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Abstract. This paper proposes a data-driven stochastic optimal power flow model considering the 
uncertainties of renewable energy sources. The proposed model also focuses on the constraints of reactive 
voltage, aiming at improving the safety of voltage amplitude and reactive power output at each bus. Using 
data-driven linearization techniques, we simplified the calculation of system. In addition, Wasserstein 
ambiguity set was used to describe the uncertainties of renewable energy prediction error distribution, and a 
robust stochastic optimal power flow model considering N-1 security constraints is established. The 
simulation results on IEEE-39 system showed the accuracy and effectiveness of the distributionally robust 
optimization model and the reactive voltage constraint model provided a more stable operation schedule. 

1 Introduction  

The grid-connected operation of Renewable Energy 
Sources (RESs) makes the balance between the 
economic benefits of the transmission grid and the 
reliability or safety of the system more complicated. In 
recent researches, stochastic optimization (SO) and 
robust optimization (RO) are currently used to tackling 
optimal power flow (OPF) with uncertainties. However, 
the SO assumed that prediction errors of uncertainties 
followed a certain probability distribution, such as 
Gaussian distribution[1]. These assumptions are 
unreasonable and cannot simulate the real power system 
operating characteristics due to the complex nonlinear 
phenomena. What’s more, the RO completely ignores 
the statistical information of uncertainties, leading to 
conservative solutions. In the real world, the probability 
distribution of prediction errors can only be calculated 
from limited data sets, so data-driven methods[2]have 
been widely used in stochastic OPF models with 
Conditional Value-at-Risk (CVaR) [3]. Distributionally 
Robust Optimization (DRO) method [4] combined the 
above-mentioned stochastic OPF with the traditional RO, 
using historical data to estimate the parameters of the 
distribution[5]. It minimized the operation cost of the 
system under the worst case of uncertainties distribution 
and considered both robustness and conservativeness.  

However, the existing power transmission grid model 
with uncertainties does not take into account the 
constraints of the node voltage and the reactive power 
output of the generators, which will cause the calculation 
to be inconsistent with the real world. This paper 
establishes a multi-period data-based DRO model for the 
transmission grid OPF with renewable energy and 
storage, which also fully takes into account the voltage 

magnitude constraints and reactive power constraints of 
each node in the system for optimization. The results on 
the IEEE-39 case showed that safer and more 
economical strategies for the system can be made base 
on our DRO model considering voltage and reactive 
power. 

2 Stochastic OPF model  

Let Vt t t
i i iV   C denotes the voltage at node iN at 

time t  , which {1,2, , }N N is a set of buses, 

and t T is the operating horizon. t
iV is the voltage 

magnitude and t
i  is the phase angle. Define the complex 

vectors 1 2

T
: V , V , ,Vt t t t N

N    v C . Let ijz be the 

complex impedance of the line between bus i and bus j , 

then the line admittance is 1/ij ij ij ijy z g jb   . The 

admittance matrix is N NY C . The power bus injections 
are given by 
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Where t
iP  and t

iQ  indicate active and reactive power 

injection at bus i . t t t
ij i j    are the difference of 

phase angles between bus i  and bus j . Vectors of 

active and reactive power are 1 2, ,...,t t t
NP P P  

Ttp =  
T

1 2, ,...,t t t
NQ Q Q   

tq . The line transmission power 

between bus i  and bus j  are given  
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  2, cos sin ,m t t t t t t t t
l i i j ij ij i j ij ijP V V V g V V b m    E  (3) 

  2, cos sin ,m t t t t t t t t
l i i j ij ij i j ij ijQ V V V b V V g m     E  (4) 

where ,m t
lP  and ,m t

lQ  indicate active and reactive line 

transmission power, and 
T1, 2, ,, ,...,t t t L t

l l l lP P P   p , 
T1, 2, ,, ,...,t t t L t

l l l lQ Q Q   q  are the vectors of them at time 

t . 
In addition, OPF model has various constraints on 

grid-connected devices and branches including generator 
ramping limits, state of charge limitations for energy 
storage devices, power injection ranges, voltage 
magnitudes and line flows and other device limits. All 
these constraints can be modeled or approximated as 
linear inequalities form as  

Tx ω                                   (5) 

where x , , , , , v ,
TT T T T T T T T T T

g g l l   es es esp q p q ,p q p ,q e, ,

, ,T T T T
g g es esp q p ,q are active and reactive power of 

generators and energy storages respectively, T
ese is the 

state of charge for energy storage. 
Power balance is given as 

g l

g l





p = p p

q = q q
                            (6) 

where lp , lq is the active and reactive power for loads 

at bus i . 
To deal with the non-convex of AC power flow, this 

paper adopts a data-driven linearization method [6]. The 
data-driven linearization method is based on formulas(1) 
and (2) to obtain the linearized power flow equation by 
using the inverse regression model, that is, the unknown 
variable ,i iV   is the function of the known 

variable ,i iP Q . 

Arrange the formula based on different types of buses 
in the following sequence , ,PQ PV V with subscript 

, ,L S R respectively. The inverse regression equations 
can be expressed as a block matrix form as  

V
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,
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where VA and VC are the coefficient matrix related to 

voltage calculation. The branch power flow (3)can be 
mapped by regression from m

lP , m
lQ  to iP similar to the 

mapping of power injection: 

=l PF PF

 
 

 q

p
p C                         (8) 

where PF is the coefficient matrix related to branch 

power flow calculation. 
Based on data-driven power flow linearization model, 

the stochastic OPF model considering voltage constraints 
given as: 

 
0

min
T

t
t

h

E

     (9) 

   0s.t.   Wx K GRE                          (10) 

  0Tx ωt  RE
               (11) 

t Cx L = 0                  (12) 
where x includes all the decision variables, R indicates 
the transformation of the inequality constraints into 
stochastic versions, h denotes the operating cost of the 

grid,  E is the expectation of variables. Constraints (10)
includes the stochastic form of voltage magnitude and 
branch power flow constraints based on linearized 
equations, constraint (11)is the stochastic form of 
constraint (5), formula (12) is the matrix form of power 
balance equations.  

Due to the uncertainty of renewable energy, 
ξ defines vectors of variables’ forecast errors, so the 

affine form  
 x Fξ D                         (13) 

where x is parameterized by a nominal value D  plus a 
linear function F  of prediction error of uncertainties ξ . 

Define a set tV  includes lN constraints (10)-(11), each 

individual constraint in the set can be written in the 
affine form as  

     , , 1, ,,o o o
F F o ND D                (14) 

where,  o  is the -o th affine constraint in the set tV . 

The CVaR with risk level  in the set tV is   

  inf , 0,
o

o o oF D


   


    CE       (15) 

where,   indicates positive values making sense, 

o R   is an auxiliary variable[7]. The expectation of 

(15) is expressed in the form  

   1,2max ,o k ok ok o 
    y        (16) 

where T, :a b a b , the decision variable  , ,F D y . 

When 1k  :       1 ,o oo  FW DWy ; 

   1o o o oo
      ξG W K . When 2k  , 

   
2o  0y ;  2o o o   . 

3 Data-driven distributionally robust 
stochastic optimal power flow  

In the optimization model, the distribution P of 
uncertainties   should be well known, but the real 

distribution cannot be obtained from limited data. An 
empirical distribution can be obtained from limited 
historical data, and the "distance" between the real 
distribution and the empirical distribution can be defined 
by Wasserstein radius, so the distribution of uncertainties 
belongs to the ambiguity set  

   : ( ) : ,
s sN N

wd    P MP P P         (17) 

which contains all the distributions within a Wasserstein 
ball of radius   centered at uniform empirical 

distribution  sN
P . Where is the support set, SN is the total 
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number of training dataset, ( )M defines the space 

contains all probability distributions supported on a 

set , wd is the 1-Wasserstein distance between  sN
P and 

P  known as Wasserstein metric. The specific 
information can refer to [8]. 

The goal of Multi-stage distributionally robust 
stochastic optimal problem is to minimize the weighted 
sum of an operating cost and a constraint violation risk 
under the worst-case distribution in the forecast 
ambiguity set   

 Cost Risk min max J JE              (18) 

where RiskJ defines constraint violation risk function, 

which is a sum of CVaR of a set of constraint functions: 

Risk 1
: CVaR

N

i
J 


  

P                    (19) 

where (0,1]   refers to the confidence level of the 

CVaR under the distribution P of the variable  ;  is a 

weight; Cost J is the operating cost function: 

 2

Cos 2, 1, 0,
d d
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d

J c P c P c
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Based on (16), the constraint violation risk function 
of objective function can be transformed to  

 Risk 1,2
ˆ1

ˆˆ sup max ,
Ns

N

k ok ok o
o
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In this paper, we also consider the security 
constraints of transmission system. The outages included 
any single generators, lines, or loads, taking total 

c n LG G L N   possible outages. Define j
misP R  for 

the generation-load mismatch given by 

m

,  if {0}

,  if 
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where GI , lI and LI are the sets of outages 

corresponding to a generator, a line and a load. 
 0 means no outage, and  0 lG L   I = I I I . We 

also define another respond matrix m
jR , the decision 

variable becomes 

m m+ j j j   RD PFx ξ I            (23) 

Considering N-1 security constraints of transmission 

system, the decision variable becomes  m, , RF Dy , 

so the data-driven distributionally robust stochastic 
linearization OPF: 
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    ˆ ˆ, ,i i
ok o ok iko ioH K       dy   (25) 

 T
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
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0iko                                 (27) 

   
m m 0

1
+ j j

SN
   D RF P KW Gξ      (28)

, , 1, 2si N o N k     Cx L = 0,       (29) 

where  : :NR H     d is ambiguity set, 

constraint (27)indicates the ambiguity set non-empty. 
When 0iko  , there is no uncertainty in the model. 

    ˆ,io ok i ok oK    y  , o  is the auxiliary 

variable. 

4 Case studies  

A modified IEEE-39 bus test system shown in Fig.  1is 
taken as an example to prove the effectiveness of the 
proposed model. Two wind farms are connected to bus 
#30 and bus #34 with the normal power 700MW and 
500MW respectively, and the corresponding 
conventional generators are removed. The energy 
storage systems are also placed in the system at certain 
bus and the locations are marked by orange boxes. Their 
capabilities are 500 kW h . To simplify our presentation, 
only two line flows are handled with distributionally 
robust optimization with red lines in the figure. The rest 
of line flows are modeled by N-1 security constraints 
with CVaR. In addition, conditional risk values of 
voltage magnitude are added to the objective function.  
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Fig.  1.  Modified IEEE-39 bus test system 

The accuracy of data-driven linearization model is 
related to the size of regression training dataset. We use 
the size of training data is 1000. Compared with AC 
power flow, we use the maximum error to demonstrate 
the accuracy of the model. The error of voltage 
magnitude is 0.001 p.u., and the error of active line flow 
is 2.65 MW. Therefore, the results of the linearized 
model meet the requirements of calculation accuracy. 

We assumed the forecast errors have zero mean and 
standard deviations of 300MW and the operating period 
was 24H. Wasserstein radius measures the distance 
between the real distribution and the empirical 
distribution. The larger the radius is, the greater 
uncertainties of the real distribution is, and the more 
conservative the solution is. In Fig.  2 shows the 
solutions of the proposed data-driven ditributionally 
robust stochastic linearized OPF for varying risk 
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aversion and Wasserstein radius. When the branch line 
flows and voltage magnitudes did not exceed the 
boundary, the CVaR value may be negative. When 

0  , the model is a deterministic model. It can be 
concluded that there is a tradeoff between operating cost 
and CVaR. Larger CVaR corresponds to lower operating 
cost, and larger Wasserstein radius corresponds to larger 
operating cost and CVaR. The conservativeness of 
generator control strategy can be realized by 
adjusting  and  . 
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Fig.  2.  Tradeoffs between operating cost and CvaR 

Furthermore, taking branch #34 as an example, Fig.  
2 shows the line flow variating with  and  . This 

simulation shows that large  and  ensures smaller line 

constraint violation. We can make some important 
constraints weight to higher their priority. Furthermore, 
this simulation also proves that the conservativeness can 
be controlled by changing values of and  . Similar to 

the analysis of branch power flow, the dotted line 
indicates the upper and lower bound of voltage 
magnitude. We treated bus #14 as an example, the 
variations are shown in Fig.  4. When  and   are small, 

it causes overvoltage at some time point. As  and   

increase, all the voltages become lower than their 
bounds. This leads to better robustness to forecast errors. 
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Fig.  3. Variations of line flow with different  and   

5 Conclusion  

In conclusion, the data-driven power flow linearization 
model used in this paper has high accuracy and meets the 
practical production. The value of Wasserstein radius 
and risk affect the optimal solution of stochastic 
optimization, and with their increasing values branch 
line flow and voltage magnitude become lower than their 

bounds. Considering the reactive power and voltage 
constraints in the model, the risk of overvoltage will be 
significantly reduced to keep the voltage quality at buses 
and maintain safe and stable operation. 
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Fig.  4. Variation for voltage magnitude with different  and   
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