

ORB-SLAM accelerated on heterogeneous parallel architectures

Ayoub Mamri1*, Mohamed Abouzahir1, Mustapha Ramzi1, and Rachid Latif2

1 Laboratory of Systems Analysis, Information Processing and Industrial Management, Higher School of Technology of Sale,

Mohamed V University of Rabat, Morocco
2 Laboratory of Systems Engineering and Information Technology, National School of Applied Sciences, Ibn Zohr University of

Agadir, Morocco

Abstract. SLAM algorithm permits the robot to cartography the desired environment while positioning it

in space. It is a more efficient system and more accredited by autonomous vehicle navigation and robotic

application in the ongoing research. Except it did not adopt any complete end-to-end hardware

implementation yet. Our work aims to a hardware/software optimization of an expensive computational time

functional block of monocular ORB-SLAM2. Through this, we attempt to implement the proposed

optimization in FPGA-based heterogeneous embedded architecture that shows attractive results. Toward

this, we adopt a comparative study with other heterogeneous architecture including powerful embedded

GPGPU (NVIDIA Tegra TX1) and high-end GPU (NVIDIA GeForce 920MX). The implementation is

achieved using high-level synthesis-based OpenCL for FPGA and CUDA for NVIDIA targeted boards.

1 Introduction

In most cases, the compute-intensive tasks are managed

by CPU, it might be beneficial for the power

consumption but the notion of the execution time could

be missed. Rather, GPU is usually used for this purpose,

specially for graphic processing tasks even though it

enforces some limitations on accelerated algorithms,

that limitations must be realized in order to acquire an

effective gain. Field Programmable Gate Array (FPGA)

[1] is proposed as a high-performance scalable compute

accelerator in order to benefit from its recommended

advantages (improved performance, low cost, reduced

energy consumption, more flexible and reliable in

different applications), which allows to achieve a high

speed and remarkable performance gains. FPGA

contains very developed resources in the form of an

array of programmable logic blocks, such as Digital-

signal-Processing (DSP) that has the capability of

Multiply-accumulate (MAC) operation in single

instruction cycle, Look-Up Table (LUT) and embedded

memory type SRAM. Those resources are designing a

modern embedded architecture and often used to

implement complex algorithms that make FPGA more

attractive choice.

 As known FPGA requires a hardware description

language such as VHDL or Verilog to handle. In the case

of complex algorithms, VHDL and Verilog are often

more difficult and unacceptable to most software

developers: wherefore High-Level Synthesis (HLS) [2]

used for making this task easier. The HLS purpose a

hardware description through converting a high-level

language based on C/C++ programming language to a

* Ayoub Mamri: ayoub_mamri@um5.ac.ma

hardware model for FPGA taking into consideration the

low usage of FPGA resources.

 OpenCL [3] is a portable and high-level language

framework that provides software developers a powerful

capability using multiple embedded devices (such as

FPGAs, GPUs, DSPs, and others), moreover, offers an

opportunity for accelerating complex algorithms by

porting compute-intensive parts into those

heterogeneous platforms. It has to be noted there is some

difference on the usage of OpenCL between GPU and

FPGA, whereas OpenCL for FPGA is a critical

challenge compared to OpenCL for GPU, it takes

advantages of HLS considered as hardware

programming languages that require a deep

understanding of FPGA architecture, FPGA on-chip

resources characteristics, and to special optimizations.

Concerning GPUs there is specific powerful General-

Purpose Computing on Graphics Processing Units

(GPGPU) developed by NVIDIA with a parallel

computing language CUDA [4].

 SLAM (Simultaneous Localization and Mapping)

[5] is one of the accredited algorithms by autonomous

navigation and robotic applications in the ongoing

research framework, except that it did not benefit from

a complete hardware architectural implementation yet.

Besides, they contain compute-intensive parts that need

an embedded architecture that allows hardware and

software optimization for an efficient and scalable

implementation. Toward this goal, researchers aim for

heterogeneous architecture whereby the sequential

processing parts are loaded by CPU, while accelerators

(FPGAs, GPUs) handle the compute-intensive parts for

efficient performance and effective speed-up.

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 229, 01055 (2021) https://doi.org/10.1051/e3sconf/202122901055
ICCSRE’2020

mailto:ayoub_mamri@um5.ac.mag

Our contributions: The heterogeneous frameworks

open the opportunity to autonomous navigation and

robotic applications for discovering new efficient usage

of some scalable accelerators and making them a strong

tendency to embedding a complex algorithm as SLAM

as well in real-time. Toward this end, we attempt to

propose a hardware/software optimization of a

monocular visual SLAM functional block and Visual

Odometry (VO) [6] part as well to reduce its

computational time. The detailed discussion about VO

algorithm is beyond the scope of this paper.

The purpose of contribution is to present an efficient

implementation of a time-consuming functional block.

The main contributions are:

• Our work aims to target different heterogeneous

architectures CPU-GPU and CPU-FPGA

• A parallel implementation is achieved using

OpenCL and CUDA to optimize the most time-

consuming functional blocks,

• The target functional block is not obvious to

parallelize and require special algorithm

modification. Thus, we propose some approaches

to deal with sequential algorithm.

 The paper is organized as follows: In section II, we

present some related work. Section III we paved the way

to the targeted functional block. In Section IV, we

describe the proposed implementation. In Section V, we

give a comparative study between the targeted

heterogeneous platforms.

2 Related work

The next SLAM algorithms are notoriously difficult to

be implemented in an embedded architecture. In recent

years, almost works have been made in research

framework are focused on finding a suitable architecture

supports a complete end-to-end embedded SLAM

system operate in real-time. Hence, researchers have

been pushed towards heterogeneous architectures to

benefit from powerful devices advantages as DSP, GPU

and FPGA. The choice depends on a hardware/software

co-design study that provides an overview of the

algorithm and the suitable embedded architecture.

Meanwhile, heterogeneous architecture implementation

and massive parallelism get trends towards high

performance scalable compute FPGA accelerator due to

low cost and low power needs.

 Recent work by abouzahir [7] provides a

heterogeneous implementation that aims for low-power

embedded architecture CPU-FPGA to implement a

VSLAM algorithm. They worked on improving

FastSLAM1.0 to a new version FastSLAM2.0 due to an

optimization of all blocks, adopted on parallel

implementation on FPGA and GPU except image

processing part used the FAST detector which is

implemented on one-core of CPU using machine

learning optimization, moreover, they evaluated few

implementations of SLAM algorithms on high-

performance machines. As a result, they demonstrated

the embedded FPGA accelerators provide significant

improvement of SLAM system than GPU accelerators

in terms of processing time. Except FastSLAM suffers

from impoverishing samples and depleting particles

problems, therefore, is not a good choice as SLAM

algorithm for large-scale outdoor/indoor environment.

 Authors in [8] developed a novel original feature-

based stereo VSLAM framework named HOOFR

SLAM based on an enhanced bio-inspired feature

extractor Hessian ORB - Overlapped FREAK

(HOOFR), which is a combination of FAST detector

including Hessian score and amended FREAK bio-

inspired descriptor. Moreover, they attained to

implement it on heterogeneous architecture CPU-GPU.

Through this, the Front-End (feature extractor

algorithm) part took many advanced strategies to be

implemented: First, they ported HOOFR extractor into

CPU to exploit all the computing cores using OpenMP,

which is more suitable and accelerated than GPU due to

machine learning optimization. Second, they ported the

Features Matching block into GPU for hardware

acceleration due to its computational cost. On the other

hand, the Back-End (heart of SLAM) part is improved

using a proposal method called “windowed filtering”

adapted to the scan matching process instead of a high-

cost Bundle Adjustment (BA). Their main result is

based on a competitive study that achieves a remarkable

gain and effective speed-up; more reliable reconstructed

trajectory in some cases and lower cost than stereo

ORB-SLAM [9], except that they didn’t adopt a

heterogeneous implementation CPU-FPGA that

guarantees a low power consumption beside low cost

and high performance.

 [10] proposed an attractive integrated computing

platform that deals with compute-intensive tasks named

Heterogeneous Extensible Robot Open (HERO)

composed of an Intel Core i5 CPU as host and a high-

performance scalable compute FPGA accelerator Intel

Arria 10 as device. This platform is developed under

needful objects to facilitate research that deals with:

heterogeneous computing, algorithm acceleration,

compute-intensive component. Within the scope of this

paper, they proposed a heterogeneous implementation

of HectorSLAM algorithm, whereas they work on

accelerating the scan matching process of HectorSLAM

on HERO platform, which achieved a significant

improvement and remarkable gain, while performing 4-

times faster than software implementation with Intel

Core I5 CPU and 3-times speed-up against HDL

implementation with only Arria 10 SoC.

 In contrast, the ultimate goal of this paper is

improving the performance of our targeted VSLAM

algorithm in terms of computational cost. For this

purpose, our hardware-software co-design study adopts

aforementioned works [8, 10], where they provide

appealing results tackling the computational complexity

of SLAM system, furthermore, they worked on

heterogeneous systems porting compute-intensive parts

of SLAM system precisely the scan matching process

into accelerators: The first [8] paves the way to us

toward our targeted ORB-SLAM algorithm that shows

reliable results than their proposal, except we will be

satisfied with the monocular version. The second [10]

leads us toward an efficient trend of heterogenous

architectures CPU-FPGA.

2

E3S Web of Conferences 229, 01055 (2021) https://doi.org/10.1051/e3sconf/202122901055
ICCSRE’2020

3 Algorithm description

In this section, we assume steps to pave the way to the

optimized functional block, giving an overview of the

chosen algorithm and performance evaluation of the

system.

3.1 ORB SLAM overview

The selected algorithm is a monocular ORB- SLAM

[11], one of the purest Visual SLAM frameworks that

operates in real-time, in small and large environments.

As shown in figure 1, the system consists of three

concurrent threads: tracking, local mapping, loop

closing.

The tracking thread deals with the camera localization

at each frame reception and decides to add it or not to

the system. It performs a matching between the previous

frame and the current frame and calculates the camera

position by an evolution model. In the case where the

tracking is lost, the place recognition phase is launched

to achieve a global relocalization. If the tracking is

successful besides a first estimate of the camera position

and a set of matched keypoints, a local map is

constructed using the covisibility graph. A second

matching phase is performed to identify landmarks in

the local map using a projection procedure, then the

position of the camera is optimized with the matched

keypoints. Finally, the tracking thread decides whether

to save or to abandon the keyframe for the next thread.

 The local mapping thread processes the keyframes

acquired by the tracking thread and execute Local BA to

achieve optimal map reconstruction. A matching phase

is performed to look for matches in the keyframe

connected in the covisibility graph to allow their

triangulation. After the initialization of the new points,

a selection procedure is realized to keep only the high-

quality points based on certain information collected by

the tracking thread.

 The loop closing thread looks for potential loops in

every acquired keyframe. The detection of loop closing

leads to calculate the similarity transformation that gives

information on the degree of drift accumulated in the

loop. Then, the two loops are aligned and the duplicate

points are merged. In the end, an optimization of the

position graph is performed to achieve global

consistency.

3.2 Functional block choice

The performance of the ORB SLAM System is

evaluated with the CPU of the targeted platforms

(detailed in Section V): Core Intel i5 of laptop machine

and ARM Cortex A57 of embedded NVIDIA TX1

board. It has to be noted that the processing time

depends on several parameters of algorithm and

platform, therefore, we adopt Ubuntu 16.04 version as

an operating system in the targeted platforms and

besides, we evaluate the system on TUM1 Dataset [12]

with monocular images. Table 1 shows the mean of

processing time of every functional block (FBs). Among

the FBs, Map Point Culling / Creation new map points

and Local BA blocks are notoriously time-consuming

blocks except they require a dependency with other

blocks and a very complicated calculation. Therefore,

we selected Initial Pose Estimation which has the third-

highest running time and performs 44% of the tracking

thread.

Table 1. ORB-SLAM performance evaluation.

 FBs

Laptop

Intel

Embed

ded

TX1

Tracking

ORB Exctraction
19.58 62.32

Intital Pose

Estimation
26.03 67.46

Track Local Map /

KeyFrame Decision
6.42 22.15

Total (ms) 52.03 151.93

Local

Mapping

New KeyFrame

Processing 16.87 42.10

MapPoints Culling /

New Points Creation
103.31 297.45

Local BA
156.45 469.53

KeyFrame Culling
6.97 18.51

Total (ms) 283.60 827.59

Loop

Closing

- Candidate Detection

- Compute Sim3

- Loop Corrector

(ms)

3.80 5.67

3.3 Map initialization

Map initialization is a part of the second system

functional block, which perform 67% of FB2 and 30%

of tracking thread. It handles the relative camera pose

process between two frames basing on two geometrical

models; a fundamental matrix [13] for non-planar scene

and a homography [13] for planar scene, to triangulate

initial points of the map. Thus, a heuristic method (i.e.

ratio of scores) is calculated to select the appropriate

geometrical model applied for the current scene

whereby an initial reconstruction is achieved. More

detailed clarifications in [13].

Fig. 1. ORB-SLAM overview.

3

E3S Web of Conferences 229, 01055 (2021) https://doi.org/10.1051/e3sconf/202122901055
ICCSRE’2020

3.4 Towards optimization

The proposed optimization aims to parallelize the third

part of Map initialization with the targeted

heterogeneous platforms. Algorithm 1 provides insight

into geometrical models M computation (F for the

fundamental matrix, H for the homography) inside

RANSAC [14] iterations using normalized eight-point

and DLT algorithms, as detailed in [13]. For the sake of

improved results accuracy of those algorithms, the

normalization method has to be carried out before.

Algorithm 2 Geometrical model M computation inside

RANSAC iterations it = 200

1) Normalize the detected keypoints.

2) Perform all RANSAC iterations it for each model M

and save the solution with highest score:

a. Select random points applying 8-point

algorithm.

b. DLT algorithm to Compute the model M matrix.

c. Denormalization.

d. Compute current score.

e. Test score.

 Practically, the models M are computed in parallel

using C++ multi-threading API (used std::thread class

defined in header <thread>). Moreover, normalize

function (Norm) is carried out in both H and F.

Meanwhile, Norm is called consecutively twice for each

M (for current image, reference image) and it handles

2001-2010 keypoints experimentally. Thus, our main

idea is to introduce a first step of FB2 optimization

toward heterogeneous systems accelerating Norm and

reducing memory resources usage. Toward this end, we

propose one execution of Norm handling current image

and reference image as arguments simultaneously.

However, Norm is not parallel in nature, wherefore, we

propose special modification to bridge this gap.

4 Towards heterogeneous
 implementation

In this section, we describe Normalize kernel step by

step. Toward this, we developed two versions of

normalize function: OpenCL for FPGA and CUDA

version for GPU. In the following, we based on OpenCL

for FPGA to describe the proposed implementation

while the CUDA version could be inferred easily.

4.1 OpenCL for FPGA platform

In OpenCL terminology, the host is always the CPU

whereas, FPGA called the device. The host CPU gives

the order to the FPGA to execute the calculation. The

code executed by FPGA named kernel. The OpenCL

architecture provides NDRange, that composed of

work-groups which are associable, these work-groups

are constituted by work-items, the work-items are active

elements in the execution step. Each work-group has a

1D, 2D or 3D identifier in the NDRange, in which the

work-item has also a 1D,2D and 3D identifier within the

work-group. The data buffering is achieved between

host and FPGA memories via PCI-express bus. OpenCL

provides fourth types of memory for FPGA with specific

usage: global memory that guarantees the data transfer

sequentially, constant memory that has the shortest

latency, local memory shares data between work-items

in the same work-group with low latency, and private

memory the fastest memory access, which is dedicated

to each work-item work.

4.2 Normalize: accelerated version

Normalize function is computed in the two consecutive

frames: reference frame 𝑢𝑖
𝑟(𝑥𝑖

𝑟 , 𝑦𝑖
𝑟) ∈ 𝐹𝑟 and current

frame 𝑢𝑖
𝑐(𝑥𝑖

𝑐 , 𝑦𝑖
𝑐) ∈ 𝐹𝑐

 𝒙𝑟,𝑐 =
1

𝑁𝑟,𝑐
∑ 𝑥𝑖

𝑟,𝑐 𝑖=𝑁
𝑖=0 , �̅�𝑟,𝑐 =

1

𝑁𝑟,𝑐
∑ 𝑦𝑖

𝑟,𝑐𝑖=𝑁
𝑖=0 (1)

 �̅�𝑑𝑒𝑣
𝑟,𝑐 = ∑ |(𝑥𝑖

𝑟,𝑐 − �̅�𝑟,𝑐)|𝑖=𝑁
𝑖=0 (2)

 �̅�𝑑𝑒𝑣
𝑟,𝑐 = ∑ |(𝑦𝑖

𝑟,𝑐 − �̅�𝑟,𝑐)|𝑖=𝑁
𝑖=0

with x̅𝑟,𝑐 , y̅𝑟,𝑐: respectively the mean of x and y corner

coordinates, 𝑁𝑟,𝑐: the number of detected corners in both

reference and current frame.

The normalized points are givens by the following

function:

 𝑥𝑖,𝑛
𝑟,𝑐 = (𝑥𝑖

𝑟,𝑐 − �̅�𝑟,𝑐) 𝑠𝑥
𝑟,𝑐 (3)

𝑦𝑖,𝑛
𝑟,𝑐 = (𝑦𝑖

𝑟,𝑐 − �̅�𝑟,𝑐) 𝑠𝑦
𝑟,𝑐

With:

 𝑠𝑥
𝑟,𝑐 =

1

�̅�𝑑𝑒𝑣
𝑟,𝑐 , 𝑠𝑦

𝑟,𝑐 =
1

�̅�𝑑𝑒𝑣
𝑟,𝑐 (4)

The normalized matrix is given by:

 𝑇𝑟,𝑐 = (
𝑠𝑥

𝑟,𝑐 0 −�̅�𝑟,𝑐𝑠𝑥
𝑟,𝑐

0 𝑠𝑦
𝑟,𝑐 −�̅�𝑟,𝑐𝑠𝑦

𝑟,𝑐

0 0 1

) (5)

These equations contain parts that are parallel in nature

and other parts that are not obvious to parallelize and

require special modifications to adjust to the FPGA

kernel. Thus, we propose a new parallel version, see

figure 2, including approaches to deal with sequential

parts, and NDRange Kernel optimizations [15] to

improve data processing and memory access efficiently.

4.2.1 NDRange kernel optimizations

NDRange kernel optimizations are a set of

optimizations offered by Altera SDK for OpenCL [16]

dedicated for FPGA kernel, we adjust the following to

optimize our proposed kernel.

• Kernel vectorization (SIMD)
We used num_simd_work_items attribute for utilizing

the global memory bandwidth efficiently by allowing

4

E3S Web of Conferences 229, 01055 (2021) https://doi.org/10.1051/e3sconf/202122901055
ICCSRE’2020

multiple work-items to execute in a Single Instruction

Multiple Data (SIMD) to achieve higher throughput.

• Constant memory (CM)
We used global _const arguments to handle the buffers

kpts (reference image keypoints, current image

keypoints) transferred from the host with low latency

instead of global memory.

• Packetization
Packetization is a type of vectorization that we used it to

packetize kpts in single float2 vector for optimal

widening of loads/stores

• Local memory (LM)
We used _local for preloading the packetized buffers

kpts to apply the following approach and to share data

between work-items in the same work-group and reduce

the number of global memory accesses.

4.2.2 Accumulation approach

We adopt this strategy to handle the sequential parts of

(1) and (2) which require a preloading of the packetized

buffers kpts to LM, whereas each work-item within

work-group accumulates 2 separated elements by an

offset equal to work_group_size divided by 2. Then this

operation is repeated dividing offset by 2 in each

iteration until the it becomes lower than 1. The work-

items within each work-group must be synchronized

with CLK_LOCAL_MEM_FENCE barrier to control

and manage the memory accesses properly.

5 Implementation and evaluation

The proposed kernel is implemented and evaluated on

three heterogeneous architectures.

5.1 Architectures description

5.1.1 DE1-SoC board

DE1-SoC board is low power embedded hardware

designed by Altera System-on-Chip (SoC) FPGA,

combines an ARM-based hard processor system (HPS)

with FPGA Cyclone V. The HPS includes a Dual-Core

ARM Cortex A9 MPCore processor running at 800

MHz, 1GB (256Mx32) DDR3 SDRAM, single hard

memory controller, and a rich set of peripherals. On the

other hand, the chip integrates FPGA that provides four

50MHz clock sources from clock generator, and 64MB

(32Mx16) SDRAM, besides, it consists of several

embedded resources: 85K logic elements, 87 DSP

blocks, 4.450Kbits embedded memory, 6 Fractional

PLLs, and single hard memory controllers.

5.1.2 NVIDIA platforms

Our implementation has adopted two CPU-GPU

platforms: a laptop machine and an automotive

embedded architecture (NVIDIA Tegra TX1). Table 2,

shows the targeted NVIDIA platforms specifications.

Table 2. Platform specification.

 Laptop TX1

CPU 8 Intel core i5
4-cores ARM A57

4-cores ARM A53

CPU clock

rate
1.9-2.5 GHz 1.3-1.9 GHz

Cache
3 MB

2 MB

RAM 8 GB 4 GB

GPU
256 CUDA core

GeForce 920MX

256 CUDA core

Maxwell

GPU clock

rate
0.98 GHz 1 GHz

Memory

clock rate
2505 MHz 13 MHz

 The host of the laptop machine provides an Intel

Core i5 4300U CPU with 8 cores operate at 1.9~2.5 GHz

and offers 8 GB DDR3 memory with 3 MB of cache

memory. The laptop machine integrates also a high-end

NVIDIA GeForce 920MX GPU with 256 CUDA core

(128 per SM) operates at 980MHz, 2GB global memory

and 2505 MHz in the clock rate.

 On the other hand, the automotive embedded

architecture NVIDIA Jetson TX1 dedicated to

embedded application with low power, it is equipped

with ARM Cortex A57 quad-core running at 1.9 GHz

with 4 GB memory and 2 MB of L2 cache. Moreover,

Fig. 2. Data flow of the kernel with OpenCL for FPGA:

Constant memory (blue), Local memory (gray), Global

memory (green).

5

E3S Web of Conferences 229, 01055 (2021) https://doi.org/10.1051/e3sconf/202122901055
ICCSRE’2020

the board integrates a modern powerful embedded

GPGPU with Maxwell architecture that contains 256

CUDA core (128 per SM) running at 1GHz, 4GB global

memory and clock memory rate about 13MHz.

5.2 Evaluation and results

Table 3 shows the evaluation of the proposed

implementation on NVIDIA platforms. Where the high-

end NVIDIA GeForce 920MX GPU achieves 2-times

speedup than Intel Core i5 CPU, whereas TX1 GPU

could not tackle the computational time. Although the

kernel code was the same for the two platforms without

modifications and the platform specifications were

almost similar, the difference in term of computational

time is too obvious due to the frequent preloading of

data, and heavy memory clock rate for Tegra TX1 GPU.

Table 3. Evaluation of the kernel with two frames and 2048

keypoints.

Margin Laptop TX1

Device CPU GPU CPU GPU

Normalize

(ms)

0.133 0.073 0.365 0.384

For DE1-SoC board, the proposed kernel with two

frames and 2048 keypoints was not supported due to the

resource limitation. To overcome this limitation, we

have proposed an optimal solution supported by the

board which consists of reducing the data size to 1024

and processing a single image. The estimated resources

usage of the FPGA required by the proposal use 59% of

logic elements, 26% of registers, 65% of memory blocks

and 14% of DSP blocks

Table 4 presents the comparative study between the

targeted platforms, through an evaluation of the optimal

kernel versions.

Table 4. Evaluation of the experimental kernel version with

single frame and 1024 keypoints.

 DE-SoC TX1 Laptop

Device FPGA GPU GPU

Normalize

(ms)
0.160 0.220 0.026

 The DE1-SoC FPGA achieved almost an appealing

result than Tegra TX1 GPU as an embedded system due

to the optimizations applied to the kernel and the

memory conception. As is obvious, the compute-

intensive parts require a huge preloading of data to

memories, thus, the optimizations applied such SIMD

and vectorization increase the throughput, besides it

helps to reduce the memory accesses providing an

efficient usage of the global memory instead the GPU

that requires a system to avoid the local memory bank

conflict such a Direct Memory Access (DMA). On the

other hand, FPGA architecture offers an attractive

memory conception that provides a low latency due to

the configurable memory layer SRAM that manages

data flow in the operational layer.

6 Conclusion
Current works in a SLAM system in the ongoing

research aim to tackle with the computational time of the

compute intensive parts of the algorithm using

heterogeneous NVIDIA platforms such [8, 17].

However, the system requires an optimization to handle

the computational complexity. Thus, our work presented

a proposed implementation of the algorithm part

targeting heterogeneous architectures. Moreover, the

main idea was presenting the heterogeneous system

FPGA-based capability to tackle with the computational

complexity of heavy algorithms by its nature. Thus, a

high-performance scalable compute FPGA accelerator

as ARRIA 10 is an attractive choice to attain a complete

end-to-end embedded SLAM system.

References

1. National instrument, introduction to fpga

technology: Top 5 benefits,

http://www.ni.com/white-paper/6984/en/. 2012.

2. J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K.

Vissers, and Z. Zhang. High-level synthesis for

fpgas: From prototyping to deployment. IEEE

Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 30(4):473–491,

April 2011. I

3. Khronos Group, "OpenCL-The open standard for

parallel programming of heterogeneous systems,"

4. Li H, Yu D, Kumar A, Tu YC. Performance

Modeling in CUDA Streams - A Means for High-

Throughput Data Processing, Proc IEEE Int Conf

Big Data. pp,301-310,2014.

5. Sebastian Thrun and John J Leonard.

Simultaneous localization and mapping. In

Springer handbook of robotics, pages 871–889.

Springer, 2008.

6. Scaramuzza, D., Fraundorfer, F.: Visual odometry:

Part i the first 30 years and fundamentals.

7. Abouzahir, M., Elouardi, A., Latif, R., Bouaziz, S.,

& Tajer, A. (2018). Embedding SLAM algorithms:

Has it come of age? Robotics and Autonomous

Systems, 100, 14–26.

8. Nguyen, D.-D., Elouardi, A., Florez, S. A. R., &

Bouaziz, S. (2018). HOOFR SLAM System: An

Embedded Vision SLAM Algorithm and Its

Hardware-Software Mapping-Based Intelligent

Vehicles Applications. IEEE Transactions on

Intelligent Transportation Systems, 1–16. 8

9. R. Mur-Artal and J. D. Tardós, “ORB-SLAM2: An

open-source SLAM system for monocular, stereo,

and RGB-D cameras,” IEEE Trans. Robot., vol.

33, no. 5, pp. 1255–1262, 2017.

6

E3S Web of Conferences 229, 01055 (2021) https://doi.org/10.1051/e3sconf/202122901055
ICCSRE’2020

10. Shi, X., Cao, L., Wang, D., Liu, L., You, G., Liu,

S., & Wang, C. (2018). HERO: Accelerating

Autonomous Robotic Tasks with FPGA. 2018

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS).

11. Mur-Artal, R., Montiel, J. M. M., & Tardos, J. D.

(2015). ORB-SLAM: A Versatile and Accurate

Monocular SLAM System. IEEE Transactions on

Robotics, 31(5), 1147–1163.

12. http://vision.in.tum.de/data/datasets/rgbd-

dataset/download

13. R.Hartley and A. Zisserman, Multiple View

Geometry in Computer Vision, 2nd ed.,

Cambridge, U.K. 2004.

14. E. Michaelsen, W. V. Hansen, M. Kirchhof, J.

Meidow, and U. Stilla, “Estimating the essential

matrix: GOODSAC versus RANSAC,” in Proc.

Symp. ISPRS Commission III Photogramm.

Comput. Vis. (PCV),Germany, Sep. 2006.

15. Jia, Q., & Zhou, H. Tuning Stencil codes in

OpenCL for FPGAs. 2016 IEEE 34th International

Conference on Computer Design (ICCD).

16. Altera sdk for OpenCL, Best Practices Guide,

https://www.intel.com/content/dam/www/program

mable/us/en/pdfs/literature/hb/opencl-sdk/aocl-

best-practices-guide.pdf

17. J. Li, G. Deng, W. Zhang, C. Zhang, F. Wang and

Y. Liu. Realization of CUDA-based real-time

multi-camera visual SLAM in embedded systems.

Journal of Real-Time Image Processing. 2019.

7

E3S Web of Conferences 229, 01055 (2021) https://doi.org/10.1051/e3sconf/202122901055
ICCSRE’2020

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf

