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Abstract. SLAM algorithm permits the robot to cartography the desired environment while positioning it 

in space. It is a more efficient system and more accredited by autonomous vehicle navigation and robotic 

application in the ongoing research. Except it did not adopt any complete end-to-end hardware 

implementation yet. Our work aims to a hardware/software optimization of an expensive computational time 

functional block of monocular ORB-SLAM2. Through this, we attempt to implement the proposed 

optimization in FPGA-based heterogeneous embedded architecture that shows attractive results. Toward 

this, we adopt a comparative study with other heterogeneous architecture including powerful embedded 

GPGPU (NVIDIA Tegra TX1) and high-end GPU (NVIDIA GeForce 920MX). The implementation is 

achieved using high-level synthesis-based OpenCL for FPGA and CUDA for NVIDIA targeted boards.  

1 Introduction 

In most cases, the compute-intensive tasks are managed 

by CPU, it might be beneficial for the power 

consumption but the notion of the execution time could 

be missed. Rather, GPU is usually used for this purpose, 

specially for graphic processing tasks even though it 

enforces some limitations on accelerated algorithms, 

that limitations must be realized in order to acquire an 

effective gain. Field Programmable Gate Array (FPGA) 

[1] is proposed as a high-performance scalable compute 

accelerator in order to benefit from its recommended 

advantages (improved performance, low cost, reduced 

energy consumption, more flexible and reliable in 

different applications), which allows to achieve a high 

speed and remarkable performance gains. FPGA 

contains very developed resources in the form of an 

array of programmable logic blocks, such as Digital-

signal-Processing (DSP) that has the capability of 

Multiply-accumulate (MAC) operation in single 

instruction cycle, Look-Up Table (LUT) and embedded 

memory type SRAM. Those resources are designing a 

modern embedded architecture and often used to 

implement complex algorithms that make FPGA more 

attractive choice. 

 As known FPGA requires a hardware description 

language such as VHDL or Verilog to handle. In the case 

of complex algorithms, VHDL and Verilog are often 

more difficult and unacceptable to most software 

developers: wherefore High-Level Synthesis (HLS) [2] 

used for making this task easier. The HLS purpose a 

hardware description through converting a high-level 

language based on C/C++ programming language to a 
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hardware model for FPGA taking into consideration the 

low usage of FPGA resources.  

 OpenCL [3] is a portable and high-level language 

framework that provides software developers a powerful 

capability using multiple embedded devices (such as 

FPGAs, GPUs, DSPs, and others), moreover, offers an 

opportunity for accelerating complex algorithms by 

porting compute-intensive parts into those 

heterogeneous platforms. It has to be noted there is some 

difference on the usage of OpenCL between GPU and 

FPGA, whereas OpenCL for FPGA is a critical 

challenge compared to OpenCL for GPU, it takes 

advantages of HLS considered as hardware 

programming languages that require a deep 

understanding of FPGA architecture, FPGA on-chip 

resources characteristics, and to special optimizations. 

Concerning GPUs there is specific powerful General-

Purpose Computing on Graphics Processing Units 

(GPGPU) developed by NVIDIA with a parallel 

computing language CUDA [4]. 

 SLAM (Simultaneous Localization and Mapping) 

[5] is one of the accredited algorithms by autonomous 

navigation and robotic applications in the ongoing 

research framework, except that it did not benefit from 

a complete hardware architectural implementation yet. 

Besides, they contain compute-intensive parts that need 

an embedded architecture that allows hardware and 

software optimization for an efficient and scalable 

implementation. Toward this goal, researchers aim for 

heterogeneous architecture whereby the sequential 

processing parts are loaded by CPU, while accelerators 

(FPGAs, GPUs) handle the compute-intensive parts for 

efficient performance and effective speed-up. 
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Our contributions: The heterogeneous frameworks 

open the opportunity to autonomous navigation and 

robotic applications for discovering new efficient usage 

of some scalable accelerators and making them a strong 

tendency to embedding a complex algorithm as SLAM 

as well in real-time. Toward this end, we attempt to 

propose a hardware/software optimization of a 

monocular visual SLAM functional block and Visual 

Odometry (VO) [6] part as well to reduce its 

computational time. The detailed discussion about VO 

algorithm is beyond the scope of this paper. 

The purpose of contribution is to present an efficient 

implementation of a time-consuming functional block. 

The main contributions are:  

• Our work aims to target different heterogeneous 

architectures CPU-GPU and CPU-FPGA 

• A parallel implementation is achieved using 

OpenCL and CUDA to optimize the most time-

consuming functional blocks, 

• The target functional block is not obvious to 

parallelize and require special algorithm 

modification. Thus, we propose some approaches 

to deal with sequential algorithm.  

 The paper is organized as follows: In section II, we 

present some related work. Section III we paved the way 

to the targeted functional block. In Section IV, we 

describe the proposed implementation. In Section V, we 

give a comparative study between the targeted 

heterogeneous platforms. 

2 Related work 

The next SLAM algorithms are notoriously difficult to 

be implemented in an embedded architecture. In recent 

years, almost works have been made in research 

framework are focused on finding a suitable architecture 

supports a complete end-to-end embedded SLAM 

system operate in real-time. Hence, researchers have 

been pushed towards heterogeneous architectures to 

benefit from powerful devices advantages as DSP, GPU 

and FPGA. The choice depends on a hardware/software 

co-design study that provides an overview of the 

algorithm and the suitable embedded architecture. 

Meanwhile, heterogeneous architecture implementation 

and massive parallelism get trends towards high 

performance scalable compute FPGA accelerator due to 

low cost and low power needs. 

 Recent work by abouzahir [7] provides a 

heterogeneous implementation that aims for low-power 

embedded architecture CPU-FPGA to implement a 

VSLAM algorithm. They worked on improving 

FastSLAM1.0 to a new version FastSLAM2.0 due to an 

optimization of all blocks, adopted on parallel 

implementation on FPGA and GPU except image 

processing part used the FAST detector which is 

implemented on one-core of CPU using machine 

learning optimization, moreover, they evaluated few 

implementations of SLAM algorithms on high-

performance machines. As a result, they demonstrated 

the embedded FPGA accelerators provide significant 

improvement of SLAM system than GPU accelerators 

in terms of processing time. Except FastSLAM suffers 

from impoverishing samples and depleting particles 

problems, therefore, is not a good choice as SLAM 

algorithm for large-scale outdoor/indoor environment.  

 Authors in [8] developed a novel original feature-

based stereo VSLAM framework named HOOFR 

SLAM based on an enhanced bio-inspired feature 

extractor Hessian ORB - Overlapped FREAK 

(HOOFR), which is a combination of FAST detector 

including Hessian score and amended FREAK bio-

inspired descriptor. Moreover, they attained to 

implement it on heterogeneous architecture CPU-GPU. 

Through this, the Front-End (feature extractor 

algorithm) part took many advanced strategies to be 

implemented: First, they ported HOOFR extractor into 

CPU to exploit all the computing cores using OpenMP, 

which is more suitable and accelerated than GPU due to 

machine learning optimization. Second, they ported the 

Features Matching block into GPU for hardware 

acceleration due to its computational cost. On the other 

hand, the Back-End (heart of SLAM) part is improved 

using a proposal method called “windowed filtering” 

adapted to the scan matching process instead of a high-

cost Bundle Adjustment (BA). Their main result is 

based on a competitive study that achieves a remarkable 

gain and effective speed-up; more reliable reconstructed 

trajectory in some cases and lower cost than stereo 

ORB-SLAM [9], except that they didn’t adopt a 

heterogeneous implementation CPU-FPGA that 

guarantees a low power consumption beside low cost 

and high performance.  

 [10] proposed an attractive integrated computing 

platform that deals with compute-intensive tasks named 

Heterogeneous Extensible Robot Open (HERO) 

composed of an Intel Core i5 CPU as host and a high-

performance scalable compute FPGA accelerator Intel 

Arria 10 as device. This platform is developed under 

needful objects to facilitate research that deals with: 

heterogeneous computing, algorithm acceleration, 

compute-intensive component. Within the scope of this 

paper, they proposed a heterogeneous implementation 

of HectorSLAM algorithm, whereas they work on 

accelerating the scan matching process of HectorSLAM 

on HERO platform, which achieved a significant 

improvement and remarkable gain, while performing 4-

times faster than software implementation with Intel 

Core I5 CPU and 3-times speed-up against HDL 

implementation with only Arria 10 SoC.  

 In contrast, the ultimate goal of this paper is 

improving the performance of our targeted VSLAM 

algorithm in terms of computational cost. For this 

purpose, our hardware-software co-design study adopts 

aforementioned works [8, 10], where they provide 

appealing results tackling the computational complexity 

of SLAM system, furthermore, they worked on 

heterogeneous systems porting compute-intensive parts 

of SLAM system precisely the scan matching process 

into accelerators: The first [8] paves the way to us 

toward our targeted ORB-SLAM algorithm that shows 

reliable results than their proposal, except we will be 

satisfied with the monocular version. The second [10] 

leads us toward an efficient trend of heterogenous 

architectures CPU-FPGA. 
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3 Algorithm description 

In this section, we assume steps to pave the way to the 

optimized functional block, giving an overview of the 

chosen algorithm and performance evaluation of the 

system.  

3.1 ORB SLAM overview 

The selected algorithm is a monocular ORB- SLAM 

[11], one of the purest Visual SLAM frameworks that 

operates in real-time, in small and large environments. 

As shown in figure 1, the system consists of three 

concurrent threads: tracking, local mapping, loop 

closing.  

The tracking thread deals with the camera localization 

at each frame reception and decides to add it or not to 

the system. It performs a matching between the previous 

frame and the current frame and calculates the camera 

position by an evolution model. In the case where the 

tracking is lost, the place recognition phase is launched 

to achieve a global relocalization. If the tracking is 

successful besides a first estimate of the camera position 

and a set of matched keypoints, a local map is 

constructed using the covisibility graph. A second 

matching phase is performed to identify landmarks in 

the local map using a projection procedure, then the 

position of the camera is optimized with the matched 

keypoints. Finally, the tracking thread decides whether 

to save or to abandon the keyframe for the next thread. 

 The local mapping thread processes the keyframes 

acquired by the tracking thread and execute Local BA to 

achieve optimal map reconstruction. A matching phase 

is performed to look for matches in the keyframe 

connected in the covisibility graph to allow their 

triangulation. After the initialization of the new points, 

a selection procedure is realized to keep only the high-

quality points based on certain information collected by 

the tracking thread. 

 The loop closing thread looks for potential loops in 

every acquired keyframe. The detection of loop closing 

leads to calculate the similarity transformation that gives 

information on the degree of drift accumulated in the 

loop. Then, the two loops are aligned and the duplicate 

points are merged. In the end, an optimization of the 

position graph is performed to achieve global 

consistency.  

3.2 Functional block choice 

The performance of the ORB SLAM System is 

evaluated with the CPU of the targeted platforms 

(detailed in Section V): Core Intel i5 of laptop machine 

and ARM Cortex A57 of embedded NVIDIA TX1 

board. It has to be noted that the processing time 

depends on several parameters of algorithm and 

platform, therefore, we adopt Ubuntu 16.04 version as 

an operating system in the targeted platforms and 

besides, we evaluate the system on TUM1 Dataset [12] 

with monocular images. Table 1 shows the mean of 

processing time of every functional block (FBs). Among 

the FBs, Map Point Culling / Creation new map points 

and Local BA blocks are notoriously time-consuming 

blocks except they require a dependency with other 

blocks and a very complicated calculation. Therefore, 

we selected Initial Pose Estimation which has the third-

highest running time and performs 44% of the tracking 

thread.   

Table 1. ORB-SLAM performance evaluation. 

 FBs 

Laptop 

Intel 

Embed

ded 

TX1 

Tracking 

ORB Exctraction 
19.58 62.32 

Intital Pose 

Estimation 
26.03 67.46 

Track Local Map / 

KeyFrame Decision 
6.42 22.15 

Total (ms) 52.03 151.93 

Local 

Mapping 

New KeyFrame 

Processing 16.87 42.10 

MapPoints Culling / 

New Points Creation 
103.31 297.45 

Local BA 
156.45 469.53 

KeyFrame Culling 
6.97 18.51 

Total (ms) 283.60 827.59 

Loop 

Closing 

- Candidate Detection 

- Compute Sim3 

- Loop Corrector 

(ms) 

3.80 5.67 

3.3 Map initialization 

Map initialization is a part of the second system 

functional block, which perform 67% of FB2 and 30% 

of tracking thread. It handles the relative camera pose 

process between two frames basing on two geometrical 

models; a fundamental matrix [13] for non-planar scene 

and a homography [13] for planar scene, to triangulate 

initial points of the map. Thus, a heuristic method (i.e. 

ratio of scores) is calculated to select the appropriate 

geometrical model applied for the current scene 

whereby an initial reconstruction is achieved. More 

detailed clarifications in [13]. 

Fig. 1. ORB-SLAM overview. 
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3.4 Towards optimization 

The proposed optimization aims to parallelize the third 

part of Map initialization with the targeted 

heterogeneous platforms. Algorithm 1 provides insight 

into geometrical models M computation (F for the 

fundamental matrix, H for the homography) inside 

RANSAC [14] iterations using normalized eight-point 

and DLT algorithms, as detailed in [13]. For the sake of 

improved results accuracy of those algorithms, the 

normalization method has to be carried out before. 

 

Algorithm 2 Geometrical model M computation inside   

RANSAC iterations it = 200 

1) Normalize the detected keypoints. 

2) Perform all RANSAC iterations it for each model M 

and save the solution with highest score: 

a. Select random points applying 8-point 

algorithm. 

b. DLT algorithm to Compute the model M matrix. 

c. Denormalization. 

d. Compute current score. 

e. Test score. 

 Practically, the models M are computed in parallel 

using C++ multi-threading API (used std::thread  class  

defined in header <thread>). Moreover, normalize 

function (Norm) is carried out in both H and F. 

Meanwhile, Norm is called consecutively twice for each 

M (for current image, reference image) and it handles 

2001-2010 keypoints experimentally. Thus, our main 

idea is to introduce a first step of FB2 optimization 

toward heterogeneous systems accelerating Norm and 

reducing memory resources usage. Toward this end, we 

propose one execution of Norm handling current image 

and reference image as arguments simultaneously. 

However, Norm is not parallel in nature, wherefore, we 

propose special modification to bridge this gap. 

4 Towards heterogeneous 
   implementation  

In this section, we describe Normalize kernel step by 

step. Toward this, we developed two versions of 

normalize function: OpenCL for FPGA and CUDA 

version for GPU. In the following, we based on OpenCL 

for FPGA to describe the proposed implementation 

while the CUDA version could be inferred easily.  

4.1 OpenCL for FPGA platform 

In OpenCL terminology, the host is always the CPU 

whereas, FPGA called the device. The host CPU gives 

the order to the FPGA to execute the calculation. The 

code executed by FPGA named kernel. The OpenCL 

architecture provides NDRange, that composed of 

work-groups which are associable, these work-groups 

are constituted by work-items, the work-items are active 

elements in the execution step. Each work-group has a 

1D, 2D or 3D identifier in the NDRange, in which the 

work-item has also a 1D,2D and 3D identifier within the 

work-group. The data buffering is achieved between 

host and FPGA memories via PCI-express bus. OpenCL 

provides fourth types of memory for FPGA with specific 

usage: global memory that guarantees the data transfer 

sequentially, constant memory that has the shortest 

latency, local memory shares data between work-items 

in the same work-group with low latency, and private 

memory the fastest memory access, which is dedicated 

to each work-item work. 

4.2 Normalize: accelerated version 

Normalize  function is  computed in the two  consecutive 

frames: reference frame 𝑢𝑖
𝑟(𝑥𝑖

𝑟 , 𝑦𝑖
𝑟) ∈ 𝐹𝑟 and current 

frame  𝑢𝑖
𝑐(𝑥𝑖

𝑐 , 𝑦𝑖
𝑐) ∈ 𝐹𝑐 

     𝒙𝑟,𝑐 =  
1

𝑁𝑟,𝑐
∑ 𝑥𝑖

𝑟,𝑐  𝑖=𝑁
𝑖=0   ,    �̅�𝑟,𝑐 =  

1

𝑁𝑟,𝑐
∑ 𝑦𝑖

𝑟,𝑐𝑖=𝑁
𝑖=0       (1) 

                          �̅�𝑑𝑒𝑣
𝑟,𝑐 = ∑ |( 𝑥𝑖

𝑟,𝑐 −  �̅�𝑟,𝑐)|𝑖=𝑁
𝑖=0               (2) 

                          �̅�𝑑𝑒𝑣
𝑟,𝑐 = ∑ |( 𝑦𝑖

𝑟,𝑐 −  �̅�𝑟,𝑐)|𝑖=𝑁
𝑖=0   

with x̅𝑟,𝑐 , y̅𝑟,𝑐: respectively the mean of x and y corner 

coordinates, 𝑁𝑟,𝑐: the number of detected corners in both 

reference and current frame. 

The normalized points are givens by the following 

function: 

      𝑥𝑖,𝑛
𝑟,𝑐 = (𝑥𝑖

𝑟,𝑐  −  �̅�𝑟,𝑐) 𝑠𝑥
𝑟,𝑐      (3) 

𝑦𝑖,𝑛
𝑟,𝑐 = (𝑦𝑖

𝑟,𝑐  −  �̅�𝑟,𝑐) 𝑠𝑦
𝑟,𝑐   

 

With: 

 

                        𝑠𝑥
𝑟,𝑐 =  

1

�̅�𝑑𝑒𝑣
𝑟,𝑐       ,    𝑠𝑦

𝑟,𝑐 =  
1

�̅�𝑑𝑒𝑣
𝑟,𝑐        (4) 

 

The normalized matrix is given by: 

 

                 𝑇𝑟,𝑐 =  (
𝑠𝑥

𝑟,𝑐 0 −�̅�𝑟,𝑐𝑠𝑥
𝑟,𝑐

0 𝑠𝑦
𝑟,𝑐 −�̅�𝑟,𝑐𝑠𝑦

𝑟,𝑐

0 0 1

)                  (5) 

These equations contain parts that are parallel in nature 

and other parts that are not obvious to parallelize and 

require special modifications to adjust to the FPGA 

kernel.  Thus, we propose a new parallel version, see 

figure 2, including approaches to deal with sequential 

parts, and NDRange Kernel optimizations [15] to 

improve data processing and memory access efficiently. 

4.2.1 NDRange kernel optimizations 

NDRange kernel optimizations are a set of 

optimizations offered by Altera SDK for OpenCL [16] 

dedicated for FPGA kernel, we adjust the following to 

optimize our proposed kernel. 

• Kernel vectorization (SIMD) 
We used num_simd_work_items attribute for utilizing 

the global memory bandwidth efficiently by allowing 
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multiple work-items to execute in a Single Instruction 

Multiple Data (SIMD) to achieve higher throughput. 

• Constant memory (CM) 
We   used global _const arguments to handle the buffers 

kpts (reference image keypoints, current image 

keypoints) transferred from the host with low latency 

instead of global memory.  

• Packetization 
Packetization is a type of vectorization that we used it to 

packetize kpts in single float2 vector for optimal 

widening of loads/stores 

• Local memory (LM) 
We used _local for preloading the packetized buffers 

kpts to apply the following approach and to share data 

between work-items in the same work-group and reduce 

the number of global memory accesses. 

4.2.2 Accumulation approach 

We adopt this strategy to handle the sequential parts of 

(1) and (2) which require a preloading of the packetized 

buffers kpts to LM, whereas each work-item within 

work-group accumulates 2 separated elements by an 

offset equal to work_group_size divided by 2. Then this 

operation is repeated dividing offset by 2 in each 

iteration until the it becomes lower than 1. The work-

items within each work-group must be synchronized 

with CLK_LOCAL_MEM_FENCE barrier to control 

and manage the memory accesses properly. 

5 Implementation and evaluation 

The proposed kernel is implemented and evaluated on 

three heterogeneous architectures. 

5.1 Architectures description 

5.1.1 DE1-SoC board 

DE1-SoC board is low power embedded hardware 

designed by Altera System-on-Chip (SoC) FPGA, 

combines an ARM-based hard processor system (HPS) 

with FPGA Cyclone V. The HPS includes a Dual-Core 

ARM Cortex A9 MPCore processor running at 800 

MHz, 1GB (256Mx32) DDR3 SDRAM, single hard 

memory controller, and a rich set of peripherals. On the 

other hand, the chip integrates FPGA that provides four 

50MHz clock sources from clock generator, and 64MB 

(32Mx16) SDRAM, besides, it consists of several 

embedded resources: 85K logic elements, 87 DSP 

blocks, 4.450Kbits embedded memory, 6 Fractional 

PLLs, and single hard memory controllers. 

5.1.2 NVIDIA platforms 

Our implementation has adopted two CPU-GPU 

platforms: a laptop machine and an automotive 

embedded architecture (NVIDIA Tegra TX1). Table 2, 

shows the targeted NVIDIA platforms specifications. 

Table 2. Platform specification. 

 Laptop TX1 

CPU 8 Intel core i5 
4-cores ARM A57 

4-cores ARM A53 

CPU clock 

rate 
1.9-2.5 GHz 1.3-1.9 GHz 

Cache 
3 MB 

 

2 MB 

 

RAM 8 GB 4 GB 

GPU 
256 CUDA core 

GeForce 920MX 

256 CUDA core 

Maxwell 

GPU clock 

rate 
0.98 GHz 1 GHz 

Memory 

clock rate 
2505 MHz 13 MHz 

 The host of the laptop machine provides an Intel 

Core i5 4300U CPU with 8 cores operate at 1.9~2.5 GHz 

and offers 8 GB DDR3 memory with 3 MB of cache 

memory. The laptop machine integrates also a high-end 

NVIDIA GeForce 920MX GPU with 256 CUDA core 

(128 per SM) operates at 980MHz, 2GB global memory 

and 2505 MHz in the clock rate. 

 On the other hand, the automotive embedded 

architecture NVIDIA Jetson TX1 dedicated to 

embedded application with low power, it is equipped 

with ARM Cortex A57 quad-core running at 1.9 GHz 

with 4 GB memory and 2 MB of L2 cache. Moreover, 

Fig. 2. Data flow of the kernel with OpenCL for FPGA: 

Constant memory (blue), Local memory (gray), Global 

memory (green). 
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the board integrates a modern powerful embedded 

GPGPU with Maxwell architecture that contains 256 

CUDA core (128 per SM) running at 1GHz, 4GB global 

memory and clock memory rate about 13MHz.  

5.2 Evaluation and results 

Table 3 shows the evaluation of the proposed 

implementation on NVIDIA platforms. Where the high-

end NVIDIA GeForce 920MX GPU achieves 2-times 

speedup than Intel Core i5 CPU, whereas TX1 GPU 

could not tackle the computational time. Although the 

kernel code was the same for the two platforms without 

modifications and the platform specifications were 

almost similar, the difference in term of computational 

time is too obvious due to the frequent preloading of 

data, and heavy memory clock rate for Tegra TX1 GPU. 

Table 3. Evaluation of the kernel with two frames and 2048 

keypoints. 

Margin Laptop TX1 

Device CPU GPU CPU GPU 

    

Normalize 

(ms) 

 

0.133 0.073 0.365 0.384 

For DE1-SoC board, the proposed kernel with two 

frames and 2048 keypoints was not supported due to the 

resource limitation. To overcome this limitation, we 

have proposed an optimal solution supported by the 

board which consists of reducing the data size to 1024 

and processing a single image. The estimated resources 

usage of the FPGA required by the proposal use 59% of 

logic elements, 26% of registers, 65% of memory blocks 

and 14% of DSP blocks 

Table 4 presents the comparative study between the 

targeted platforms, through an evaluation of the optimal 

kernel versions.  

Table 4. Evaluation of the experimental kernel version with 

single frame and 1024 keypoints. 

 DE-SoC TX1 Laptop 

Device FPGA GPU GPU 

Normalize 

(ms) 
0.160 0.220 0.026 

 

 The DE1-SoC FPGA achieved almost an appealing 

result than Tegra TX1 GPU as an embedded system due 

to the optimizations applied to the kernel and the 

memory conception. As is obvious, the compute-

intensive parts require a huge preloading of data to 

memories, thus, the optimizations applied such SIMD 

and vectorization increase the throughput, besides it 

helps to reduce the memory accesses providing an 

efficient usage of the global memory instead the GPU 

that requires a system to avoid the local memory bank 

conflict such a Direct Memory Access (DMA). On the 

other hand, FPGA architecture offers an attractive 

memory conception that provides a low latency due to 

the configurable memory layer SRAM that manages 

data flow in the operational layer.  

6 Conclusion 
Current works in a SLAM system in the ongoing 

research aim to tackle with the computational time of the 

compute intensive parts of the algorithm using 

heterogeneous NVIDIA platforms such [8, 17]. 

However, the system requires an optimization to handle 

the computational complexity. Thus, our work presented 

a proposed implementation of the algorithm part 

targeting heterogeneous architectures. Moreover, the 

main idea was presenting the heterogeneous system 

FPGA-based capability to tackle with the computational 

complexity of heavy algorithms by its nature. Thus, a 

high-performance scalable compute FPGA accelerator 

as ARRIA 10 is an attractive choice to attain a complete 

end-to-end embedded SLAM system. 
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