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Abstract. The electrical transport properties in sample 1 of impurity concentration n=xx of the 70Ge: Ga system are 

studied in the absence of a magnetic field and at low temperature in the range 0.53 to 0.017 K. It is noted that the 

electrical conductivity of sample 1 exhibits a metallic behavior. We found that the exponent S is equal to 0.5 

(σ=σ(T=0)+mTs). This result is in agreement with the theory of weak localization (WL) at 3D and the theory of electron-

electron interactions (EEI). We also found that sample 1 is located near the metal-insulator transition (MIT) of the 

metallic side. 
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1 Introduction and theoretical part 

Depending on their electrical properties, materials can 

be classified as metallic or insulating systems. The 

three-dimensional (3D) insulating samples display a 

conductivity that tends towards zero at T = 0 K. whereas, 

the metallic 3D samples have a strictly positive 

conductivity at T = 0 K. 

 On the metallic side of the metal-insulator transition 

(MIT), the temperature dependence of electrical 

conductivity for three-dimensional metallic samples at 

low temperatures can be expressed as follows: 

  SmTT  0      (1) 

Where, m, T and S represent respectively the 

conductivity at zero temperature, the 

magnitude of the correction term, the temperature and 

the exponent which is an adjustable parameter. This 

formula is used for doped crystalline and amorphous 

semiconductors [1-6].  

  On the insulating side of the MIT, the electrical 

transport is dominated by variable range hopping (VRH) 

[7-13], corresponding to the strong localization regime; 

the electrical conductivity of doped semiconductors 

varies according to an exponential law with the 

temperature of the type: 
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Where σ0 is the prefactor,   is the characteristic 

temperature, and   is an exponent. The possible values 

of n are 0 or 2. In order to determine the metallic or 

insulating behavior of a sample, we used the graphical 

procedure developed by Zabrodskii and Zinoveva [14]. 

Using the equation (2), Zabrodskii and Zinoveva [14] 

establish the following function: 
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When the slope of the curve of )(Tw versus  Tln  is 

negative, the sample is on the insulating side of the TMI. 

Whereas, the positive slope of the plot
)(Tw

versus 

 Tln
 a positive or zero slope however indicates that 

the sample is metallic. 

2 Results and discussion 

We have reanalyzed experimental data for the 70Ge:Ga 

system prepared and report-ed by Itoh et al. in Reference 

[15].  In Figure 4, we have plotted the variation of the 

function w (T) as a function of ln (T) (procedure of 

Zabrodskii and Zinoveva [14]) for sample 

1(n=1.861×1017cm-3 in the absence of magnetic field 

and in the tempera-ture interval 0.017 K -0.53 K. 

According to this figure, the slope of this plot is strictly 

positive which indicates that sample 1 is on the metallic 

side of the MIT. 
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Fig. 1. Variation of the function w (T) as a function of ln (T) 

for sample 1. 

To better position the sample1 on the metallic side of the 

TMI, we will now use the theory of weak localization 

[15-18] where the electrical conductivity at T = 0 K is 

given by the following expression: 

  22 2

0 1 /B F eg C g k l    (4) 

Where C is a coefficient ranging between 1 and 3, is the 

factor calculated by Mott representing the decrease in 

the density of states by the disorder. Note that B  is 

Boltzmann's electrical conductivity given by the 

following formula: 
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Where n is the electron concentration of impurities, e

is the electronic charge, el  is the elastic mean free path 

of the electron, is the Planck constant and 

  3123 nKF   is the fermi wave vector.  

Considering the expression of 0 (4) and the relation 

(5), we arrive at 
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Finally, the physically solution acceptable of the last 

equation is the elastic mean free path given by: 
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For our sample: 

 By using the standard linear regression method, we 

find the electrical conductivity at T = 0K, that is: 

  1cm 1.43088)0()0(  T . 

 The Fermi wave vector : 

  18312 1076674.13  mnKF   

 The elastic mean free path of the electron (7) : 

ml 8
0 109682.1   

Finally 47742.30 lKF : This result is in good 

agreement with the Ioffe-Regel criterion  0lKF  

for the metallic samples which are located in the vicinity 

of the MIT on the metallic side. Therefore, our sample 

is located near the TMI on the metal side. The latter 

belongs to the 70Ge:Ga system prepared and published 

by Itoh et al. Note that the critical impurity 

concentration of this system that marks the boundary 

between the metallic and insulating samples is equal to 

31710856.1  cmnc . 

In order to find the behavior of electrical conductivity 

as a function of temperature. We have shown in 

Figures 1 and 2 respectively the variations in electrical 

conductivity   as a function of 
1 2T  and 

1 3T for the 

metallic sample with an impurity concentration

31710861.1  cmnc , in the absence of the 

magnetic field and in the temperature range 0.53 -0.017 

K. We note that it is difficult to distinguish between 

one or the other of the two laws (T1/2 and T1/3) based 

only on two figures 1 and 2. 
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Fig. 2. The variation of the conductivity   as a function of 

T1/2 for sample 1. 
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Fig. 3. The variation of the conductivity   as a function of 

T1/3 for the sample 1. 

To confirm these results and correctly specify the values 

of the exponent S , we will use the percentage deviation 

procedure [19-20]. First, we posed 

 0 ST mT   
 , by varying the exponent S  

between 0 and 1 by a step of 0.01. For each value of, the 

conductivity at T = 0K and the coefficient m are 

evaluated by standard linear regression methods. 

Thereafter, we calculate each time of the percentage 

deviation (Dev (%)) between the expression 

 0 ST mT   
 and the experimental values of 

the electrical conductivity. The deviation percentage 

(Dev%) is given by the following formula :  
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n and i  denote respectively the number of 

experimental points and the experimental values of the 

conductivity at different temperatures Ti. Note that the 

minimum deviation corresponds to the best value of the 

exponent S. In figure 3, we have plotted the percentage 

deviation Dev (%) as a function of the exponent for the 

metal sample 1. From this figure, we notice that the 

minimum of the percentage deviation Dev (%) is 

obtained for the value of xx very close to 0.5 (S = 0.46 

for sample1). This last result is in agreement with the 

theory of weak localization (WL) at 3D and the theory 

of electron-electron interactions (EEI) which 

characterize the phenomena of electronic transport in 

sample 1. 
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Fig. 4. Percentage of deviation Dev (%) as a function of 

the exponent S in equation (7) for the metallic sample1, the 

minimum deviation close to 1/2. 

 

3 Conclusion 

 
We have studied the electrical transport properties in 

sample 1 of the system 70Ge Ga in the absence of a 

magnetic field and at low temperature on the metallic 

side of the TMI. We used the graphical procedure 

developed by Zabrodskii and Zinoveva to determine the 

metallic behavior of the sample 1 and to better place our 

sample, we used the Ioffe-Regel criterion of the 

transition  0lKF . We found 47742.30 lKF , 

this result shows that the sample is located near TMI on 

the metal side. Using the percentage deviation method, 

we found that the minimum deviation is close to 1/2, the 

latter result in agreement with the theories of weak 

localization and electron-electron interactions. 
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