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Abstract. This article presents a modelling and control of the Doubly Fed 
Induction Motor (DFIM), associated with two inverters controlled through 
the Pulse Width Modulation technique (PWM), the control of the DFIM is 
carried out by the approach of Rotor Flux Oriented Control (RFOC) 
according to the direct axis. In this approach, regulation is done by classic 
PI regulators, the latter having undesirable overruns and static errors in 
non-linear systems, for that the introduction of the control by sliding mode 
in place of the classic PI speed regulator, that is in the form of a control 
law based on this type of controller since it is invariant to the non-linearity 
of the system and precise, stable, simple and has a good response time, in 
order to validate the objectives of improving the DFIM behaviour in front 
of the reference parameters, such as the speed and the torque imposed on 
the machine. The results of the proposed approach are validated by its 
implementation on the Matlab/Simulink environment. 
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1 Introduction 
Nowadays, several works have been directed towards the study of the doubly fed induction 
motor, this latter and thanks to the development of static converters and the appearance of 
modern control techniques presents an ideal solution for high power drives and variable 
speed, the association of DFIM with static converters makes it possible to offer different 
control strategies, especially with the configuration on which this machine is controlled 
through two voltage inverters connected reciprocally to the stator and rotor windings, since 
it has several advantages by comparison to other configurations, such as joule losses at the 
inverters, it also offers a speed variation range up to twice the nominal speed [1][2]. 
The control of the DFIM is a delicate operation because of the coupling between their 
different variables unlike a DC machine with independent excitation, which has the 
simplicity advantage of its control, where there is a natural decoupling between the flux and 
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the couple, it is the idea of the appearance of the vector control technique with flux 
orientation, this technique is proposed in 1973 by Blaschke and Hasse [3][4]. 
In the field of control, several techniques have been established to ensure the desired 
adjustment such as the regulation technique by PI or PID regulators which have advantages 
in linear systems, its applications will be ineffective especially with non-linear systems 
which can lead to poor robustness and significant overshoots when these parameters vary 
[5], for this we must use control laws insensitive to parameter variations and non-linearity, 
the advantages of sliding mode control (SMC) are important and multiple such as precision, 
stability, simplicity of implementation [6]. 
The contribution in this work consists in applying the control law by SMC on the speed 
loop to improve the behaviour of the DFIM in the permanent and transient regime, and to 
guarantee the best performances of the machine especially with the variations of the 
reference parameters. 
The organization of the article will be as follows: section 1, make a description of the 
overall system, section 2, Establish the modelling of DFIM, section 3, Describe and 
establish the modelling of rotor flux oriented control (RFOC), section 4, calculate and 
determine the parameters of stator and rotor currents regulators and rotor fluxes, section 5, 
control the speed by sliding mode, section 6, Simulate and interpret the simulation results. 

 

2 Description of the system and modeling of the DFIM 
2.1 Description of the system 

The system is composed of an uncontrolled rectifier connected with the DC bus in the form 
of an RLC circuit to reduce the ripples of the rectified voltage and a voltage inverter with 
which we can control the DFIM via the PWM module, Figure (1) shows the overall system 
to be studied.  

 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Global system model 

2.2 Modelling of the DFIM 

The mathematical model of DFIM after the application of the Park transformation to the 
electrical equations of DFIM in the frame of reference related to the rotating field, allows 
us to arrive at the following system of electrical equations, taking into account the 
simplifying hypotheses [5][6].  
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 Torque and speed expressions: 
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3 Control of the Doubly fed induction motor 

3.1 Rotor flux oriented control  

The principle of flux oriented control (FOC) consists of orienting the flux in such a way as 
to bring the behavior of the DFIM similar to that of the DC machine with separate 
excitation in order to have control of the flux and the torque separately performing 
decoupling [8][9]. 
In this study we have chosen to orient the rotor flux according to the direct axis of the 
referential for this we will have: 
( 0 )rq rd r                                  (4)   

 

    

                 

 

 

 
Fig. 2. Principle of the orientation of the rotor flux 

 
Let's apply the law of orientation on the equations of the mathematical model in the plan dq 
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Which gives: 
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To guarantee a unit power factor just impose [10].                                                                                                    
0rdi                                            (7) 

From expressions (5), (6) and (7) we can establish the expressions of the reference currents 
that can be associated with them in the following table: 

TABLE I.  TABLE OF REFERENCES 

Currents of references                                   Objectives 

0rq   
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Cos 0   0ref
rdi   

 
To meet the theoretical objectives on which the vector control is based, our study is used to 
make a comparison between the reference parameters of the control with that of the DFIM 
to extract the error in each parameter in order to control and put it in zero which eliminates 
the static error with a conservation of the system stability, thus to having a response time 
rather fast the maximum possible which ensures the decoupling between the flux and the 
couple. 
There are three methods which make it possible to ensure the decoupling between the 
couple and the flux such as the method of LECOCQ, RAMUZ and GHOSN, each method 
has its own characteristics but that of LECOCQ is widely used in practice because of their 
technical performances and their simplicity of implementation [10][11][12]. 
The principle of this method allows to add compensation terms which leads to new 
transforms as follows [10][13] : 
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Based on the expressions (1), (8) and (9) we will have:  
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Where vcsdc1, vcsqc1, vcrdc1 and vcrqc1 are considered as compensation terms, which gives 
the same transfer function between the currents and voltages of the same axis to the stator 
and for the rotor. 
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The regulator diagram linked to the stator and rotor currents is illustrated by the following 
figure (3). 
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Fig. 3. Scheme of regulator by the LECOCQ method 

3.1.1 Regulation of stator and rotor currents 

The parameters of the stator and rotor currents regulators are calculated in the same way, 
the block scheme of the stator and rotor currents regulation chain is represented in figure 
(4) 

 

 
 

Fig. 4. scheme of stator and rotor currents regulator 

 

 

 

 

 

 

 
Fig. 6. Operating mode in the phase plane 

The design of the sliding mode control takes into account the problems of stability and good 
performance in a systematic way in its approach, which is mainly carried out in three main 
steps complementary to each other, defined by [14][15]: 

 The choice of sliding surface. 
 The definition of the conditions of existence and convergence of the sliding regime. 
 The determination of the control law. 

3.1.2 Choice of sliding surface 

To regulate the speed, the rotor current Irq must be adjusted. 
The control law is expressed with: 
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The speed error in our case is going to be the sliding surface which is expressed by the 
following law: 

( ) refS    
                                        (19) 

Its derivative is given by: 

( ) refS      
                                              (20) 

By replacing equation (5) in (3) we obtain the expression of the following form: 
2
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Which gives: 
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By replacing expression (18) in expression (22) we will have: 
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3.1.3 Definition of the conditions of existence and convergence of the sliding 
regime 

During sliding mode and steady state:  ( ) 0S    
Therefore,           
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During the convergence mode, the derivative of the lyapunov equation must be negative 
[16]: 

( ) ( ) ( ) 0V S S                                     (27) 
If we replace (27) in (24), we get: 

2
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3.1.4 Determination of the control law  

To satisfy Lyapunov's condition it is necessary that n
rqi  must be of opposite sign to that of 

s(ω). 
The form which meets this condition and which makes it possible to reduce or eliminate the 
chatter phenomenon, which is generally undesirable because it adds high frequency 
components to the control law is expressed, by the following form [14]:  

( ( ))eq
rqi K sign S                   (29) 
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Based on (18), (26) and (29) we can establish the Simulink model of the speed control law 
by SMC, which is illustrated by the following figure (7).  

Fig. 7. Scheme of control law  

4 Simulation result and interpretation 

4.1 Simulation procedure 

For the simulation on the Matlab/Simulink environment, we proceeded to configure the 
DFIM and the control with the parameters of table III and Table IV also; we applied to this 
system the following reference instructions: 
 A trapezoidal reference speed setpoint with a maximum value of 157 rad/s and a 

minimum value of -157 rad/s, the choice of this setpoint is justified by the robustness test of 
this control in order to set it to conditions similar to the reality. 
 An all-or-nothing reference torque setpoint of value 10 Nm applied at time t = 1.8s, to 

put the DFIM under load and at no-load with a variable speed in order to test the behavior 
of the DFIM under the conditions cited. 
After the simulation of the system on the Matlab/Simulink environment we found the 
following results: 
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Fig. 9. Response of the electromagnetic torque 

Fig. 10. Response of rotor flux 

Fig. 11. Response of stator flux 
 

4.2 Interpretation 

The simulation results show an acceptable behaviour of the motor despite of the variation in 
the load.  
The speed of rotation follows its reference with a low tracking error during the transient 
phases, and cancelling out in steady state; it presents low peaks when going from one state 
to another with an overshoot of 0.33 %.  
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We also observe that the speed is sensitive to load disturbances, because there is a peak 
with a relative fall of 2.2 % for the torque of Tr = 10 N.m. In addition, the motor torque 
perfectly follows its reference value, but it presents oscillations during setpoint changes. 
On the other hand, these results also show that the decoupling between the electromagnetic 
torque and the rotor flux is very satisfactory. The direct component of the rotor flux follows 
almost its reference value and the quadrature component takes almost zero value imposed 
by the orientation condition of the rotor flux as shown in Figure (10). However, the 
component of the flux marks some pulses during the application of the load torque and 
especially when the speed is reversed. 

5 Conclusion 
This article presents a modelling of the Doubly Fed Induction Motor, with its control based 
on the study of RFOC with speed control by sliding mode (SMC), and the implementation 
of the system on the Matlab/Simulink environment. 
The results of the simulation have showed an acceptable behaviour dealing with speed 
variations in both directions when empty and when loaded. 
Speed control by sliding mode proves acceptable stability properties of the behaviour of the 
machine. 
This approach presents ripples at the level of the torque; this is the problem to be studied in 
future work using robust controls based on artificial intelligence. 

Appendix 

TABLE II.  PARAMETERS  TABLE 

Parameters Description 
Vsd,Vsq,Vrd and Vrq Stator and rotor voltages (dq) 

Isd,Isq,Ird and Irq Stator and rotor currents (dq) 
Ψsd, Ψsq, Ψrd and Ψrq Stator and rotor fluxes (dq) 

Rs, Rr Stator and rotor resistors 
Ls, Lr Stator and rotor inductors 

M Mutual Inductance 
P Number of pairs of poles 
ωr Rotor angular speed 
ωs Stator angular speed 
Ω Rotation speed 

Tem Electromagnetic torque 
Tr Resistant torque 
f Viscous friction coefficient 
J Moment of inertia 
σ Dispersion coefficient 
ξ Damping ratio 

ω0 Natural frequency 

TABLE III.  ABBREVIATION TABLE 

Abbreviation Wording 
DFIM Doubly fed induction motor 
RFOC Rotor flux oriented control 
PWM Pulse width modulation 
SMC Sliding mode control 
DC Direct current 
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TABLE IV.  DFIM PARAMETERS TABLE 

Symbols Values (Unit) 
Pn 1.5Kw 
Vs 230v 
Vr 130v 
P 2 
f 50Hz 

Rs 1.75Ω 
Rr 1.68Ω 
Ls 0.295H 
Lr 0.104H 
M 0.165H 
f 0.0027kg.m2/s 
J 0.001kg.m2 

TABLE V.  CONTROL PARAMETERS TABLE 

Symbols Values 
Kis(dq) 2736 
Kps(dq) 117 
Kir(dq) 965 
Kpr(dq) 40 
KiΨ 562 
KpΨ 18 

ξ 0.7 
ω0 287 
ti 0.01s 

Kw 157rad/s 
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