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Abstract. The establishment of an integrated fast charging station for photovoltaic storage and charging is 

an effective solution to fast charging of electric vehicles. For the li-battery/Super capacitor hybrid energy 

storage system, it is an effective method to reduce the cost of the system by extending the life of the li-

batteries. This paper establishes the li-battery cycle life estimation model with irregular discharge and 

proposes an optimal energy allocation algorithm of li-battery/super capacitor hybrid energy storage system 

is proposed based on dynamic programming algorithm. Simulation results are presented to validate the 

theoretical analysis.  

1 Introduction  

To meet the growing demand for the fast charging 

stations of electric vehicles, it is necessary to build fast 

charging stations on a large scale. Among a variety of 

rechargeable batteries, li-batteries have relatively high 

power density and energy density, and are widely used 

and mature in technology. In addition, the international 

society is promoting the construction of the new energy 

vehicle power battery recycling system. As a power 

battery for electric vehicles, li-batteries need to be 

replaced when the battery capacity decays to 80% of the 

rated capacity. However, the retired li-batteries still have 

a relatively high capacity. Li-batteries are selected as the 

energy storage device of the hybrid energy storage 

system of the charging station for echelon utilization [1]. 

The charging station load has the characteristics of 

randomness and high power. Irregular charging and 

discharging caused by frequent charging and discharging 

of li-batteries and large-scale fluctuations of load power 

will greatly shorten the service life of the battery. The 

super capacitor unit in the hybrid energy storage system 

can respond to the high frequency part and high power 

part, which can effectively extend the service life of the 

lithium battery, reduce the peak load, smooth the load 

curve, and reduce the negative impact of the load on the 

distribution network. 

When solving the capacity optimization configuration 

problem of the hybrid energy storage system, the 

capacity configuration optimization problem [2-3] is 

highly coupled with the energy allocation problem. In 

the parameter optimization problem of a hybrid energy 

storage system, the optimal configuration solution is the 

number of energy storage devices when a performance 

indicator is optimal, which is an optimal design. And the 

energy allocation problem is an optimal control problem. 

The two are coupled with each other. Therefore, capacity 

optimization and energy allocation strategy optimization 

should be considered simultaneously in parameter 

optimization. At present, most researches on hybrid 

energy storage systems focus on the optimization of 

energy allocation strategies under fixed parameters.  

Reference [4] selects the minimum total cost of the 

hybrid power system and the minimum capacity loss of 

the Li-battery as the optimization goals for the hybrid 

energy storage system of electric vehicles, and uses the 

non-dominant sorting multi-objective genetic algorithm 

(NSGA-II) [5] to solve the optimal configuration scheme 

under the multi-objective. 

For the hybrid energy storage system of medium-

sized electric vehicles, reference [6] selects the 

maximum battery life and the minimum overall size as 

the optimization goals, uses dividing rectangles 

(DIRECT) algorithm to find the optimal configuration 

combination, and verifying that the DIRECT algorithm 

can solve the Pareto front of this multi-objective 

optimization problem. 

For the hybrid energy storage system of trams, 

reference [7] adopts an adaptive energy management 

strategy based on fuzzy logic, and selects the cost of 

absorbing energy from the catenary and the operating 

cost of the hybrid ESS (including investment and cycle 

costs) as the optimization target, to optimize the optimal 

size of trams through multi-objective genetic algorithm 

(GA). 

For the hybrid energy storage system of electric 

vehicles, reference [8-9] uses an integrated optimization 

method to find the optimal capacity combination 
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globally. When optimizing capacity parameters, the 

maximum energy storage capacity is selected as the 

optimization objective. When optimizing the energy 

allocation strategy, the minimum total energy 

consumption is selected as the optimization objective to 

carry out double-layer optimization. And the simulation 

proves that the capacity configuration combination 

obtained by this method can effectively improve the 

energy storage capacity of the hybrid energy storage 

system and reduce the energy consumption of the system. 

This paper proposes an optimal energy allocation 

algorithm of Li-Battery/super capacitor hybrid energy 

storage system based on dynamic programming 

algorithm. The system structure of the hybrid energy 

storage system is selected according to the application 

scenarios of the fast charging station, and the dynamic 

planning model of the hybrid energy storage system is 

established. The optimization goal is to minimize the 

lithium battery life attenuation increment. Then the 

energy allocation scheme of the hybrid energy storage 

system with the least li-battery life attenuation is 

obtained. 

The rest of the paper is organized as follows. Section 

2 introduces Li-battery cycle life estimation model with 

irregular discharge. Dynamic programming algorithm is 

presented in Section 3. Then, Section 4 introduces 

simulation results based on MATLAB. A conclusion is 

presented in Section 5. 

2 Li-battery cycle life estimation model 
with irregular discharge 

2.1. Semi-empirical model based on Arrhenius 
degradation model 

Ambient temperature, discharge rate, depth of 

discharge, charge rate and number of cycles are 

generally considered as the main external factors 

affecting the life of li-batteries. For the Li-battery cycle 

life estimation model, there have been some studies, 

such as the durability model from the perspective of 

internal parasitic side reactions of the battery [10], the 

durability model based on the increment of battery 

internal resistance [11], and the durability model based 

on the growth mechanism of internal SEI [12], these 

models are based on the internal degradation excitation 

of the battery for model analysis and life prediction. The 

calculation process is cumbersome and cannot be 

compared with the life impact factors at the system level 

(such as the depth of discharge, charge and discharge 

rate, Temperature, etc.) to establish a quantitative 

relationship. This paper uses a semi-empirical model 

based on the Arrhenius degradation model [4], which is 

described in (1). 

                       
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where Qloss represents the li-battery capacity loss, A the 

preexponential factor, B the discharge rate correction 

factor, C_Rate the charge-discharge rate, Ea the 

activation energy, Ten the absolute temperature, and R the 

gas constant of 8.314 J mol−1K−1. The parameters in the 

battery capacity loss estimation model A, Ea, and z are 

obtained based on the empirical fitting of a large 

experimental data set. The Ah-throughput Ah represents 

the amount of charge delivered by the battery during 

cycling. 

It is assumed that the semi-empirical model of 

equation (1) is suitable for the dynamic decay process. 

During the analysis, the discharge rate is regarded as a 

constant. Change equation (1) to (2). 
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Deriving Ah in (1) to obtain (3). 
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Combine (2) with (3), (4) is obtained by difference 

mothod. 

1 1

1

a

en

E +B C_Rate z--
zR Tz z

loss,p loss,p h loss,pQ Q A A Q

 
   

    z e   (4) 

where Qloss,p and Qloss,p+1 are the accumulated li-battery 

capacity loss during the previous p and p+1 respectively. 

∆Ah is the total charge in and out of the battery from p to 

p+1, and it is also called the total ampere-hours, which is 

described in (5). 
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2.2 Model with actual parameters 

According to the obtained experimental data, the least 

square method is used to fit the parameters, and the 

dynamic battery attenuation model of the selected single 

lithium iron phosphate battery is obtained [2], which is 

described in (6). 
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Under this semi-empirical model, the influence of 

discharge rate, depth of discharge, and ambient 

temperature on the life attenuation of li-batteries can be 

quantitatively analyzed. However, (7) can only calculate 

the capacity attenuation calculation at a fixed discharge 

rate, depth of discharge, and ambient temperature. If the 

parameters change during the period, the capacity loss 

increase cannot be calculated. 

Put A=0.0032，z=0.824，B=-1516，Ea=15162 into 

(3)、(4). 
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(8) can quantitatively calculate the influence on the 

capacity loss of the li-battery. It is confirmed that the 

capacity attenuation increment of the li-battery in the p-

th sampling period is not only related to electric 

charge,charge and discharge rate, and ambient 

temperature in the pth period, but also to the cumulative 

capacity attenuation value of the previous p-1 period 
Qloss,p-1. So the same charge and discharge process will 

have different effects on li-batteries with different initial 

capacity decay values, and the capacity decay increment 

will gradually slow down as the cumulative capacity 

decay value increases. In summary, the calculation 

formula for the capacity attenuation increment ∆Qloss,p of 

the li-battery is adjusted to (9).  
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When calculating the life of the li-battery cell of the 

hybrid energy storage system in the station, the initial 

state of charge is SOC0, and the whole day is divided 

into X sampling periods, and the li-battery power 

PHESS,bat(n) of X sampling periods is obtained through the 

energy distribution strategy. The power Pbat(n) of the li-

battery cell in each sampling period, calculate the 

attenuation increment ∆Qloss,p of each sampling period, 

and perform cyclic calculation until the cumulative 

capacity loss reaches the limit Qloss_limit. At this time the 

cumulative working time is LHESS,bat (in years) is the life 

value of the li-battery in this state. 

3 Dynamic programming algorithm 

The low-frequency/high-frequency filtering algorithm 

smoothes the curve of li-battery power demand by 

filtering the power demand of the hybrid energy storage 

system, but this method cannot judge the current 

situation, and the super capacitor only acts on the short-

term after the load changes. The following will discuss 

the optimization goal of minimizing the increment in the 

life of the li-battery, and the dynamic programming 

algorithm is used to obtain the optimal energy 

distribution scheme under the fixed configuration 

parameters. 

Dynamic programming is often used to solve 

problems with overlapping sub-problems and optimal 

sub-structures. The multi-level decision-making problem 

is converted to multiple single-level decision-making 

problems. The optimal solution is obtained from the final 

state merge sub-problems, and the calculation time is 

much less than naive algorithm[13-16]. 

The solution process of dynamic programming is 

mainly divided into the following steps: (1) Determine 

the objective function; (2) Select state variables and 

establish the state transition equation; (3) Establish 

initial conditions and boundary conditions; (4) 

Determine the solution sequence, whether to calculate 

from front to back or from back to front. 

3.1 Determine the objective function 

The goal is to obtain the energy allocation strategy of 

the minimum capacity attenuation increment of the li-

battery through dynamic programming. From the li-

battery cycle life estimation model in the previous 

section, the capacity attenuation increment ∆Qloss(k) of 

the kth sampling period accords to (10) . 

  

 
   

1 1

1

1 1

1

=

=
3600

a

en

a bat bat d

en

E +B C_Rate z--
zR Tz z

loss h loss,k

E +B P k / E
z--

zR Tfull bat z z
loss,k

bat d

Q k A A Q

A P k
z A Q

E





 
   



 
 
 
 



 



z e

T
e

  (10) 

In the process of calculating the increment of li-

battery life attenuation, the individual power of the li-

battery is taken into the calculation of Pbat(k), ignoring 

the influence of the initial capacity loss limit. ηd is set to 

0.95, the ambient temperature is set to 15°C, and the 

relevant parameters of li-battery cell life attenuation are 

taken into, which is described in (11).  

In the process of calculating the increment of li-

battery life attenuation, the individual power of the li-

battery is taken into the calculation of Pbat(k), ignoring 

the influence of the initial capacity loss limit. ηd is set to 

0.95, the ambient temperature is set to 15°C, and the 

relevant parameters of li-battery cell life attenuation are 

taken into, which is described in (12). 
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where Pbat(k) is the average output power of the li- 

battery cell in the kth optimized cycle. The goal of 

dynamic programming is shown in(13) ,(14): 

            -1 +loss loss lossQ k Q k Q k    (13) 

                        loss maxmin Q k   (14) 

3.2 Establish the state transition equation 

The state of charge of the supercapacitor is selected as 

the state variable. When the state of the supercapacitor 

changes, the power of the supercapacitor and the li-

battery can be calculated, as shown in (15). 
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where SOC(k-1,i) is the supercapacitor SOC value of 

state i in the (k-1)th period, SOC(k,j) is the 

supercapacitor SOC value of state j in the kth period, 

Psc(k,j,i) is the energy released by the supercapacitor 

energy storage system from state i in the (k-1) th period 

to state j in the kth period, Pbat(k,j,i) is the energy 

released by the li-battery cell in the process. Through 

state transition equation can get the power output status 

of the li-battery cell, and then calculate the increment of 

the li-battery capacity loss in this process. 

3.3 Establish initial conditions and boundary 
conditions 

Set the initial state : set the ambient temperature as 

15°C, the initial battery loss value as 0.1, the initial SOC 

of the supercapacitor as 0.9, and the end state of the 

supercapacitor SOC the same as the initial state to avoid 

the unfairness caused by different end states. During the 

process, the SOC of the supercapacitor is within the 

fluctuation limit range. 

3.4 Determine the solution sequence 

Because the same charge and discharge process will 

have different effects on li-batteries with different initial 

capacity decay values, the solution sequence must be 

from front to back, which is shown in Fig.1. 

Traverse all states of  k=2, and 

calculate the increment in li-

battery cell capacity loss 

caused by different state 

transitions from k=1 to k=2

Calculate and record the 

cumulative loss increment  in 

different states of k=2 

Qloss(2，j)

Traverse all the states of  k=3, 

calculate the increment in the 

capacity loss of li-battery cells 

and the minimum cumulative 

capacity loss of li-battery cells 

caused by all states of k=2 to 

one state of k=3

For the state j when k=3, 

traverse all the states when 

k=2, and calculate the 

increment in li-battery cell 

capacity loss and cumulative 

state loss caused by the 

transition from  k=2 to  state j 

when k=3

When calculating the optimal 

path to k=kmax, traverse all 

states of k=kmax-1, and 

calculate the increase of 

lithium battery cell capacity 

loss from different states 

when k=kmax-1 to the end 

SOC state of k=kmax

Select the smallest 

accumulated loss value and 

record it as Qloss(kmax，1), 

and record the state i Of k= 

kmax-1 as the optimal path to 

the end state at the time of k= 

kmax.

Obtain the optimal path

Select the minimum 

cumulative loss value to 

reach the state j of  k=3 and 

record it as Qloss(3，j). And 

record the state i of k=2 at 

this time as the optimal 

path to the state j of  k=3.

...

Initial SOC is 0.9

 
Fig. 1. Flowchart of the dynamic programming algorithm 

At first, calculate the loss value increment and 

cumulative loss value of each state from the initial state 

to the next layer, then calculate the optimal path to each 

state of each layer, until (kmax-1)th layer. Finally, 

calculate the minimum cumulative loss of each state of 

the (kmax-1)th layer to the end state, and obtain the 

optimal path to the end state. 

4 Simulation results 

According to the load model of the fast charging 

stations and the sampling period of 1s, the plot of the 

load sampling point from 11 o'clock to 12 o'clock is 

shown in Fig.2. 11 o'clock to 12 o'clock is the time 

period when the load model changes most drastically 

during the day. The load is only considered for power 

supply by the hybrid energy storage system, ignoring 

grid power supply and photovoltaic power supply 

temporarily [17-18]. 

For the li-battery/supercapacitor hybrid energy storage 

system, compared to the underlying control algorithm, 

the energy allocation algorithm belongs to the upper-

level algorithm. The power distribution is performed 

according to the charging load demand and the state of 

charge of the supercapacitor at different times. It reduces 

the capacity decay of li-batteries by the energy allocation 

between li-batteries and supercapacity, thereby 

extending the life of li-batteries. The workflow of the 

energy allocation algorithm in the hybrid energy storage 

system is shown in Fig.3. 
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Fig. 2. the load sampling point from 11 o'clock to 12 o'clock 
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Fig. 3. the workflow of the energy allocation algorithm in the 

hybrid energy storage system 
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Next, use 4000 li-batteryies and 120 supercapacitor 

cells as the optimal configuration combination to obtain 

the optimal energy allocation scheme through the 

dynamic programming algorithm. The simulation results 

of optimal energy allocation algorithm based on dynamic 

programming algorithm is shown in Fig.4. 
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Fig. 4. the simulation results of the energy allocation algorithm 
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Fig. 5. the simulation results of the energy allocation algorithm 

Observing the energy allocation of li-batteries and 

supercapacitors in Fig.4, the supercapacitor is 

responsible for supplementing or absorbing the power 

difference between the load and the stable value of the li-

batteries. After adding the super capacitor, the output 

waveform of the li-battery becomes significantly 

smoother than the load waveform, the calculated 

standard deviation is reduced from 336 to 330, and the 

standard deviation of the li-battery output is reduced by 

about 1.8%. 

According to the principle of the low-pass/high-pass 

filtering algorithm in the section 3, the simulation of the 

filtering energy allocation scheme is carried out. When 

the Tf  is set to 25, the cumulative li-battery capacity 

attenuation increment is the smallest, and the allocation 

result waveform is shown in Fig.5. 

The attenuation cost of li-battery refers to the 

replacement cost of the energy storage system due to 

performance degradation during operation [19-21], 

which is calculated as follows. 

              bat,loss bat HESS,bat lossy = C E Q    (16) 
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 T
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If the capacity loss of li-battery exceeds Qloss_limit, the 

battery array needs to be replaced, and calculate the 

number of replaced batteries nbat . 

                1bat loss loss,limitn = ceil Q / Q    (18) 
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The life of super capacitors and DC/DC converters is 

longer than that of lithium batteries, so the hybrid energy 

storage system rarely needs replacing super capacitors 

and DC/DC converters during its lifetime. 

Table 1 shows the the life decay of li-battery with 

different scheme. Based on no super capacitor shceme, 

the li-battery capacity attenuation reduction rate dynamic 

programing scheme is much higher than that of filter 

allocation scheme.In other words, the energy allocation 

algorithm can extend  the life of the li-batteries. 

According to Table 1, dynamic programming scheme 

can minimum cumulative li-battery life attenuation 

increment, which can decrease replacement cost of the 

energy storage system and improve economic efficiency. 

Table 1. the life decay of li-battery with different scheme 

Scheme 

Cumulative  

li-battery life 

attenuation 

increment 

Li-battery 

capacity 

attenuation 

reduction rate 

No super 

capacitor 

scheme 

6.4743*10-5 0 

Dynamic 

programming 

scheme 

6.3132*10-5 2.49% 

Filter 

allocation 

scheme 

6.4334*10-5 0.63% 

5 Conclusion 

In this paper, an optimal energy allocation algorithm 

of li-battery/super capacitor hybrid energy storage 

system is proposed. The li-battery cycle life estimation 

model is established which is used in the objective 

function. Then according to the solution process of 

dynamic programming algorithm, to realize the proposed 

energy allocation algorithm. The simulation result 

validated that the he proposed energy allocation 

algorithm can extend  the life of the li-batteries. 
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