E3S Web of Conferences 229, 01057 (2021)
ICCSRE’2020

https://doi.org/10.1051/e3sconf/202122901057

Multi-task Learning for Intrusion Detection and Analysis of Computer Net-

work Traffic

Reem Aljoufi'* and Aboubaker Lasebae!-**

'Department of Computer Science, Middlesex University, London, UK

Abstract. Accurate identification of malicious computer network traffic is a challenging task for a number of
reasons. This is especially highlighted when a new type of attack is launched because the amount of available
data that belongs to this attack can be scarce. Having small amounts of such data makes understanding the
behaviour of traffic and building models to accurately discover it more difficult. In this paper we present a novel
classification method based on multi-task learning for the accurate identification of malicious network traffic
even when little amount of training data is available. We show the effectiveness of our method by carrying
out several experiments and comparisons with existing methods using open source data. Our results show
that our method outperforms those methods especially when training data is scarce. Particularly, it achieves
accuracy values of 98.51% and 99.76% on two computer network traffic dataset settings, whereas a start-of-
the-art algorithm achieves accuracy values of 93.56% and 96.25% on the same settings.

1 Introduction

There are several purposes of Cyber-attacks. These usu-
ally include the access, change or destruction of sensitive
information. Such attacks can also be launched to extort
money from people or interrupt businesses. Hence, attacks
on computer networks can be highly costly and the num-
ber of approaches that attempt to identify malicious net-
work traffic by performing traffic analysis is increasing as
time goes on. This is because the number of cyber-attacks
keeps increasing. This means there is a need for better
techniques to be invented to protect computer devices and
networks [1].

Because it is possible to capture computer network
traffic and transform it into a format suitable for machine
learning, there exists some machine learning techniques
for tackling this problem. This paper introduces a new
machine learning method for the accurate detection of ma-
licious traffic when existing training data is scarce. The
method is a multi-task learning technique where datasets
belonging to different network traffic types and attacks (i.e.
tasks) are used together in the learning process instead of
learning each task separately. The remainder of this paper
is organised as follows: section 2 introduces the concept
of multi-task learning and section 3 provides an overview
of network traffic data, how it is captured, pre-processed
and so on. Section 4 is focused on clearly listing the con-
tributions of this work, and this is followed by a review of
the main existing approaches in section 5. Sections 2 and 7
provide details of the proposed classification method and
its evaluation respectively. The paper then ends with con-
clusions and future work in section 8.

*e-mail: tal008 @live.mdx.ac.uk
**e-mail: a.lasebae @mdx.ac.uk

2 Overview of Multi-task Learning

According to Caruana [2], multi-task learning, or MTL for
short, is a method for improving model generalization by
means of learning related tasks together. The core idea
is to use a form of representation that is shared by these
related tasks so that the joint learning can occur. This has
multiple benefits such as inductive transfer, which is the
effect that happens internally when tasks learned together
can benefit from each other and the ultimately resulting
models are of better quality than when the tasks are learned
individually [3] (which is known as single-task learning, or
STL for short). A visual illustration of MTL and STL is
shown in figure 1. Hence, MTL is by definition a branch
of transfer learning [4], or TL for short, where some form
of learning is performed on tasks where there are large
amounts of data (such tasks are known as the source tasks)
and this learning is exploited to enhance learning for tasks
where data is scarce (such tasks are known as the rarget
tasks).

However, it is important to highlight that in MTL the
tasks are learned together at the same time instead of learn-
ing from some tasks in one stage and then transferring the
knowledge learned to other tasks in another stage. A good
introduction to MTL with useful examples can be found
at [5].

3 Network Traffic Data

Usually network traffic data is captured in a binary format
known as the PCAP format (Packet CAPture). It is pos-
sible to extract numeric features from this data and trans-
form it into tabular format suitable for machine learning

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
(http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 229, 01057 (2021)
ICCSRE’2020

https://doi.org/10.1051/e3sconf/202122901057

Better Quality
data model

*

\ Taskn

(a) Multi-task Learning (MTL)

/,. -~ Taskl T
\ Ti'ﬂlnlns _ Hodal m
\‘_\~

Task 2 “

> Taskn-i “'\

(b) Single-task Learning (STL)

Figure 1:
Learning

Visual Illustration of Single and Multi-task

and further analysis. An existing open-source tool is IS-
CXFlowMeter [6]. After the data is ready for machine
learning, various classification techniques can be used to
classify traffic and identify its type (i.e. whether it is ma-
licious or benign. And in case of malicious traffic, it is
desirable to identify the attack type).

In our current time, there are several well known net-
work attacks of which plenty of data is available. On the
other hand, there are several attacks that are not well stud-
ied because of the scarcity of their captured data. An ex-
ample source of such data is available at [7]. The avail-
able data is a reflection of a real-world situation where an
Intrusion Detection Systems (IDSs), or Intrusion Preven-
tion Systems (IPSs), can be used to spot network attacks
in real-time. An intrusion detection system, or IDS for
short, is a computer program that is used to monitor com-
puter network traffic, attempt to identify malicious, or sus-
picious, activities and generate alerts when such activity
is found [8]. Usually, malicious traffic is much less than
normal (safe or benign) traffic, therefore, it is seen as an
anomaly.

The data shows a significant difference between the
number of available instances that belong to different traf-
fic types (in total it contains 2830742 instances). For ex-
ample, the number of instances available for benign traf-
fic is as high as 2273096, the number of instances for the

DDoS attack is as high as 128027. On the other hand, the
number of instances available for an Infiltration attack is
as low as 36 and the number of available instances for a
Heartbleed attack is as low as 11. The full distribution of
instance classes of this dataset is shown in figure 2. This
is a typical situation as datasets of this type are usually
highly imbalanced.

Traffic type No of instances
BENIGN 2273096
Do$S Hulk 231073
PortScan 158930
DDoS 128027
DoS GoldenEye 10293
FTP-Patator 7938
SSH-Patator 5897
DoS slowloris 5796
DoS Slowhttptest 5499
Bot 1966
Web Attack Brute Force 1507
Web Attack XSS 652
Infiltration 36

Web Attack Sqgl Injection 21
Heartbleed 11

Figure 2: Class Distribution of an Example IDS Dataset

In a scenario like this (where plenty of data is available
for some tasks and very small amounts of data is available
for some other tasks related to these tasks), usually poor
predictive models are obtained when learning the tasks
with small amounts of data. Please notice that in this pa-
per, we refer to each network traffic category as a task (i.e.
Benign is a task, DDoS attack is a task and so on). Be-
cause of the low performance of such models, some im-
provement is required. This paper introduces a multi-task
learning approach to achieve such improvement. The idea
is to learn tasks with large amounts of data together with
tasks with small amounts of data in order to obtain better
models for the latter tasks. More on multi-task learning in
section 2

4 Contributions of This Work

The proposed MTL method in this work is inspired by a
recent work that can be found at [3]. Although it was ap-
plied in the field of drug discovery, it is possible to adopt,

E3S Web of Conferences 229, 01057 (2021)
ICCSRE’2020

https://doi.org/10.1051/e3sconf/202122901057

enhance and apply it in other fields such as the field of au-
tomatic analysis of computer network traffic. It is impor-
tant to highlight the differences between the method intro-
duced in this paper and the above-mentioned method. Our
method differs in the following ways:

e The existing method measures the similarity between
tasks using amino acid sequences whereas we use in-
stance similarity

e The existing method is used in a regression context (i.e.
to predict a real number) whereas our method is classi-
fication (i.e. to predict a category or class) and therefore
the problem setting and evaluation metrics/procedures
are different

e We have identified a weakness in the existing method.
Because it attempts to address a regression problem, it
is not straightforward to distinguish between instances
from different tasks when the datasets are merged.
Therefore, it adds a task ID column as a new feature
(each task is given a task number) and this can mislead
the classifier. This is because when an integer number
(such as 1) is assigned to task A and another number
(such as 2) to task B, mathematically 2 is greater than
1, but does this mean that task B is larger than task A?
not necessarily .. a classifier does not know that and it
will use the task ID as a number and not as a category
(which introduces order between tasks and that does not
really exist)

e This is a weakness in the existing technique that our
work does not suffer from because the class label is used
to distinguish between instances from different tasks

Based on the above, the contributions of our work can be
summarised as follows:

1. Develop a multi-task learning (MTL) approach for
the accurate identification of malicious network traf-
fic (even in case of scarce data)

2. Instead of learning the similarity between tasks, we
quantify it by measuring it using a well-known sim-
ilarity metric (namely, the cosine similarity [9])

3. Identify a weakness in a recent existing method and
demonstrate how our method avoids it

4. Experimentally show that our method outperforms
existing widely used classifiers in different situa-
tions.

5 Existing Work

The use of MTL dates back to the late 1990s where they
were used in an artificial neural network configuration as
detailed in [2]. Since then, researchers have paid atten-
tion to its usefulness and employed it to enhance learning
in several machine learning contexts. One of the most re-
cent approaches is the work in [3] where MTL was used
to obtain better predictive models for drug discovery. The
problem domain was focused on predicting the binding of
small molecules (i.e. potential drugs) on human body pro-
teins (each protein is considered a task). This binding is

quantified using a real number, and therefore the problem
setting was regression. As for task similarity, although
there is existing work that focuses on learning that similar-
ity [10, 11], the reported method exploits the amino-acid
sequence of each protein and uses it to compute the simi-
larity between proteins. This similarity is then assumed to
be the task similarity and the approach combines datasets
from various proteins into one large dataset and adds the
similarity values as new features. Although the method ex-
hibits significantly improved results over single task learn-
ing, it suffers from the weaknesses (and differs from our
work in the ways) listed in Section 4.

Over the last few years, MTL was an active research
area in deep learning (i.e. deep neural networks). An
example configuration is known as hard parameter shar-
ing where hidden layers are shared between multiple tasks
while task-specific output layers are kept separate (this is
the setting designed by Caruana [2]). This setting was
shown to reduce overfitting as explained in [12]. Over-
fitting is the problem that occurs when a trained model
performs well on the training data and poorly on unseen
data. Another configuration is known as soft parameter
sharing where each task keeps its own model (and param-
eters) and regularisation is used to ensure the parameters
of separate models are similar [13, 14]. A recent survey of
MTL in various deep learning configurations can be found
in [15].

A recent approach that uses MTL for Network Traffic
Classification is reported in [16]. It is a deep learning tech-
nique that is developed for network bandwidth and dura-
tion prediction tasks. Another recent deep learning MTL
technique for the classification of network traffic can be
found in [17]. The two methods are based on deep neu-
ral networks and they suffer from the usual deep learning
drawbacks such as the need for large amounts of train-
ing data and the need for extensive compute power and
resources. For example, in [17] a significant amount of
data pre-processing is required as the data needs to be pic-
turized before feeding it into the deep learning architec-
ture (i.e. data must be transformed into a picture-like 2D
representation to be suitable for convolutional neural net-
works). Also, in [16] the data is seen as a time-series and a
1D CNN architecture was used. The authors have selected
only three features to use as inputs and no reason was pro-
vided for this. This is not the case with our approach as we
simply concatenate datasets from different network traffic
types and add the similarity values to obtain extra features
(this is explained in detail in section 2). It is worth men-
tioning here that deep learning architectures for multi-task
and transfer learning in the area of computer network traf-
fic analysis are not difficult to exploit as they have been
shown to contain security vulnerabilities [18].

AS stated in Section 1, MTL can be considered as a
way of achieving transfer learning (TL). TL was used in
the field of cyber-security for the identification of mali-
cious network traffic. An example is the similarity-based
instance transfer (SBIT) work in [19] and, its extension,
the class-balanced similarity-based instance transfer (CB-
SBIT) [20]. The reported approaches use a brute-force like
method to copy instances from tasks with plenty of data

E3S Web of Conferences 229, 01057 (2021)
ICCSRE’2020

https://doi.org/10.1051/e3sconf/202122901057

to similar tasks with small amounts of data. The copying
process is performed only for similar instances. In other
words, the similarity of instances in a small dataset and a
large dataset is measured (assuming each dataset belongs
to a different type of network attack) and whenever highly
similar instances (to the instances in the small dataset) are
found in the large dataset are found, they are copied to
the small dataset so that its size increases (the copied in-
stances are assigned the class of the dataset they are copied
to). This is performed and then learning is performed us-
ing the newly increased in size dataset. Experiments re-
ported by the authors show improvement in model predic-
tions. Our work differs from this approach in more than
one aspect. In more detail, our work employs MTL so
that no instances are copied from large datasets to smaller
datasets. This can give rise to a problem especially when
no form of regularisation or weighting is used to control
how much the copied instances should contribute to the
target dataset (currently they are given the same weight
as the original instances and this is not reliable). Our ap-
proach uses MTL to learn from the datasets as they are
without changing them and this is advantageous. A survey
of existing methods can be found in [21].

6 The Proposed Method

As stated previously, our MTL method in this work is a
novel extension of the recent work in [3]. Our idea is to
consider each network traffic type as a task and then learn
a classifier in a multi-task learning setting (each task is
represented by a corresponding dataset). As part of our
algorithm, we compute similarity between all tasks (com-
pute average instance similarity between instances of all
datasets) as shown in algorithm 1.

Input : Two Datasets (dsl and ds2)
Output: Vector of average similarity values

- Initialize empty similarity vector vsim;
fori e dsl do
- Initialize temporary empty similarity vector
vsim_temp;
for j € ds2 do
- Compute s = cosine_similarity(i, j);
- add s to vsim_temp;
end
- Compute avg_sim = avg(vsim_temp);
- add avg_sim to vsim;

end

- Return vsim;
Algorithm 1: How to Compute Similarity Values be-
tween Instances

The result of the previous algorithm is a vector of the
same length as dsl that contains the similarity values of
the instances of ds1 to instances in ds2. Using this algo-
rithm, a vector of similarity values for each pair of datasets
(i.e. tasks) can be easily computed.

After the pairwise similarity values of all tasks (i.e. us-
ing their corresponding datasets) have been computed, we

concatenate these datasets and add similarity values as new
features as shown in algorithm 2.

Input : n related datasets (each contains data
from one network traffic type)

Output: A Trained Model that can be used for
Future Predictions

1- Merge the n datasets along the columns (i.e.
stack them);

2- Add n extra variables to the dataset resulting
from step 1:

SimToDS 1, SimToDS 2, ..., SimToDS n;

3- Populate the similarity values using the results
from algorithm 1;

4- Train a model using the newly created dataset
Algorithm 2: How to Concatenate Datasets and add

Similarity Values as new Features

What our method does is to join all datasets together
into one large dataset and then add similarity values as new
features to the resulting large dataset. After that a model
can be trained using the large dataset and used for future
predictions.

The dataset resulting after applying algorithm 2 should
look like the example shown in figure 3. Notice the origi-
nal features are on the left and the similarity values are on
the right (this example has four new columns because this
setting involves data from four tasks).

Task f1 22 . SimiToTask1 | SimiToTask2 = SimiToTask3 = SimiToTask4
Task1 1 0.35 0.44 0.12

Task2 0.35 1 0.53 0.39

Task3 0.44 0.53 1 0.61

Task4 0.12 0.39 0.61 1

Figure 3: Contents of Dataset resulting after the Proposed
MTL Method

7 Discussion of Experimental Results

In this section we are going to present our experiments,
show and discuss their results. To demonstrate the effec-
tiveness of our method, we have used the IDS dataset ex-
plained in section 3. We have randomly selected four tasks
and some instances as shown in table 1.

Network Traffic Type (i.e. Task) Number of Instances

Benign Traffic 41176
DDoS Traffic 58168
Bot Traffic 45
Portscan Traffic 57

Table 1: Data used for MTL Experimental Evaluation

Before starting our MTL experiments, we have run ini-
tial evaluation to select the best base-line classifier that
can be trained on the dataset resulting after applying algo-
rithm 2. Our results showed that RandomForest is the best

E3S Web of Conferences 229, 01057 (2021)
ICCSRE’2020

https://doi.org/10.1051/e3sconf/202122901057

performer (and this is consistent with the work in [20]).
Hence, we are going to use it as our base classifier for our
MTL work.

An example dataset resulting after applying algo-
rithm 2 is shown in figure 4. Notice the original features
are on the left and the label column is the class column
(each class is a task). The similarity values are on the right
(this example has four new columns because this dataset
contains four unique class labels as shown in table 1).

Fwd Bwd

Packets/s Packetsis label Sim2DDoS Sim2Benign Sim2PortScan Sim2Bot

0.639 0.724 BENIGN 0.750253 1.000000 0.999135 0.552243
618.000 1236.090 DDeS 1.000000 0.825122 0.099968 0.489020
216.000 288.000 BENIGN 0.245391 1.000000 0.000055 0.571679
558.000 1116.150 DDoS 1.000000 0.694103 0.000006 0.583908

0.303 0.454 BENIGN 0.562439 1.000000 0.997833 0.564032

8.380 10.200 BENIGN 0.649480 1.000000 0.970705 0.598852

9.880 19.800 DDoS 1.000000 0.226170 0.465622 0.193312

8.340 19.500 DDoS 1.000000 0.202440 0.578942 0.370646

15.900 20.200 BENIGN 0.775083 1.000000 0.864287 0.451461
11.600 19.400 DDoS 1.000000 0.289061 0.345324 0.258006

Figure 4: An Example Dataset resulting after the Proposed
MTL Method

7.1 Comparison with RandomForest

In order to demonstrate the effectiveness of our method,
we are going to compare its performance against the best
performing classical classifier (which is RandomForest as
stated above). As we have four separate datasets (one for
each of the tasks shown in table 1), we have created sev-
eral datasets by using various pairwise combinations of
datasets (each two different tasks against each other). Af-
ter obtaining these dataset combinations we have run a 10-
fold cross-validation procedure using RandomForest. This
procedure generates several train/test splits, trains a Ran-
domForest model on the train split and uses it to predict
the test split. After this we have filtered the predictions
by label (i.e. task) and computed the average accuracy for
each label (i.e. task). Figure ?? shows the results for each
pair of tasks (read row vs column).

Benign DDoS Bot Portscan
Benign 1 (0.9997, 0.9997) (0.9999, 0.8000) (0.9999, 0.7543)
i DDoS (0.9996,0.9996) 1 (1.0, 0.8666) (0.9999, 0.5263)
Bot (0.7999, 0.9999) (0.8888, 1.0) 1 (0.9555, 1.0)
Portscan (0.7543, 0.9999) (0.5087, 0.9999) (1.0, 0.9555) 1

Figure 5: Results of RandomForest on Pairwise Task
Combinations

As for the MTL evaluation procedure, we use the same
datasets that have resulted after the pairwise dataset com-
bination procedure but now we add the similarity values
to them as extra features as explained in section 2. Our
results are shown in figure 6.

Benign DDoS Bot Portscan
Benign | 1 (1.0,1.0) (1.0,1.0) (1.0, 0.9824)
{| DDos (1.0, 1.0) 1 (1.0,09777) (1.0,1.0)
Bot (1.0,1.0) (0.9777, 1.0) 1 (0.9777, 1.0)
Portscan (0.9824, 1.0) | (1.0, 1.0) (1.0,0.9777) 1

Figure 6: Results of our MTL Procedure on the same Pair-
wise Task Combinations

Notice the significant improvement in performance
(compare corresponding cells). Please observe that it does
not really matter which base classifier is used (the novel
aspect or our work is adding the similarity values to im-
prove the classification accuracy). You can focus on la-
bels where the dataset size is small (i.e. notice the signifi-
cant improvement when learning is performed for Bot and
Portscan tasks).

7.2 Comparison with CB-SBIT

The implementation of the CB-SBIT algorithm [20] is
freely available. Therefore, we have downloaded it and
used it to perform evaluation and comparison with our
method. In order to run the experiments, we have prepared
the data so that it is compatible with how CB-SBIT works.
We selected three attack types (Bot, Portscan and DDoS)
and we added BENIGN data to them (making sure the re-
sulting datasets are class balanced and there is no overlap
in BENIGN instances). It is worth mentioning here that we
are going to use accuracy as our performance evaluation
metric because datasets are class balanced [22]. Notice
that these datasets do not contain the similarity columns
we add as part of our MTL procedure. Then we used the
available CB-SBIT code as is in the following way:

1. Take the Bot data and randomly split it into two
equally sized datasets (one for use as a Target data
in the CB-SBIT algorithm and the other for use as
test data)

2. We used the Portscan and DDoS datasets as source
datasets in CB-SBIT

3. We ran CB-SBIT with its default parameters

The original Bot Target dataset size was 45 instances (21
Benign and 24 Bot) and the new Bot dataset size (after
instance transfer by the CB-SBIT algorithm) was 118489
instances (59243 Benign and 59246 Bot). As the new Bot
dataset is much larger than the original dataset one would
expect a better model as we now have plenty of data. How-
ever, the results are not as expected. Accuracy before us-
ing CB-SBIT (i.e training the RF classifier on the original
training Bot dataset) is 94.78% and accuracy after trans-
fer (i.e training the RF classifier on the new dataset that
contains the original instances of the small training Bot
dataset and the instances transferred to it from the source
datasets using the CB-SBIT algorithm) is 93.56%. This

E3S Web of Conferences 229, 01057 (2021)
ICCSRE’2020

https://doi.org/10.1051/e3sconf/202122901057

is a surprising result as the CB-SBIT is performing what
is known as negative transfer (i.e. results are worse after
using the CB-SBIT algorithm).

We have repeated the previous steps but now with us-
ing the Portscan data as Target and Test, and adding the
Bot dataset to the source datasets.

1. Take the Portscan data and randomly split it into two
equally sized datasets (one for use as a Target data
in the CB-SBIT algorithm and the other for use as
test data)

2. We used the Bot and DDoS datasets as source
datasets in CB-SBIT

3. We ran CB-SBIT with its default parameters

The original Portscan Target dataset size was 57 in-
stances (26 Benign and 31 Portscan) and the new Portscan
dataset size (after instance transfer by the CB-SBIT algo-
rithm) was 203877 instances (101936 Benign and 101941
Portscan). Accuracy before transfer (i.e training the RF
classifier on the original small training Portscan dataset)
is 82.45% and accuracy after transfer (i.e training the RF
classifier on the new dataset that contains the original in-
stances of the small training Portscan dataset and the in-
stances transferred to it from the source datasets using the
CB-SBIT algorithm) is 96.25%). This is positive transfer
(i.e. results are better after using the CB-SBIT algorithm)

We have applied our MTL method using the same
datasets we have used to evaluate the performance of the
CB-SBIT algorithm. Remember in our MTL we compute
the similarity and add new columns as features (as ex-
plained in section 2). Therefore, these datasets contain the
similarity columns that are computed as part of our MTL
approach. The procedure was as follows:

1. Concatenate the DDoS dataset with the training
datasets of both Bot and Portscan

2. Train a RandomForest classifier on the resulting
dataset

3. Predict the Bot and Portscan test datasets and com-
pute the accuracy for each of them

After MTL, the accuracy was 98.51% on the Bot test
dataset and 99.76% on the Portscan test dataset. This
shows that our MTL approach outperforms the CB-SBIT
algorithms on both datasets. The results of this evaluation
are shown in figure 7. In summary, for the Portscan data,
CB-SBIT shows an improvement in accuracy when com-
pared with using the RF classifier without instance trans-
fer (i.e. the single task learning), but MTL shows a better
improvement. On the other hand, for the Bot data, CB-
SBIT shows a dis-improvement in accuracy when com-
pared with using the RF classifier without instance trans-
fer (i.e. the single task learning), because accuracy goes
down, whereas MTL shows a significant improvement.

Our implementation will soon be open sourced and
available on this Github repository’.

Uhttps://github.com/reem202 1 /multi- task-ids

Accuracy

10 1

0.8 1

0.6 1

0.4

0.2 4

0.0 -

Bot MTL
Bot RF

Portscan MTL

Portscan CB-SBIT
Bot CB-SBIT 4

Portscan RF

Figure 7: Results of Comparing Performance of CB-SBIT
and our MTL Approach

8 Conclusions and Future Work

. This paper introduces a novel classification method that
is based on multi-task learning and shows its effectiveness
in accurately classifying computer network traffic espe-
cially when training data is scarce. The method is inspired
by an existing regression method that suffers from draw-
backs as was explained in previous sections. The perfor-
mance of several classical classifiers was evaluated and it
was concluded that RandomForest is the winner (this is
consistent with existing research) and therefore it was se-
lected for comparison. In order to run fair evaluation, and
because four separate datasets were available (each one
represents a task), several datasets were formed by using
pairwise combinations (each two different tasks against
each other). After that the resulting datasets were used
as a basis for binary classification.

The method proposed in this paper was evaluated
against RandomForest (while using the same data) and
the results demonstrated significant improvement in per-
formance when using our method as opposed to Random-
Forest.

In addition, a recent open-source transfer learning ap-
proach was used in the evaluation experiments so that it
is possible to compare the performance of our method
against it (namely this is the successful CB-SBIT ap-
proach). Our experiments reveal that, not only the fact that
our method outperforms CB-SBIT when data is scarce,
but also CB-SBIT can result in negative transfer which
leads to worse results (when compared with results ob-
tained without applying the transfer learning technique of
CB-SBIT).

In the near future we plan to test our approach on data
from other domains and experiment with other similarity
measures. In addition, we plan to explore the possibility
of finding a method to learn the similarity between tasks
instead of computing it.

E3S Web of Conferences 229, 01057 (2021)

https://doi.org/10.1051/e3sconf/202122901057

ICCSRE’2020
References of the Association for Computational Linguis-
[1] D. Dasgupta, Z. Akhtar, S. Sen, The tics and the 7th International Joint Conference
Journal of Defense Modeling and Sim- on Natural Language Processing (Volume 2:
ulation 0 1548512920951275 0) Short Papers) (Association for Computational

https://doi.org/10.1177/1548512920951275

[2] R. Caruana, Machine Learning 28, 41 (1997)

[3] N. Sadawi, I. Olier, J. Vanschoren, J.N. van Rijn,
J. Besnard, R. Bickerton, C. Grosan, L. Solda-
tova, R.D. King, Journal of Cheminformatics 11, 68
(2019)

[4] S.J. Pan, Q. Yang, IEEE Trans. on Knowl. and Data
Eng. 22, 1345 (2010)

[5] J. Zhoul, J. Chen, J. Ye, Multi-task learning: Theory,
algorithms, and applications, https://archive.siam.
org/meetings/sdm12/zhou_chen_ye.pdf

[6] G. Draper-Gil, A.H. Lashkari, M.S.I. Mamun,
A.A. Ghorbani, Characterization of Encrypted and
VPN Traffic using Time-related Features, in ICISSP
(2016)

[7] C.I. for Cybersecurity, Intrusion detection evalua-
tion dataset (cic-ids2017), https://www.unb.ca/cic/
datasets/ids-2017.html

[8] R. Di Pietro, L.V. Mancini, Intrusion Detection Sys-
tems, 1st edn. (Springer Publishing Company, Incor-
porated, 2008), ISBN 0387772650

[9] M.M. Deza, E. Deza, Encyclopedia of Distances
(Springer Berlin Heidelberg, 2009)

[10] C. Shui, M. Abbasi, L. Robitaille, B. Wang,
C. Gagné, CoRR abs/1903.09109 (2019),
1903.09109

[11] S. Ben-David, R.S. Borbely, Mach. Learn. 73,
273-287 (2008)

[12] J. Baxter, Mach. Learn. 28, 7-39 (1997)

[13] L. Duong, T. Cohn, S. Bird, P. Cook, Low
Resource Dependency Parsing: Cross-lingual
Parameter Sharing in a Neural Network Parser,
in Proceedings of the 53rd Annual Meeting

[14]

[15]

[16]

(17]

(18]

[19]

(20]

(21]

(22]

Linguistics, Beijing, China, 2015), pp. 845-850,
https://www.aclweb.org/anthology/P15-2139
Y. Yang, T.M. Hospedales, CoRR abs/1606.04038
(2016), 1606.04038

S. Vandenhende, S. Georgoulis, W.V. Gansbeke,
M. Proesmans, D. Dai, L.V. Gool, Multi-task learn-
ing for dense prediction tasks: A survey (2020),
2004.13379

S. Rezaei, X. Liu, Multitask Learning for Network
Traffic Classification, in 2020 29th International
Conference on Computer Communications and Net-
works (ICCCN) (2020), pp. 1-9

H. Huang, H. Deng, J. Chen, L. Han, W. Wang, Inter-
national Journal of Emerging Technologies in Learn-
ing (IJET) 13, 4 (2018)

S. Rezaei, X. Liu, A Target-Agnostic Attack

on Deep Models: Exploiting Security Vulner-
abilities of Transfer Learning, in International

Conference on Learning Representations (2020),
https://openreview.net/forum?id=BylVcTNtDS
B. Alothman, International Journal of Intelligent
Computing Research (IJIICR) 9, 880- (2018)

B. Alothman, H. Janicke, S.Y. Yerima, Class Bal-
anced Similarity-Based Instance Transfer Learning
for Botnet Family Classification, in Discovery Sci-
ence, edited by L. Soldatova, J. Vanschoren, G. Pa-
padopoulos, M. Ceci (Springer International Publish-
ing, Cham, 2018), pp. 99-113, ISBN 978-3-030-
01771-2

Y. Zhang, Q. Yang, CoRR abs/1707.08114 (2017),
1707.08114

G. Santafe, I.n. Inza, J.A. Lozano, Artif. Intell. Rev.
44, 467 (2015)

