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Abstract. The article is devoted to the issues of the synthesis of the parameters of an elastic-

damping device built into the excavator’s digging mechanism to reduce dynamic loads. The 

determination of the parameters of this device was carried out by solving the inverse problem of 

dynamics using the Volterra integral equation of the second kind, which allowed linking these 

parameters to the nature of the transition process without finding the frequencies of natural 

oscillations. The transition from the differential equation of the oscillatory motion of the digging 

mechanism to the corresponding integral equation has been carried out, and the parameters of its 

resolvent and the elastic-damping device that ensure a decrease in dynamic loads are determined. 

The results of numerical simulation of the elastic-damping device efficiency based on the use of the 

characteristics of the real excavator’s digging mechanism are presented. 

1 Introduction 

The actual problem of creating mining machines (shovel, 

draglines, mine hoisting, drilling rigs, etc.) is the 

problem of reducing the dynamic loads caused by elastic 

oscillations in transient operating modes [1-3]. As it is 

known, the oscillatory component of movement reduces 

the accuracy of the movement of the operating 

mechanisms, accelerates the accumulation process of 

fatigue damage, reduces the durability and reliability of 

the executive mechanisms of mining machines [4-5]. An 

effective way to reduce dynamic loads in mining 

machines is to change elastic-dissipative properties of 

executive mechanisms by using the elastic-damping 

devices (EDD), which are built into design of the 

hoisting and travel mechanisms [6,7] of shovel and 

rotary excavators [8], draglines [9], mine hoist machines 

[10]. This makes it possible to shift the resonance 

frequencies to the region of lower values and to increase 

the intensity of oscillation energy dissipation. At the 

same time, the use of EDD in the mining machines 

mechanisms is associated with the search for the 

compromise solutions between the desired quality of 

transient process and the possibility of technical 

implementation of the proposed solution [8,11]. As 

noted by the authors [6,8], the advisability of installing 

the EDD in the design of single-bucket excavators is 

generally recognized, but effective operation of these 

devices in the "elastic" zone is difficult to implement due 

to the large value of the transmitted forces. 

One of the main problems of using EDD in the 

mining machines mechanisms is the problem of 

choosing the optimal parameters of these devices 

(stiffness and viscous friction coefficients) which is 

usually solved using frequency and root methods, 

including the method of normalized transfer functions, or 

direct mathematical modelling based on a dynamic 

model of the mechanism in which the place of inclusion 

of the EDD in the kinematic scheme, the value of the 

current loads and the conditions of its operation (for 

example, the maximum movement of the operating 

mechanism) [6-12] are taken into account. When using 

these methods, it is not possible to provide an explicit 

relationship between the design parameters of the EDD 

and the nature of the running transient process. In the 

work [13] the value of the use of the analytical methods 

of synthesis is noted, which makes it possible to 

establish the relationship between the nature of transient 

process and design parameters of controlled mechanical 

systems. Analytical methods of synthesis include 

methods based on the use of a concept of inverse 

dynamic problems, which consists in determining the 

required parameters from given finite or differential 

equations that ensure the desired nature of controlled 

motion. This concept was used in the works [14] and 

[15] to select the EDD parameters of dragline 

mechanisms based on setting the law of oscillatory 

motion of the operating mechanism and the form of its 

differential equation. At the same time, the task of the 

finite or differential equation of motion requires finding 

the natural oscillation frequency that limits the 

possibilities of using this approach. For this reason, it is 

of interest to develop the concept of inverse dynamic 

problems by setting the integral equations [16,17], which 

allow relating the parameters of the mechanical system 
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to the nature of the transition process without finding the 

frequencies of natural oscillations. 

In this paper, the synthesis of the parameters, using 

the example of the excavator’s digging mechanism 

equipped with an elastic-damping device, is carried out 

based on solving the inverse dynamic problem using the 

Volterra integral equation of the second kind, and the 

results of numerical simulation of efficiency are 

presented. 

2 Object and method of investigation 

The calculation scheme of the excavator’s digging 

mechanism equipped with the EDD located between the 

drum and the guide block is shown in fig. 1a [14]. In this 

figure the following designations are adopted: 1 is the 

two electric motors with the gearbox and drums; 2 and 3 

are the guide blocks; 4 is the cable; 5 is the bucket; 6 is 

the EDD. Assuming that masses are concentrated, 

representing the cable in the form of a weightless thread 

with constant coefficients of stiffness and viscous 

friction and neglecting friction in the mating nodes of the 

mechanical part, we obtain the following system of 

differential equations of the electromechanical system: 
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where SRU  is the output voltage of the speed controller; 

refU  is the reference voltage; limU  is the clamping 

voltage for forming the steeply falling section of the 

mechanical characteristic; 
СRU  is the output voltage of 

the current controller; pE  is the converter voltage; dvE  

is the DC-motor voltage;
 aI  is the armature current; 1K  

is the tuning coefficient of mechanical characteristics; 

2K  is the coefficient of stop point adjustment; SSK  is 

the gain of the speed sensor; SRK  is the coefficient of 

the speed controller; CSK  is the gain of the current 

sensor; aK  is the coefficient of the armature circuit; 

bK  is the converter gain; α  is the angle of inclination 

of the mechanical characteristic; aT  is the time constant 

of the armature circuit; CRT  is the time constant of the 

current controller; bT  is the time constant of the 

converter; eC  is the voltage constant; 12с  is the stiffness 

of the cable; 12b  is the coefficient of viscous friction in 

the cable; с  is the stiffness of the damper, b  is the 

coefficient of viscous friction of the damper, 1J  is the 

inertia moment of the two motors, and equivalent inertia 

moment of gearbox and drums; 2J  is the inertia moment 

of the bucket filled with rock; 3J  is the inertia moment 

of the damper; 1ω , 2ω , 3ω  are the angular velocities; 

s  is the Laplace operator. 

Since the control system of the electric drive makes it 

possible to exclude oscillations from the electrical part of 

the system, we will consider only free oscillations of the 

mechanical component without taking into account the 

damping properties of the electric drive [12]. The quality 

of the transition process occurring in a mechanical 

system will be determined by the parameters of the 

characteristic polynomial obtained on the system basis 

(1) (see fig. 1b). 
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Fig. 1. Kinematic (a) and structural (b) schemes of digging 

mechanism 

 

Assuming that the input actions from the electric motor 

dvM  and the load cM  are equal to zero and neglecting 

the moment of inertia of the EDD, we solve the 

expression (1) with respect to the elastic force 12M : 

                    012212112012 =+++ MaMaMaM &&&&&& .           (2) 
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Let’s set the initial conditions for expression (2) 

corresponding to the single step change in the elastic 

force: 

 

              0)0(12 =M&& ; 0)0(12 =M& ; 1)0(12 =M .         (3) 

 

Let us reduce the differential equation (2) to the integral 

form [16, 17] by introducing the notation )(12 tuM =&&&  and 

integrating both sides of this equality taking into account 

the initial conditions (3). Finding sequentially the values 

of all derivatives and substituting them into (2), after 

some transformations we obtain: 
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The equality (4) is the integral Volterra equation of the 

second kind with respect to an unknown function )(tu , 

which is included in this equation as a summand and as a 

dependence )( yu  under the integral sign. The kernel of 

the integral equation is the known function: 
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To solve the integral equation (4) it is necessary to find 

the resolvent of this kernel. Using the method of 

successive approximations and taking the kernel itself as 

a first approximation, we determine all iterated kernels 

that can be represented as the following recurrent 

dependence: 
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Summing up all the kernels from the unity to infinity, we 

find the general expression for finding the resolvent: 
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The resulting expression for the resolvent contains the 

system parameters, presented as coefficients 0a , 1a  and 

2a , which can vary in a fairly wide range that 

complicates the analysis. In order to simplify this 

expression, we will use the transition to the new value of 

the argument 
0a

yt
τ=−  proposed in [17], as a result of 

which we obtain:  
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Here 
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c =  and the transition to real time 

will be determined by the scale 0a . 

Taking into account (5), the solution of the integral 

equation (4) is written in the following form: 
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From expression (6) it follows that the form of the 

unknown function will directly depend on the parameters 

of the resolvent (5). Thus, it becomes possible to solve 

the inverse dynamic problem to realize the desired nature 

of motion by establishing a relationship between the 

parameters of the mechanical system and the parameters 

of the resolvent (5). 
Let us find the relationship between the parameters 

of the resolvent 1c  and 2c  with the quality indicators of 

the transition process. It is known that the duration of the 

transition process at different roots of the characteristic 

polynomial is determined by one of them that provides 

the greatest constant of the attenuation time. Therefore, 

the transition process with multiple roots of the 

characteristic polynomial will be minimal in the duration 

[12]. A variant of the polynomial with real roots was 

studied in detail in [17]. We consider the case when the 

roots of the characteristic polynomial obtained on the 

basis of (2) are multiples and complex conjugates: 

 

                            021
2

0
3 =+++ asasas .                         

 

Assuming that the roots of the polynomial are 0xas = , 

we pass to the parameters of the resolvent 1c  and 2c : 

 

                               021
23 =+++ cxcxx .                      (7) 

 

The polynomial (7) has three roots: 1x , 2x  and 3x , one 

of which is always real negative, and the other two roots 

during oscillatory motion have a complex conjugate 

form. The further the roots 1x , 2x  and 3x  will be from 

the imaginary axis, the faster the transient process in the 

mechanical system will proceed. Let us assume that the 

root 1x  is real negative, 2x  and 3x  are complex 

conjugate. If the real part of the complex conjugate roots 

is modulo greater than the root 1x , then the duration of 

the transient process will be determined by its value. 
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Therefore, it makes sense to introduce the following 

dependencies between the roots:  
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where a  is the real root; ξ  is the parameter of relative 

damping; k  is the coefficient that characterizes the 

distance of the roots from each other. 

With a sufficient distance of the complex conjugate 

roots from the real one and with the condition that the 

real root is located closer to the imaginary axis, we 

obtain a form of the transient process close to the 

aperiodic one, since the component of the oscillatory 

motion, determined by the complex conjugate roots, will 

damp much faster and not have a significant effect to its 

curve. It should be noted that with 1>k  the form of the 

transient process is determined by the real root 

(aperiodic process), and with 1<k  - by a pair of 

complex conjugate roots (damping oscillatory process). 

Let us establish the relationship of the roots of the 

polynomial with the parameters of mechanical system 1c  

and 2c , which must have positive values, determined by 

the physical realizability of the system. 

1>k  and the closest root to the imaginary axis will be 

real. Using Vietta's formulas, reflecting the relationship 

between the roots and the coefficients of the polynomial 

(7), we compose the following system of equations: 
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Substituting 1x  and 3,2x  into (8), we obtain the 

following relations between the parameters of the 

polynomial and the coefficients of the roots: 
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Substituting the expression (9) in (10) and (11), we 

establish the relationships between the parameters 1c  

and 2c  with the coefficients k  and ξ : 
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Putting forward an additional condition - 5.0>ξ , 

which will ensure the rapid damping of the oscillation 

component from a pair of complex conjugate roots, we 

will determine the region of existence of the parameters 

1c  and 2c  on the basis of the expressions (12) and (13). 

Choice of the coefficient k  is determined from the 

condition for ensuring maximum response time and k  

varies in the range of 0...2. As follows from the 

expression (9), the parameter a  decreases rapidly with 

increasing k ; therefore, the response time decreases, so 

the value of the coefficient k  should be close to 1. 

The recommended ranges for the optimal 

combination of parameters of the polynomial (7) for the 

condition of aperiodic motion ( 21 << k  and 5.0=ξ ) 

will be located in the ranges: 8.0...68.01 =c  and 

128.0...148.02 =c . It should be noted that the maximum 

value 1c  corresponds to the minimum value 2c , and the 

maximum response time will be observed at a value k  

close to 1. 

Let’s investigate the change of the coefficients of the 

characteristic polynomial (7) at fixed values of the 

parameters of the digging mechanism [15]:
 

2
1 257 mkgJ ⋅= ; 2

2 60 mkgJ ⋅= ; 

radmNc /750012 ⋅= ; radsmNb /15012 ⋅⋅= ; and 

variable values of the EDD parameters c  and b . Using 

the dependences 
2
0

1
1

a

a
c =  and 

3
0

2
2

a

a
c =  we construct the 

regions of existence of the parameters of the polynomial 

(7) during changing the parameters c  and b , and select 

the regions for the optimal combination of these 

parameters (see fig. 2).  

 

 
Fig. 2. Regions of optimal combination of parameters c  

and b  
 

In fig. 2, the region 1 defines the boundaries of the 

damper parameters changing c  and b , which 

correspond to the optimal combination of the parameters 

of the polynomial 1c  and 2c  for the given relative 

damping equal to 5.0=ξ . The lower point of 

intersection of the regions of existence of the parameters 
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1c  and 2c  determines the condition for obtaining the 

maximum response time for the given quality indicators 

of transient processes. The calculated optimal values of 

the EDD parameters for this point were 

radmNc /2200 ⋅=  and radsmNb /725 ⋅⋅= . 

3 Research and discussion 

To check the efficiency of the EDD with selected 

parameters, a numerical simulation of transient processes 

of the excavator’s digging mechanism was carried out 

based on the system of equations (1), with the following 

parameters close to the real mechanism: refU = 0…10; 

scorU = –10 – 1.3; SSK = 0.151; 1K = 10; 2K = 8 

; SRK = 8; CSK = 0.00313; CRT = 0.864 sec; bK = 120; 

bT = 0.01 sec; eC = 17.37; aK = 33; aT = 0.082 sec; 1J = 

572 and 2J = 60 
2

mkg ⋅ ; 12c = 7500 
rad

mN ⋅
; 12b = 150 

rad

mN sec⋅⋅
; radmNc /2200 ⋅= ; radsmNb /725 ⋅⋅= . 

The studies were carried out for the start-up mode at 

the nominal speed, changing the load on the bucket and 

the locking mode. During simulation, the values of 

elastic force in the cable 12M  and the drive torque dvM , 

the drive speed 1ω  and the bucket speed 2ω  were 

recorded. The electromechanical system with 

synthesized parameters of the EDD was compared with 

the mechanism equipped with the EDD 

( radmNc /3000 ⋅= ; radsmNb /800 ⋅⋅= ), the 

parameters of which were determined by the 

dependences proposed in [14]. The curves of the 

transient process are shown in figures 3a and 3b, where 

curves obtained with radmNc /3000 ⋅= ; 

radsmNb /800 ⋅⋅=  are designated by number 1, and 

curves with parameters of the EDD obtained on the basic 

of resolvent (5) are designated by number 2. 
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b) 

Fig. 3. The transient processes of the torques 12M , dvM  and 

angular velocities 1ω , 2ω
 

 

Analysis of the oscillograms from this figure shows 

that the synthesis of the EDD parameters, based on the 

choice of the resolvent coefficients (5) according to the 

specified quality indicators, allows reducing dynamic 

loads while maintaining the response time. At the same 

time, some deviations of the elastic force curve 12M  

from the adopted aperiodic law was observed, which 

could be explained by the accepted assumptions in 

equation (2). 

This approach is essentially close to the method of 

normalized transfer functions [13], in which the 

normalized polynomial is represented by the sum of 

elementary units, and their parameters are determined by 

time constants and relative damping, depending on 

natural frequencies. However, the proposed method 

provides greater clarity and simplicity, since the problem 

of finding the optimal parameters is reduced to simple 

algorithms containing elementary algebraic operations. 

The proposed method for parameters synthesis of the 

excavator’s elastic-damping device, based on the use of 

the Volterra integral equation of the second kind, 

allowed one to explicitly link those parameters with the 

quality indicators (oscillatory and response time) of the 

transient process, determined by the resolvent 

coefficients. They do not contain natural frequencies and 

directly depend only on the physical parameters of the 

mechanical system. The obtained analytical dependences 

reflect a direct relationship between the system 

parameters and the quality indicators of the transient 

process and allow us to formalize the procedure for 

parametric synthesis of such devices. They can be used 

when creating new EDD to evaluate the effectiveness of 

known technical solutions. 

5

E3S Web of Conferences 326, 00026 (2021)   https://doi.org/10.1051/e3sconf/202132600026
IPDME 2021

4 Conclusion



 

References 

1. R.H. Sharipov, Mining informational and 

analytical bulletin (scientific and technical 

journal), 6, 113-116 (2010) 

2. Nuray Erdogan Demirel, Dynamic dragline 

modeling and boom stress analysis for efficient 

excavation (Dissertation, University of Missouri-

Rolla, 2007) 

3. A.G. Stepanov, M.V. Kornyakov, Machine 

Dynamics (Irkutsk State Technical University, 

Irkutsk, 2014) 

4. A.P. Bogdanov, A.A. Gainullin, A.A. Efimov, R.V. 

Levkovich, D.S. Naumov, K.Yu. Okulov, 

Universum: Technical Sciences: electron. 

scientific journal 11 (22) (2015)  

5. I.A. Panachev, M.Yu. Nasonov, K.V. Antonov, 

Proceed. of the Third China-Russia Symposium 

on Underground Engineering of City and Mine, 

177-180 (2004) 

6. V.P. Svinarchuk, Substantiation and choice of 

dynamic parameters of working equipment of 

mining shovel (Dissertation, Moscow Mine State 

University, 2012) 

7. H.N. Sultonov, L.I. Kantovich, Coal, 6, 30–32 

(2014) 

8. R.Yu. Poderny, Mechanical equipment of mine. 

Book for university. 7th ed (Mining Media Group, 

Moscow, 2011) 

9. S.V. Solov’ev, D.A. Kuziev, Coal, 2, 60-62 (2014) 

10. S.R. Ilyin, S.S. Ilina, V.I. Samusya, Mechanics of 

mine hoist: Monograph (National Mining 

University, Dnepropetrovsk, 2014) 

11. A.A. Gubenko, V.P. Svinarchuk, , Scientific Annals 

of MGGU, 1, 12-16 (2011) 

12. A.V. Lyakhomskiy, V.N. Fashilenko, Control of 

electromechanical mining machine systems 

(Moscow State Mining University, Moscow, 

2004) 

13. K.A. Pupkov, at all., High-precision homing systems 

(Fizmatlit, Moscow, 2011) 

14. N.K. Kuznetsov, I.A. Iov, A.A. Iov,  J. Phys.: Conf. 

Ser., 1210, 012075 (2019), doi:10.1088/1742-

6596/1210/1/012075 

15. N.K. Kuznetsov, I.A. Iov, A.A. Iov, IOP Conf. Ser.: 

Materials Science and Engineering, 971, 042016 

(2020) 

16. A.D. Polyanin, A.V. Manzhirov, Integral Equations 

Handbook (Fizmatlit, Moscow, 2003) 

17. A.N. Golubentsev, Integral methods in dynamics 

(Kyiv, 1967) 

6

E3S Web of Conferences 326, 00026 (2021)   https://doi.org/10.1051/e3sconf/202132600026
IPDME 2021


