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Abstract. The energy performance assessment of buildings during design is usually based on energy 

simulations with pre-defined input data from standards and legislations. Typically, the internal gain values 

and profiles are based on EN 16798-1. However, studies have shown that the real electricity use of plug load 

and lighting varies more smoothly than in the profiles of EN 16798-1 where zero occupancy outside working 

hours is assumed. This might result in sub-optimal building solutions due to inadequate building 

performance simulation input data. The aim of this work is to structure and analyse data from a total of 196 

electricity meters in 4 large office buildings in Tallinn, Estonia. Typically, 3 to 8 electricity meters were 

installed per floor with the consumption coming mainly from plug loads and electric lighting. The data had 

been gathered between the years 2016-2020 with either 1 or 24 hour time steps, depending on the building 

and the electricity meter. 3 out of the 4 buildings had an average normalized energy usage slightly below 

the modelling value calculated according to EN16798-1. Some office spaces stood out with an abnormally 

high electricity consumption; however, the 24-hour distributions were fairly compact, meaning quite steady 

consumption patterns. When looking at the dispersion of energy consumption per 24h, averaged over all 

given offices in a building, no outliers stood out, either. This means that there are not many days when the 

average consumption and internal heat gains of all offices were simultaneously well below the mean. 

Additionally, major events like holidays and the COVID19-induced lockdown show up well on the graphs, 

but also planned changes in occupancy can be seen.  

1 Introduction 

Office buildings are well known to consume about 40% 

of the total energy share of the European building sector 

[1]. As the European Union (EU) has set long-term 

targets to reduce carbon emissions and energy 

consumption significantly, improving the energy-

efficiency of office buildings is a priority. To this aim, 

researchers and designers are now focusing on structural 

improvement as well as on smart technologies, which 

can align building operation and occupants’ needs. 

Such alignment is a crucial characteristic of modern 

approaches: the heating system is now viewed as a 

means for temperature control rather than just emitting 

heat to rooms. It has been indeed demonstrated that 

internal and solar heat gains of intermittently operated 

buildings such as office buildings (OB) can cover the 

majority of heat losses [2].  

This happens because heat gains from people, 

equipment and lighting as well as ventilation heat loss 

have a large impact on heat balance. The fluctuating heat 

gains and non-demand based ventilation operation make 

the thermal behaviour dynamic. This is not accounted 

for in the current design methods, whose conservative 

and simplistic approach of accounting heat gains results 
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in over-dimensioned and sub-optimally operated 

systems. On the contrary, the dynamics of heat balance 

and energy performance of a modern OB require a fairly 

complex analysis to be performed with advanced 

computational methods. Building performance 

simulations (BPS) provide a powerful tool in this sense 

already at the design stage: for instance, in Estonia it is 

mandatory to use dynamic (namely, hourly-based) BPS 

for calculating the Energy Performance Certificate 

(EPC) of commercial and residential buildings. 

Unfortunately, even with simulations there often exists 

a sizeable difference between calculated and actual 

energy performance of buildings. Calì et al. [3] 

demonstrated that the consumed energy can be up to 3 

times larger than the calculated estimates; occupants’ 

behaviour was identified as one of the causes of the 

performance gap in addition to errors in installation and 

operation of the buildings. Several studies have 

therefore developed modelling strategies based on the 

monitored use of OBs, focusing either on occupancy [4], 

lighting [5] or plug loads/computers [6] measurements. 

It became immediately clear that the real electricity use 

of plug load and lighting varies more smoothly than in 

the profiles of default occupancy schedules building 

codes and standards, such as the EN 16798-1 [7], where 

zero occupancy outside working hours is assumed. More 
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often than not, plug loads and lighting consumption are 

indeed sizeable also outside occupied hours [8] [9]; 

significant variances between daily electricity uses of 

single occupants or office rooms do exist as well. It is 

thus necessary to track the OB’s energy use during the 

entire 24 hours period, and to study how the 

measurements correlate with more sophisticated 

occupancy schedules. This knowledge can then be 

implemented into accurate BPS for guiding simulation-

based design decisions. Reducing the size and cost of 

heating and cooling systems, simultaneously increasing 

their efficiency, will then lead towards a new generation 

of dynamic sizing methods for the heating and cooling 

of office buildings. 

In this paper we lay down such experimental 

groundwork, which is critical for identifying the typical 

use of equipment and lighting in office buildings in 

order to develop methods for e.g. integration into 

building simulations in order to reduce energy use, 

improve tenants’ comfort, building flexibility etc. The 

aim of this work is structuring and analysing data from 

a total of 196 electricity meters in 4 large office 

buildings in Tallinn, Estonia. Three to eight meters were 

installed per floor, monitoring plug loads and electric 

lighting. The data had been gathered between the years 

2016-2020, with either 1 or 24 hour time steps 

depending on building and electricity meter. 

Table 1 List of relevant properties for all the buildings. 

Properties A B C D 
No. of floors (total) 13 13 8 13 

Monitored floors 7 12 8 12 

Zones per floor 4 4 6 8 

Total area 

monitored (m²) 

4938.3 8508.2 4052.0 13989.6 

Customer service 

nr. of offices 

% 

 

4 

19% 

 

2 

11.8% 

 

3 

7.5% 

 

5 

4.2% 

 

Administrative 

nr. of offices 

% 

 

9 

42.9% 

 

11 

64.7% 

 

33 

82.5% 

 

 

107 

89.9% 

 

IT 

nr. of offices 

% 

 

8 

38.1% 

 

4 

23.5% 

 

4 

10% 

 

7 

5.9% 

Total 21 17 40 119 

Meas. points (total) 32 48 50 102 

Outlier % 5.09 11.91 5.01 9.91 

Resolution 0.001 0.001 1 1 

Original data unit kWh/h kWh/h kWh kWh 

Start date 2019-

01-01 

2019-

01-01 

2017-

12-08 

2018- 

01-05 

End date 2019-

12-31 

2019-

12-31 

2020-

03-07 

2020- 

03-07 

2 Methods

In this section we describe the datasets acquisition and 

structure, data preprocessing and methods of statistical 

analysis. 

 

Figure 1 Raw data for Building A. 

2.1 Datasets acquisition 

This study is based on electricity consumption data 

acquired from four office buildings located in Tallinn, 

Estonia (Table 1). 

Each floor of any building was divided into zones 

where electricity consumption was metered separately; 

most of the floors follow a standard layout, only the first 

and second floor have a larger area. 

Each measurement point had three-phase electricity 

meters that were compatible with a 230/400 VAC 

voltage system. Measurements were performed with 

class B meters conforming to EN 50470-3, which had 

been installed during the construction of the building. 

The data acquired from the meters was stored in a 

building management system from which it could be 

downloaded into a CSV file. 

The amount of data from each building ranged from 

11 to 27 months. The time resolution of the data was 

preset by the building management system operator; two 

buildings displayed hourly data and the other two had 

daily data (Table 1). 

 

Figure 2 Raw data and outlier predictions for Building B. 
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2.2 Data preprocessing 

2.2.1 Data format

A detailed overview of the building-specific 

parameters, including floor areas, measurement point 

counts and time ranges is given in Table 1. The original 

data came in two types of formats. For Buildings A and 

B, this was a non-cumulative series of hourly kWh 

consumption readings with 0.001 kWh resolution, for 

Buildings C and D it was a cumulative series of daily 

kWh readings with 1 kWh resolution. 

The data of Buildings C and D was then converted to a 

non-cumulative series (kWh/24h) by calculating the 

differences of two contiguous entries. 

In order to give the finalized consumption values in 

units per square meter, the project documentation of the 

buildings was used to gain information about the 

serviced floor areas for each electricity meter. The 

official areas were given with 0.1m² precision, however, 

since there were some inconsistencies, we fixed the 

estimated error at 1m². 

2.2.2 Data cleanup

As a first step, some periods of data were left out 

based on existing knowledge about building occupancy 

(see Table 1). A few electricity meters, which according 

to the project documentation were labelled as ordinary 

office meters, were also excluded, since their behaviour 

and power consumption were significantly different 

from a typical office meter’s pattern, possibly 

monitoring the consumption of some mechanical 

equipment. 

The COVID-19 impact could also be seen in the 

graphs as the power usage significantly dropped from 

March 2020 onwards (Figure 1), so the latest cut-off 

date for all buildings was set to March 7th, 2020. 

After visualizing the time-series graphs of used 

power (kW), numerous other problematic time periods 

showed up, as in Figure 1. These were either affected 

by stuck readings or by abnormally high peaks. The 

reasons for such errors could have likely originated from 

the BMS (Building Management System). One possible 

explanation for such peaks is the accumulation of used 

energy while the BMS was shut down since most 

electricity meters do not log energy consumption with a 

timestamp. There is also a possibility of external 

interference in the measurements caused by 

electromagnetic compatibility issues or poor error 

mitigation inside the BMS. However, these eventualities 

have not been verified in the current scenario. 

For further analysis of anomalous behaviour and 

outliers, an algorithm was developed to remove 

potentially bad data points. Some parameters were 

adjusted slightly for a couple of buildings for more 

optimal detection, but the general method is as follows, 

in the given order: 

• If the reading of a single electricity meter at any 

given time is significantly different from the mean of all 

meters at that time, exclude the slice. This is necessary 

to avoid losing outliers after the data has been averaged 

across a building. 

• This step applies only to Buildings A and B (1h 

timestep). If more than half of the meters show static 

behaviour, exclude the slice. This is again necessary, 

since there appeared to be numerous small stops in the 

readings of individual electricity meters, additionally to 

the large, synchronized freezes mentioned before. 

• Calculate the average consumption across a 

building at any given time.  

• Group the averaged data by weekdays (and hours, 

if applicable) and exclude points where the value is 

further than 2 standard deviations of that group’s mean. 

• Create a combined score of first and second 

absolute differences of the series, where the second 

difference has a slightly higher weight. Exclude points 

where the combined score exceeds a threshold. This 

helps to remove smaller peaks and abrupt changes. 

After visualizing the predictors with this method, 

some additional time periods stood out with poor 

behaviour, as can be seen on the left side of Figure 2, 

thus they were left out. 

2.2.3 Conversions for distribution analysis
(Buildings A and B)

The data for power consumption distribution 

analysis were given in units kWh/(24h·m²) for 

compatibility. This has already been achieved with 

Buildings C and D, but conversion was needed for 

Buildings A and B. 

Since the data had been cleared of outliers, simply 

summing up the hourly readings of each day could have 

returned lower than actual results, due to missing values. 

However, excluding all days that have any missing data 

would result in a huge loss of data; to reduce the number 

of lost days, a linear forward interpolation of maximum 

four hours was thus applied before excluding days with 

any missing values. 

2.2.4 Statistical data analysis

The cleaned-up data were processed with the software R 

[10] through various packages that allowed exploring 

distributions as well as performing normality and 

correlation tests. For Buildings A and B, the 1-hour data 

were used for daily and weekly analysis, while the 

monthly assessment used hourly data that were averages 

of all Mondays, Tuesdays etc. of that month. These 

correspond to the “average” or “representative” days 

that are addressed in the next Section. 

3 Results

3.1 Boxplots of daily consumption

3.1.1 General

The plots in Figure 3 to Figure 6 show distributions 

of datapoints in kWh/(24h·m²) of each measuring point 
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in a building. The whiskers of the boxplot are drawn at 

5th and 95th percentiles. Green triangles represent 

arithmetic means and green lines represent medians. 

The red, dashed horizontal line represents the 

reference value used for modelling energy consumption 

of office buildings, calculated according to EN16798-1 

[7]. The value is 0.1089 kWh/(24h·m²), which assumes  

power consumption of 0.018 kW/m² (0.006 for lights 

and 0.012 for equipment) at an average usage level of 

55%, over an 11h period in a day. The blue horizontal 

line represents the calculated average consumption of 

the selected offices in a building. 

3.1.2 Analysis

For Buildings B, C and D the average falls only 

slightly below the reference value, but for Building A 

the average consumption is significantly higher. It 

seems that most of the monitored offices in Building A 

have an average consumption above the reference value, 

so the high average is not caused by any outstanding 

offices, rather from a general behaviour of the 

occupants. Table 1 displays more administrative than IT 

offices, however the high consumption should not be 

related to pc use only. We have no info about employee 

number either, so no correlations can be generated 

between user profiles and consumption patterns. 

 However, the two zones with the highest 

consumption in Building C are known to be dentist 

offices. On the far right, a column called “AVG” shows 

the distribution of average daily consumption values of 

all the measurement points combined. The variance is 

quite small, compared to the variance of all other offices 

in that given building. 

This means that there are no large, synchronized 

swings in the  building’s total consumption, which can 

also be seen in Figure 2 in the graph “mean and clean”. 

 

Figure 3 Boxplots for Building A. 

 

 

 

 

 

Figure 4 Boxplots for Building B.

Figure 5 Boxplots for Building C. 
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Figure 7 Cumulative daily power consumption, 2019 monthly 

breakdown for all buildings. 

3.2 Monthly analysis and seasonal variations

 For each of the four buildings, a monthly 

breakdown of weekday cumulative consumption 

[Wh/m2] for the year 2019 was computed. This was 

obtained, for buildings A and B, by adding all the 

average hourly values; for buildings C and D cumulative 

daily values were averaged (24h time step for the data). 

The result is plotted in Figure 7 for each building. 
Considering the full interval 2016-2020, small 

differences among the years do exist, whilst the overall 

pattern does not change qualitatively. Consumption is 

higher in the Autumn and Spring months, not during the 

winter as generally expected. For each case, we found 

very little correlation between climate and tenants 

consumption: let us remind that only plug load and 

lighting consumption were monitored, not heating. 

Let us consider Building A as an example: a Pearson 

correlation test returned 0.999 for January versus June, 

showing a high correlation between winter and summer 

months. This was confirmed by a Kendall test (more 

sensitive than the Pearson test) as well. 

Furthermore, the same test provided -0.69 and -0.68 

for tenants consumption versus, respectively, measured 

sunshine duration and daily external temperature, which 

is indicative of a weak correlation. For 2019, the largest  

consumption was recorded in March, followed by 

October and November. 

It is interesting to investigate the role of sunshine 

duration more into detail, since our data addressed both 

equipment plug load and lighting. Since sunshine 

duration accounts for cloud coverage, differently from 

daylight hours, it can influence switching lights on and 

off. A plot of daily average power consumption in 

function of measured monthly sunshine hours is given 

in Figure 8 for Buildings A and B, and in Figure 9 for 

C and D. For Building B we used January 2020 data, as 

the January 2019 data were not sufficient for the 

statistics. Remarkably, January 2020 was as sunny as 

March 2019, namely over 3 times sunnier than January 

2019. It was also much warmer, with average T=3C 

versus -3C in 2019. Yet, its average daily consumption 

was 10% larger than February 2019 (T=1C) and March 

2019 (T=2C), confirming the importance of occupancy 

schedules. 

At the building level, Table 2 features the 

correlation matrix of 2019 monthly consumption for the 

four datasets. Building A is fairly uncorrelated from the 

others, consistently with e.g. Figure 7, while B and C 

seem to be slightly more comparable. Although the fact 

that A and B have 1hr  and C and D have 24hr data 

hinders any speculation about occupancy patterns, the 

low overall correlation mirrors the absence of a common 

climate-induced seasonality in the data. 

 

Figure 8 Building A (dots, left axis) and B (triangles, right 

axis) - Cumulative daily power vs monthly sunshine hours. 

 

 

Figure 6 Boxplots for Building D. 
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Figure 9 Building C (dots) and D (triangles) - Cumulative 

daily power consumption versus monthly sunshine hours. 

 

Figure 10 Building A - Tenants' consumption for January 

2017, representative week.

Table 2 Correlation matrix for the four datasets, 2019.

 A B C D 
A 1.000 0.273 0.333 0.455 

B 0.273 1.000 0.636 0.515 

C 0.333 0.636 1.000 0.455 

D 0.455 0.515 0.455 1.000 

3.3 Daily analysis

3.3.1 General considerations

The tenants’ electric consumption is illustrated for a 

representative January 2017 week in Figure 10. Notice 

the sharp decrease at lunch break and the lower 

consumption for Fridays, as expected. 

Qualitatively, the weekday curves do not differ 

much between winter and summer months, confirming 

the high correlation already discussed. This agrees with 

the data distribution, which is sharply bimodal with the 

two peaks at the histogram extremes for each month. 
We recall that Buildings C and D provided only with 

24h data, therefore it was not possible to investigate the 

hourly breakdown as in Figure 10. This section will 

therefore discuss our findings only for A and B. 
Considering a specific day with expected full 

occupancy, we chose a central Wednesday in January 

2017. The daily consumption reflects our results for 

monthly averages: normality is confirmed by QQ 

(Quantile-Quantile) plots and a Cullen and Frey plot, 

while histograms show a clear bimodal pattern with 

modes at the extremes. The statistical parameters of the 

distribution are an estimated standard deviation (SD) of 

4.797, a skewness of  0.288 and a 1.219 kurtosis. The 

large SD and low kurtosis signify that, despite the 

substantial data cleanup described in Section 2.2.2, we 

are still in the presence of outliers, as illustrated in 

Section 3.1. 

3.3.2 Energy consumption prediction formulas for 
building performance simulations (BPS)

Aiming at using our measurements for 

implementation into BPS, we generated prediction 

formulas of energy consumption by adapting to our 

dataset a bottom-up method that was introduced for 

domestic hot water data in [11] and then applied to 

buildings’ energy consumption in [12]. The case of [12] 

addressed a much larger building, with relatively small 

variances in the hourly consumption profiles for 

different weeks and months, so it was possible to 

identify a unique representative day whose consumption 

could be correlated to other days, to cover a full year. 

 On the other hand, for Building A (and even more 

for B) too many days had very different profiles, 

requiring a less simplistic approach. For instance, July 

2019 showed the cumulative consumption of the most 

correlated Monday to be equal to that of the average 

Monday, while for Tuesdays the difference was 

remarkable, 5.62%. Preferring an average day to a 

specific day as representative was therefore more 

suitable. 

Since hour-by-hour prediction in this case is not 

reliable, we focused on predicting the cumulative energy 

consumption with the lowest error possible; we also 

wished to keep smooth interpolation curves to avoid too 

biased predictions. The procedure followed these steps: 

1. The cumulative consumption of average days for 

each month is split into four groups: Mon to Thu (WD), 

Friday, Saturday and Sunday. The value that is closest 

to the average is called Ewd, EFri, ESat, ESun. For Building 

B, the corresponding days were February Wednesday, 

March Friday, June Saturday and September Sunday. 

2. Interpolate each of these four reference days and 

obtain the fit formulas E���,��(�) etc. These are our 

“structural formulas” according to the terminology of 

[12]. Consumption for a random day can now be 

predicted by using linear correlations with the formulas 

 

�(t) = A ∗ E���,��(t) + B,     [
/�2] (1) 

 

for weekdays and 

 
��,�(t) = E���,�(�) ∗ R�,�  [
/�2] (2) 

 

for Fridays and the weekend, where i=Fri, Sat, Sun and 

m=1,...,12. The coefficients A and B are computed by 

correlating each month with the one corresponding to 
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the structural formula. For Building B, February holds 

for weekdays, with coefficients listed in Table 3. 

 
Table 3 Monthly correlation formulas for Building B.

Month A, B (Mon-Thu) R2 

January 1.0891, 0.0545 0.9739 

February 1,0 1 

March 0.957, 0.1653 0.9965 

April 0.9406, 0.2385 0.991 

May 0.9925, 0.1338 0.9963 

June 0.945, 0.2415 0.9923 

July 0.8788, 0.3439 0.9929 

August 0.9478, 0.2147 0.9932 

September 0.9785, 0.1522 0.9938 

October 1.0452, 0.1172 0.9772 

November 1.0753, 0.0216 0.9719 

December 1.0374, 0.1425 0.9803 

 

For Friday and the weekend, one should instead use 

Eq.(2), where  

R�,� =  ��,�/����,� (3) 

 

(i=Fri, Sat, Sun) is a non-dimensional coefficient that is 

computed for each case, given the cumulative energy of 

the average desired day ��,� (say, for January Friday) 

and that of the fitted day ����,�. The R�,� coefficients for 

Building B are listed in Table 4. 

 
Table 4 Ri,m coefficients for Building B.

Month Fri Sat Sun 
1 1.074 1.056 1.079 

2 0.973 0.935 0.925 

3 1.000 0.984 0.945 

4 0.992 0.976 0.947 

5 1.019 0.960 1.005 

6 0.984 1.000 0.984 

7 0.928 0.960 0.959 

8 0.974 0.978 0.964 

9 0.985 0.978 1.000 

10 1.041 1.031 1.021 

11 1.044 1.031 1.029 

12 1.024 1.042 1.056 

    

Using the above method, we could predict the 

consumption with small deviations from measurements. 

The errors ranged from 0.96% to 3% for Mon-Thu, 

0.94% to 4.31% for Friday, 0.15% to 3% for weekends. 

4 Discussion

During analysis, numerous concerns arose regarding 

the actual reliability of the data. Inconsistencies in the 

project documentation, occasionally over-dimensioned 

electricity meters, numerous logging problems with the 

BMS and major occupancy changes resulted in a dataset 

that was far from ideal. 

However, it can be shown that computing the error 

propagation for weighted averages of all electricity 

meters per unit floor area resulted in negligible final 

error bounds (0.004 W/m2 on the average). This 

suggests that installing more meters could produce more 

accurate data, giving an advantage over measuring 

everything at the building level only. Additionally, 

having more meters would allow excluding undesirable 

zones, which will very likely be present, as well as 

leaving the ability to distinguish between different types 

of consumption. It is indeed well known that diverse 

space-use typologies (distinguished by a combination of 

tenants’ tasks and time-based occupancy) generate a 

variety of daily consumption profiles, see e.g. [9]; a 

whole-building zonal analysis would thus allow 

tailoring the HVAC design to these diverse needs. 

One of the data features that could be learned from 

the box plots comes from the average daily consumption 

values of all the measurement points combined, which 

has a small relative variance for that given building. This 

means indeed that there are no large, synchronized 

swings in the building’s total consumption, which can 

also be seen in Figure 2 in the graph “mean and clean”. 

However, further analysis can be done about the 

upper, 95th percentile values of individual offices, 

especially for buildings where hourly data is also 

available. This could give more information about local 

peak loads for dimensioning mechanical equipment, as 

well as finding different correlations. 

Our efforts in measuring electricity locally instead of 

per building showed that it is advisable to invest in 

measuring electricity locally, rather than being content 

with measurements at building level, for two reasons. 

First, the variance induced by diverse types of offices is 

substantial; this important information disappears if data 

are aggregated for the whole building. Secondly, our 

statistical analysis of monthly and daily patterns showed 

a lower impact of climate and irradiation hours than 

expected, illustrating the predominant role of occupancy 

that strongly depends on the specific office typology. 

The analysis of monthly consumption brought 

forward some interesting non-trivial features. First of 

all, the high correlation between daily profiles during 

winter and summer months is a signal of a recursive 

pattern that is not influenced by added sunshine hours. 

Figure 8 and Figure 9 also illustrate that although 

some correlation with sunshine duration does exist, this 

is seemingly dominated by the plug load. In Figure 8, 

March dominated over January and February, and April 

and May over August (Building A). This is common to 

all the buildings here studied (see also Table 2), 

suggesting a central role of occupancy consistently with 

[12] and underlining a necessity to address its impact 

thoroughly. 

The daily analysis showed that, although the absence 

of a standard energy profile was problematic for an 

hour-by-hour prediction, by focusing instead on the 

cumulative consumption we managed to establish a 

procedure that allows implementation into BPS with 
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good accuracy. The basic idea was that the 

inconsistencies tend to compensate each other, giving 

room to some unavoidable tolerance. 

5 Conclusions

In this paper we have investigated plug loads and 

lighting consumption data of four office buildings in 

Tallinn, Estonia, over a four years period. Data 

acquisition and preprocessing of some very problematic 

measurements were discussed into detail, together with 

a simple, yet effective prediction method for application 

into BPS towards energy estimates. 

Among the other results, we have demonstrated that 

it is preferable to install more meters rather than 

measuring everything at the building level, for increased 

accuracy and for keeping relevant information. 

Consistently with previous studies, we also found that 

occupancy patterns are central in determining the 

electricity consumption. 

The definition of a typical office building should 

therefore be discussed (e.g., IT and administrative work 

can be quite different in terms of energy use intensity), 

occupants’ density (measured or estimated?), installed 

plug loads and lighting power etc. These could all 

provide useful information in order to shift the focus of 

energy performance research, in order to consider the 

actual energy use. 

We wish to remark that the amount of data analysed 

is quite remarkable by itself: whilst not providing a fully 

exhaustive overview of energy consumption in non-

residential buildings, it is larger than the average 

datasets that appear in this type of studies. 

Overall, the gathered information has a number of 

applications on different levels, from tailored 

predictions aimed at renovations, to refinement of 

applied predictive modelling strategies, to classification 

and benchmarking of building energy consumption. 

Considering our findings and the above 

improvements, this study and its developments have the 

potential to contribute to future calculations of energy 

performance estimation in office buildings. And even if  

after COVID-19 we may never go back to the old way 

of office use, our dataset finds formal application in 

predictive modelling strategies. It also constitutes a 

good basis for energy consumption benchmarking,  as it 

provides a baseline upon which future optimisation 

strategies based on new working styles can be 

compared. 
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