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Abstract.In the present work, the problem for elliptical inclusion with interfacial crack in thermoelectric 
material is studied. The inclusion and matrix are assumed to be imperfect bonding, which is subjected to 
uniform heat flux and energy flux at infinity. The interfacial cracking problem of elliptic inclusion in 
thermoelectric material is investigated by using conformal mapping and complex function method. The 
complex expressions of temperature field and electric field in inclusion and matrix are obtained. The energy 
release rate of thermoelectric material under the influence of inclusion is given. The effects of elliptic 
inclusion with interfacial crack on temperature field and electric potential also are compared by numerical 
examples. The results show that inclusion reduces the conversion efficiency of thermoelectric material.  

1 Introduction 

With the increasing demand for new materials, 
thermoelectric materials [1-3] are functional materials that 
can transform thermal energy and electric energy into each 
other，which has the advantages of simple structure, 
lightweight, small volume, no moving power components, 
long life, safety, cleaning and environmental protection. 
However, many defects are inevitable in the 
manufacturing and processing of materials, such as 
microcavity, microcrack, all kinds of inclusions. These 
defects or second stage materials can also be called 
inclusions [4-6]. Different from the system with the 
singled material, composite structures with reinforced 
phase have more superior behavior. Usually, the 
composite materials appear with layered and/or inclusion 
systems, which are common for electric-elastic materials. 
On the other hand, similar to nearly all the composite 
materials and structures the mechanical property of 
thermoelectric materials plays an important role during the 
manufacture and application process. As a result, many 
studies forced on the thermoelectric materials [7-11]. 

Based on conformal mapping function and Mori 
Tanaka method, Wang [12] studied the effective material 
properties of elliptical fiber thermoelectric composites. 
Zhang et al. [13] investigated the two-dimensional 
problems of an elliptic hole or a rigid inclusion embedded 
in a thermoelectric material subjected to uniform electric 
current density and energy flux at infinity based on the 
complex variable method and conformal mapping 
technique. Wang et al. [14] analyzed the two-dimensional 
problem of thermoelectric material with inclined elliptical 
inclusion and obtained the closed solution of the inclusion 
problem. In Ref. [15], the problem of three-dimensional 
ellipsoidal inclusion in thermoelectric material is studied. 

By introducing two auxiliary functions, the nonlinear 
coupled governing equation is successfully transformed 
into a linear uncoupled equation. Yu et al. [16] studied the 
plane problem of circular inclusion in thermoelectric 
medium, and derived the explicit solutions of electric field, 
temperature field and related thermal stress field in the 
whole composite. However, as a new intelligent structure, 
the research on the mechanical properties of 
thermoelectric materials is still very limited, especially the 
mechanical properties of inclusions. Important progress 
has been made in the study of inclusion theory of 
thermoelectric materials, but the existing results mainly 
focus on well-bonded inclusions. There are few studies on 
the non-ideal bonding of inclusion interface such as 
debonding, cracking and damage. In this paper, the 
interfacial cracking problem of elliptical inclusion in 
thermoelectric materials under thermoelectric loadings at 
infinite distances is studied. Applying the analytical 
continuation theorem and boundary conditions, then it is 
transformed into Riemann-Hilbert problem. The complex 
potential expressions of temperature field and electric 
field in inclusion and matrix are obtained by conformal 
transformation and the series expansion.  
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2 Problem formulation  

 

Fig. 1. A schematic diagram of elliptical thermoelectric 
inclusion with an interfacial crack in an infinite matrix. 

The elliptical inclusion embedded in infinite 
thermoelectric material matrix under far-field 
thermoelectric load is considered, as shown in Fig. 1. An 
interfacial crack

2L  appears at the interface between the 

inclusion and the matrix due to debonding. Assuming that 
thermoelectric material is transversely isotropic, the long 
and short axes of ellipses are divided into x axis and y axis 

with radii of a  andb  , respectively. In Fig.1,
0L  represents 

the interface between inclusion and matrix,
1L  represents 

the uncracked part, and 
210 LLL  . 

The constitutive equations [17]    
h T sTj                 (1) 

j s T                   (2) 

where
x y

 
  

 
 , h  is the heat flux along the x  and y

direction. j  is energy flux.T  is temperature,  is electric 
potential,   is thermal conductivity, s  is seebeck's 
coefficient, is electric conductivity and sT  is Peltier 
coefficient.  

From Eqs. (1) and (2), we can get 

  
2 2

2 2

( ) 0

0

s T

s T

    

  

    

   
     (3) 

where 2 is the two-dimensional Laplace operator.  
From Eq. (3), we can take the real part of the analytic 

function as follows  

 

1
T [ ( ) ( )]

2
1

[ ( ) ( )]
2

z z

z z

  
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where z x iy  , ( )z and ( )z are analytic functions, 

and  means complex conjugate. 
The interface conditions of matrix and inclusion can be 

expressed as 
(1) (2) (1) (2)

20      0   onn n n nh h j j L    (5) 
(1) (2) (1) (2)

1T T 0   0   onL     (6) 

where the superscript (1) and (2) represent the matrix and 
inclusion region respectively. Here n  is the normal 
direction of the interface. 

Now, introduce the following mapping function 
1

2 2

( ) ( )

( ) / (2 )

z R m

z z c R

  



   

  
         (7) 
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
, 2 2c a b  . 

 

Fig. 2. The conformal transformation 

Under the above transformation, the interface 
conditions (5) and (6) can be expressed as 
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3 Theoretical solution of the problem 

Introducing the new complex potential functions 
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By analytically extending the complex function 
defined above in the matrix region to the inclusion region, 
one has 

1 1
( ) ,    

1 1
( ) 0 | | 1

u

v
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   (11) 

In this way, the interface conditions (8) and (9) can be 

reduced to Riemann-Hilbert problem as
 

2( ) ( ) 0,u u       (12) 

1( ) ( ) 0,u u       (13) 

2( ) ( ) 0,v v       (14) 

1( ) ( ) 0,v v       (15) 

The solution of equations (12)-(15) can be expressed 
as 

’‘
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In the formula ( )F   is a Plemelj function and the 

expression is 

    1/2

1 2( )F     


      (18) 

The analytic functions ( )  and ( )  can be 

expanded in the matrix region as Laurent series 
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where 
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As an example, we consider the case where the 
interfacial cracks are symmetrically distributed relative to 
the x  axis. When the far field only acts on that uniform 

heat flux 
xh  and 

yh  the electric flux loadings are 

impermeable, one gets 

  1(2) (2) (2)
0

1
(1 ) , 0 ( 1)
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(22) 

whereM  is the material constant matrix which can be 

expressed as follows 
( )s

M
s

   
 

   
    

. 

Since energy flux j  is transported by both electric 

current density e and heat flux h , thus energy flux j can 

be expressed as 

 j h e   (23) 

Defining the current intensity factor eK  , heat flux 

intensity factor hK  and energy flux intensity factor jK  , 

one obtains 

lim 2 ( )eK e
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   (24) 

lim 2 ( )hK h
 
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
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lim 2 ( )jK j
 

  


   (26) 

where 12   ,  eKe 20 , 

 hKh 20 , and  jK j 20 . 

4 Numerical analysis 

In this section, the influence of the inclusion shape on the 
thermoelectric field and temperature will be analyzed. 
Fig.3 shows the change of temperature with the interface 
crack angle under different a/b values. It can be seen that 
the temperature decreases with the increase of the 
interface crack angle, which shows that the interface crack 
reduces the properties of thermoelectric materials 
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Fig. 3. The temperature changes with the crack angle of the 

interface at different a/b values 

 
Fig. 4. The current intensity factor changes with the crack angle 

of the interface at different a/b values 

 
Fig. 5. The heat flux intensity factor changes with the crack 

angle of the interface at different a/b values 

Figs.4-5 show the change of dimensionless current 
intensity factor and heat flux intensity factor with the 
interface crack angle under different a/ b values. It can be 
found that two physical quantities decrease with the 
increase of the interface crack angle, which indicates that 
the interface crack reduces the conversion efficiency of 
thermoelectric materials. 

 

5 Conclusion 

In this paper, using the conforming mapping and the 
theorem of analytic continuation, the thermoelectric 
medium with elliptical inclusion of interfacial cracking 
problem is studied. Based on the complex variable method 
and series expansion, exact solutions are presented in the 
matrix and inclusion. From the obtained expressions, it 
can be found that the thermoelectric field and electric 
potential depend on the material constants of each phase, 
the geometric parameters of the system and the conditions 
of the thermoelectric loadings at infinity. Numerical 
examples are given to discuss the influence of inclusion 
size, inclusion volume fraction and inclusion properties. 
The result shows that the inclusion reduces the conversion 
efficiency of thermoelectric materials. In the case of multi-
inclusion interaction, it is not enough to use only the 
inclusion density parameters. The inclusion distributions 
should be considered and extracted. 
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