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H∞ fault estimation of robot joint in finite frequency domain 
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Abstract. The fault estimation of robot joint is of great significance to improve the reliability and stability 
of robot joint. Based on the design of fault diagnosis observer and the finite frequency theory, a method of 
H infinite fault estimation with frequency domain is proposed. The design method combines H infinite filter 
wave with finite frequency technology effectively, and has strong anti-interference performance, Compared 
with other design methods, the method proposed in this paper can improve the accuracy of fault estimation 

1 Introduction  

.Since its invention in the last century, industrial robots 
have been widely used in many industries, such as 
industrial production, national defense, military industry, 
transportation, food and medical treatment, etc, It 
simulates human joints, and its joint structure is driven 
by controller and servo system to complete complex 
work,. From the control point of view, the multi joint 
manipulator is a multi input multi output nonlinear 
control system, At the same time, in order to meet the 
needs of continuous, stable and reliable operation in the 
harsh environment of industrial production site, strict 
requirements are put forward for the design of its core 
controller and control algorithm, and the robot joint is 
required to have the function of fault estimation to 
ensure the continuous production of the production line 
and reduce the loss caused by joint failure[1, 2]. 

As a new hotspot of control theory, fault diagnosis 
has always been concerned by many researchers. In 
recent years, many research methods have emerged in 
this field, such as fault diagnosis based on sliding mode, 
fault diagnosis based on fault diagnosis observer. At the 
same time, the research in intelligent field has also been 
applied in the field of fault diagnosis, such as the method 
based on neural network observer, A method of deep 
learning. 

As a new hotspot of control theory, fault diagnosis 
has always been concerned by many researchers. In 
recent years, many research methods have emerged in 
this field, such as fault diagnosis based on sliding mode, 
fault diagnosis based on fault diagnosis observer. At the 
same time, the research in intelligent field has also been 
applied in the field of fault diagnosis, such as the method 
based on neural network observer, The method based on 
sliding mode has a good effect on interference 
suppression, but its switching chattering problem affects 
its practical application. The intelligent method based on 
neural network has a high requirement on system 
operation ability, which limits its practical application. 

Aiming at the problems of low accuracy and limited 
application of robot joint fault diagnosis, combined with 
the research results in the field of fault diagnosis at home 
and abroad, a robot joint fault diagnosis method based on 
generalized KYP lemma fault diagnosis observer is 
proposed to improve the effect of robot joint fault 
diagnosis 

1.1. Mathematical model of plane two joint 
manipulator 

For the convenience of calculation and analysis, Through 
dynamic modeling, the state equation of planar two joint 
rigid manipulator can be expressed as: 
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with, 
a = 7.6794 kg/m2,              b = 2.4730 kg/m2, 
c = 2.7985 kg/m2 

 
Fig. 1.Schematic diagram of two joint rigid manipulator 

 
In order to establish the mathematical model of the 

manipulator to meet the design requirements of the fault 
estimator, this paper makes the following deformation of 
the planar two joint manipulator model [3]. 
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with: 
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The model of the deformed manipulator is obtained 
as follows: 

 ( ) ( )X A X B u     (4) 

with 
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After the above deformation, the nonlinear strong 
coupling planar two joint rigid manipulator model can be 
transformed into an easy to handle LPV model 

2 The finite frequency domain index and 
generalized KYP theorem 

The generalized KYP lemma is a generalization of the 
standard KYP lemma. Compared with other finite 
frequency domain methods, such as frequency weighting 
method and frequency axis gridding method, the 
generalized KYP lemma effectively establishes the 
relationship between the frequency domain condition 
and the time domain condition in the system angle, 
which is easy to understand in form and easy to apply in 
engineering 

Lemma 1 (generalized KYP lemma): consider system 
1 and transfer function matrix 2, there is a symmetric 
matrix  , and the following two conditions are 
equivalent: 

(i) Inequalities in finite frequency domain 
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(ii) there exist n × n Hermitian matrices P and Q 
satisfying Q > 0, and 
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Lemma 2: considers system 1 and transfer function 2, 
and makes symmetric matrix have the following 
conditions equivalent: 

(i) Finite frequency inequality: 

min ( ( )) > ,    [0, ]lG j        (8) 

Among them,   it is a positive scalar 

(ii) there are matrix variables P, Q, which meet Q > 0, 
and 
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with, 
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Proof: because 
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Formula (6) becomes 

 2( ) ( )TG j G j I     (12) 

amount to 
 min ( ( )) > ,    [0, ]lG j        (13) 

Quoting lemma 1, the theorem is proved. 
Lemma 3 (Finsler lemma) 
(i) Matrix inequality 

 ( ) 0TUL U 
 

  (14) 

Set up, where U


is the satisfied 0UU 


matrix 
(ii) in a matrix such that 

 0T TL UY Y U     (15) 
In this paper, the joint fault estimator based on finite 

frequency domain technology can improve the accuracy 
of fault estimation. 

①  The finite frequency method can improve the 
sensitivity of fault estimator to frequent low frequency 
faults 

②  At the same time, considering the anti-
interference performance of the designed fault estimator, 
the influence of external interference on the fault 
estimator is reduced, and the probability of false alarm 
and missing alarm is reduced 

③ Compared with other traditional finite frequency 
methods, this method reduces the amount of calculation 
and is easy to be applied in engineering practice 

3 Design of joint fault estimator for 
robot 

Next, the design method of finite frequency domain fault 
estimator for robot shutdown is given by combining 
observer theory and finite frequency theory [4, 5]. 

3.1. Mathematical model of fault estimator  

Consider the following linear time invariant systems 

 
( ) ( ) ( )

( )

f dx Ax Bu t B f t B d t

y t Cx

   




  (16) 

In the above formula, x(t) represents the system state, 
f(t) represents the fault signal, ( )d t  represents the 

external interference of the system, ( )f t  represents the 

system output, and the finger joint position in the 
manipulator system. A,B,Bf,Bd,C are known constant 
matrices 

The general method to estimate fault information is 
to design an observer for the target system 
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In order to reduce the deviation between the fault 
estimation and the actual value as much as possible, the 

state estimation error ( )e t  and the fault estimation error 

( )f t  are defined. 
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According to equation (17) and equation (18), the 
following error system can be obtained 
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Therefore, the design problem of the finite frequency 
domain fault estimator for robot joints can now be 
transformed into solving the matrix H, V, so that the 
error system of the above equation (19) satisfies the 
following performance conditions: 

 [ , ]| ( ) || fff
G s   

    (20). 

3.2. Fault sensitivity condition  

In this part, we consider that d(t) is equal to 0 in (19), 
and we get 
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with, A A HC   
In order to improve the sensitivity of the observer to 

the fault signal, the following theorem is proposed 
Theorem 1: consider the system (21), consider the 

transfer function as 

 1
2

0
( ) ( ) ,

0

I
G s C sI A B D

I
  

       
  (22) 

With known positive real number, when the 
following inequality conditions are satisfied. 

 min ( ( )) > ,    [0, ]lG j        (23) 

The sufficient condition is that there exists a 
symmetric matrix, P, Q such that the following matrix 
inequalities hold 
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It is proved that the frequency inequality (23) is 
equivalent to that in the low frequency range according 
to lemma 1 (GKYP). 
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It is easy to see that equation (26) can be written in 
the following form 
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from 

 TU I A      (28) 

According to Lemma 3, the sufficient and necessary 
condition of equation (28) is that there exists a matrix Y 
such that 
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By substituting formula (23) and formula (29) into 
formula (26), formula (24) can be obtained 

3.3. Design of joint fault observer for LPV robot 

Let the motion range of planar two joint robot be  

1min 1 1max 2min 2 2max,          According to the 

convex decomposition theory, the state equation of the 
robot can be described as 
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Aiming at the vertex of robot joint convex 
polyhedron model, the joint fault observer parameters 

1 2 3 4 1 2 3 4, , , , , , ,H H H H V V V V  are solved 
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4 Simulation and experimental 
verification 

The robot system of formula (1) is simulated by 
MATLAB, and the parameters of fault observer are 
calculated by LMI toolbox 
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The corresponding four closed-loop poles of the fault 
observer are: 

  -1.9843  1.4569i, -1.9843  1.4569i   

It can be seen that the designed finite frequency 
domain H-infinity fault observer meets the stability 
requirements. In the simulation, the fault signal is given 
as sine wave and step signal respectively, and the noise 
signal is white noise. The observation effect of the 
designed finite frequency domain fault observer is 
compared with that of the general full frequency domain 
fault observer 

 

Fig. 2 fault estimation effect of finite frequency domain fault 
estimator on step migration 

 

Fig. 3 estimation effect of finite frequency domain fault 
estimator on sinusoidal fault in design frequency domain 

 

Fig. 4 estimation effect of finite frequency domain fault 
estimator on sinusoidal fault beyond design frequency domain 

It can be seen from Fig. 2 and Fig. 3 that the 
designed finite frequency domain fault observer has high 
sensitivity to fault, and has good fault tracking accuracy 
for sine wave and triangular wave time-varying fault 
signals, which achieves good fault estimation effect 

It can be seen from Figure 4 that when the fault 
frequency exceeds the designed frequency of the fault 
observer, the output fault waveform accuracy of the fault 
observer will decrease, and the design index cannot be 
reached. 
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