipeline vibrations close to the resonance, the displacements of pipeline 
sections can take very large values. The values of moments can be large in the pipeline 
sections, which are the reasons for the loss of pipeline stability.  

The obtained results and conclusions on them are in satisfactory agreement with the 
results of observations of the behavior of pipelines in real conditions, which have been 
observed repeatedly, especially recently during strong earthquakes. 

The results presented provide the analysis of the behavior of underground pipelines 
during seismic impacts and allow developing effective methods for studying the effects of 
an earthquake on the stability of the underground pipeline in seismic areas. 
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