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Abstract. Additive manufacturing is becoming increasingly popular because of its unique advantages, 

especially fused deposition modelling (FDM) which has been widely used due to its simplicity and 

comparatively low price. However, in current FDM processes, it is difficult to fabricate parts with highly 

accurate dimensions. One of the reasons is due to the slicing process of 3D models. Current slicing software 

divides the parts into layers and then lines (paths) based on a fixed value. However, in a real printing process, 

the printed line width will change when the process parameters are set in different values. The various printed 

widths may result in inaccuracy of printed dimensions of parts if using a fixed value for slicing. In this paper, a 

mathematical model is proposed to predict the printed line width in different layer heights. Based on this model, 

a method is proposed for calculating the optimal width value for slicing 3D parts. In the future, the proposed 

mathematical model can be integrated into slicing software to slice 3D models for precision additive 

manufacturing. 

1 Introduction 

3D printing technologies (also known as additive 

manufacturing (AM)) have been developed for more than 

twenty years. This technology has become a competitive 

technique for manufacturing parts with complex 

structures that are difficult or even impossible to be 

produced via conventional manufacturing technologies 

[1–4]. Fused deposition modelling (FDM) is one of the 

most common AM technologies for manufacturing 3D 

parts. It has been widely used for fabricating not only 

prototypes, but also real life products. The principle of 

FDM is based on the manner of layer-by-layer printing 

and each layer is printed in a line-by-line manner [5–11]. 

Figure 1 shows the process of slicing 3D models for 

fabrication. Once a 3D model is obtained, it needs to be 

sliced into layers and each layer will be sliced into lines 

as shown in Figure 1. Then the final sliced 3D model part 

can be obtained, which will be sent to the printers for 

fabrication.  

Tamburrino et al. [12] studied the influence of slicing 

parameters on the multi-material adhesion mechanisms of 

FDM printed parts. Different slicing parameters will 

affect the final printed properties. We previously [13–17] 

also studied different parameters’ effects on printable 

overhang and bridge features. We also [18–20] proposed 

some new printing methods via improving path planning 

process. Luu et al. [21] proposed an efficient slicing 

method for Catmull–Clark solids with functionally 

graded material. A new slicing algorithm was proposed 

by Wang and Li [22] to guarantee non-negative error 

of parts fabricated in AM processes. A novel toolpath 

generation method was proposed by Flores et al. [23], 

with the aim of fabricating metallic components in laser 

metal deposition technique. Volpato and Zanotto [24] 

studied the influence of different deposition sequences on 

final printed properties in FDM. Ezair et al. [25] 

proposed a volumetric covering print-path slicing for 

printing 3D models with superior properties (such as 

mechanical strength and surface finish). Currently, Xiong 

et al. [26] proposed a process planning method for 

adaptive contour parallel toolpath in AM with variable 

bead widths. The reasons of carrying out the above 

studies are mainly because of that the slicing parameters 

in AM will influence the final printed properties and 

accuracy. Slicing parameters change in each fabrication 

process may lead to unstable results of 3D printed 

properties and dimension accuracy. As shown in Figure 

1(b), will the designed width of the part (Wdesigned) equal 

the final fabricated width (5 x w)? In fact, it is hard to 

achieve Wdesigned = 5 x w in real fabrication processes due 

to the change of process parameters.  

In this paper, a mathematical model is proposed to 

predict the printed line width in different process 

parameters (layer height, print speed, filament extrusion 

speed) for making the fabrication more stable. Based on 

this model, a method is proposed for calculating the 

optimal width value for slicing 3D parts. The mechanism 

of printed line width in AM processes are studied. In the 

future, the proposed mathematical model can be 

integrated into slicing software to slice 3D models for 

precision additive manufacturing. 
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Figure 1. (a) Process of slicing 3D models into layers and lines 

for printing; (b) fabrication process and illustration of slicing 

width 

2 Mathematical model  

2.1 Model for predicting printed line width in 
different process parameters 

In AM fabrication processes, the printed line widths will 

change when process parameters change, especially layer 

height, print speed and filament extrusion speed. In a 

certain situation (all the process parameters keep the 

same while changing the layer height), the final printed 

line width will change as shown in Figure 2. This is due 

to the volume of extruded material keeps the same in 

certain process parameters and when changing the layer 

height, the widths will change. Larger layer height may 

lead to shorter width of printed layer due to extruded 

material volume consistency in certain filament extrusion 

speed. In time ‘t’, the volume (Mextruded) of extruded 

material can be calculated as follows: 

                               (1) 

where π is approximately equal to 3.14159; Dfilament is 

the diameter of filament material; vfilament is the speed of 

filament extrusion speed. The length of the printed line 

during the period t can be calculate as the print speed vprint 

times t as shown in Figure 3. Therefore, the cross section 

area ST in Figure 3 can be calculated as: 

                             (2) 

As can be seen in this equation, the cross section area 

ST will change as filament extrusion speed and/or print 

speed change.  

 

Figure 2. Illustration of line width change in different layer 

heights 

 

Figure 3. Printed length of line during a period t and the cross 

section area ST 

Put the cross section geometry of extruded material in 

Figure 4(a) into a Cartesian coordinate system as shown 

in Figure 4(b). Then the oval geometry curve can be 

represented as:   

 = 1                                                                   (3) 

where a and b are the half lengths of the two axes as 

shown in Figure 4(b). The point ( ) should be on 

the oval curve as shown in Figure 4(b). That means it is 

true when substituting 

                                                                  (4) 

into Equation (3). Then the following equation can be 

derived. 

                                                        (5) 

As shown in Equation 2, the value of cross section 

area keeps a constant regardless of the layer height. When 

the layer height is h as shown in Figure 4(b), the cross 

section area ST can be calculated as 

 

                                                                                       (6) 

Combining equations (2), (5) and (6), the values of a and 

b can be obtained. Then the printed line width in different 

layer heights can be obtained as 

                                                                         (7) 
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Figure 4. Geometry and dimension illustration for calculating w 

2.2 Model for calculating optimal width for 
slicing parts 

During the process of slicing 3D models, the width used 

for dividing a layer into lines is set as a constant by the 

slicing software. Here, the value of width is different 

from the printed line width. The width (wc) here is the 

value used for slicing layers. This value of width should 

be changed when the layer height changes as it is similar 

as discussed in the previous section. In this subsection, a 

mathematical model is proposed for calculating the 

optimal width that should be used for slicing layers. As 

shown in Figure 5, the value of overlapped area changes 

when using different widths to slice a layer. The smaller 

the width is, the more the overlapped area. Once the 

overlapped area is larger than a value, the material may 

overflow as shown in Figure 5(c) and (d). While if the 

overlapped area is smaller than a value, space gap may 

occur between two printed lines as shown in Figure 5(a) 

and (b). The optimal overlapped area and corresponding 

material distribution between two printed lines should be 

as shown in Figure 6, ideally no space gap and overflow. 

Theoretically speaking, this can be achieved when the 

following equation is true.  

                                                          (8) 

where SE is the size of overlapped area E in Figure 6, SE1 

and SE2 are the sizes of areas E1 and E2 in Figure 6, 

respectively. In Figure 6, SE, SE1 and SE2 can be calculated 

as follows. 

 

                                                                                     (9) 

 

                                                                                     (10) 

Based on Equations (8), (9) and (10), the optimal 

width wc for slicing can be obtained. 

 

Figure 5. Overlapped area (dashed) and material distribution 

illustration when using different widths for slicing layers 

 

Figure 6. Optimal overlapped area and corresponding material 

distribution between two printed lines 

3 Conclusion 

In this paper, a mathematical model is proposed to predict 

the printed line width in different layer heights. Based on 

this model, a method is proposed for calculating the 

optimal width value for slicing 3D parts. In the future, the 

proposed mathematical model can be integrated into 

slicing software to slice 3D models for precision additive 

manufacturing. Currently, however, this is only a 

theoretical investigation. Experiments and comparisons 

will be carried out in the future.  
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