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Abstract: Convolutional Neural Networks are a very powerful Deep Learning algorithm used in image processing, 
object classification and segmentation. They are very robust in extracting features from data and largely used 
in several domains. Nonetheless, they require a large number of training datasets and relations between 
features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule Networks 
(CapsNets) were introduced to overcome these limitations by extracting features and their pose using capsules 
instead of neurons. This technique shows an impressive performance in one-dimensional, two-dimensional 
and three-dimensional datasets as well as in sparse datasets. In this paper, we present an initial understanding 
of CapsNets, their concept, structure and learning algorithm. We introduce the progress made by CapsNets 
from their introduction in 2011 until 2020. We compare different CapsNets series to demonstrate strengths 
and challenges. Finally, we quote different implementations of Capsule Networks and show their robustness 
in a variety of domains. This survey provides the state-of-the-art of Capsule Networks and allows other 
researchers to get a clear view of this new field. Besides, we discuss the open issues and the promising 
directions of future research, which may lead to a new generation of CapsNets. 

1 INTRODUCTION 

Imitating the human brain used to be a dream for 
scientists until the creation of Artificial Neural 
Networks (ANNs). ANNs are the artificial version of 
Biological Neural Networks that constitute our 
nervous system. Simulating human brain ability in 
object classification was the goal of Convolutional 
Neural Networks (CNNs). This type of neural 
networks shows high performance in object 
classification and image processing. CNNs extract the 
most significant features from images and use them 
for classification. However, CNNs are unable to 
detect object deformation and relationships among 
object entities. These limitations may lead to 
incorrect classification, hence influencing the model 
performance negatively. 

Capsule Networks have been introduced to adjust 
CNNs and overcome their shortcomings. These 
networks are a combination of Auto-encoders and 
capsules. Auto-encoders (AE) are simple neural 
networks consisting of an encoder, latent space 
representation and decoder. The encoder compresses 
the input to latent space representation, then the 

decoder reconstructs the input based on this 
representation only. The network is trained by 
updating weights using backpropagation with a 
gradient optimizer. This type of network is used for 
data denoising, dimensionality reduction and as a 
generative model. They were widely developed to 
extract more features while keeping the capacity of 
generalization, by Denoising AE (Vincent et al., 
2008), Sparse AE (Lee et al., 2008), Variational AE 
(Pu et al., 2016) and Transforming AE (Hinton et al., 
2011). 

The introduction of Capsule Networks was in 
2011. They were presented as Transforming AE by 
(Hinton et al., 2011) who noticed that Convolutional 
Neural Networks are misguided in what they are 
trying to achieve. CNNs lose meaningful information 
like object entities’ poses and relationships between 
features in the Max-pooling layer. Transforming AE 
proposed capsules instead of neurons to keep the 
maximum information, e.g. pose and velocity. 
However, the idea did not work efficiently until the 
introduction of the Routing by Agreement algorithm 
in 2017 (Sabour et al., 2017), which outperforms 
CNNs in some datasets and shows impressive results. 
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This paper highlights the limitations of CNNs and 
the high performance of CapsNets in diverse 
implementations. We present a variety of selections 
of the best performing works in CapsNets from 
various viewpoints. We compare different CapsNets’ 
models, and we discuss their benefits and challenges. 
This survey is done after consulting other similar 
papers. We believe that our review presents the most 
recent works in this field. It gives a clear view of 
CapsNets’ series and updates, and it explores a 
possible future scope of research. 

This paper is organized as follows: In Section 2, 
we introduce CNNs and their limitations. Then, we 
detail Capsule Networks architecture and its progress 
in Section 3. Furthermore, we present 
implementations’ domains and fields of this Deep 
Learning (DL) network in Section 4. After that, we 
describe CapsNets updates in Section 5. The series 
and shortcomings of Capsule Networks are described 
in Section 6. Finally, we conclude in Section 7. 

2 CONVOLUTIONAL NEURAL 
NETWORKS 

Convolutional Neural Networks (CNNs) are very 
powerful in image classification and processing (Q. 
Zhang et al., 2016). They are considered state-of-the-
art in computer vision and widely used in object 
recognition systems (Maturana & Scherer, 2015) and 
self-driving cars (Jung et al., 2016). 

2.1 Overview of CNNs  

CNNs treat an input image by four kinds of layers: 
convolutional layers, pooling layers, flattening layers 
and fully connected layers. Convolutional layers 
apply multiple kernels to the input and activate the 
output according to the rectified linear activation 
function (ReLU) (He et al., 2015) to generate a 
features map (equation 1). The pooling generates a 
pooled feature map using Max-pooling (equation 2), 
which chooses the most important pixels to be passed 
to the next layer. Therefore, it reduces the dimension 
of images. These two layers are repeated several 
times to refine feature extraction. Next, the flattening 
layer flattens the pooled feature map into a column 
matrix. This matrix will be passed to a Fully 
Connected (FC) artificial neural network that consists 
of an input layer, hidden layers and output layer. 
Figure 1 shows the CNNs’ structure. 
 

X'1,1,1=ReLU(X1,1*k1,1+X1,2*k1,2+X2,1*k2,1+
X2,2*k2,2) 

 

(1) 

P1,1=max(X’1,1,1;X’1,1,2;X’1,2,1,X’1,2,2) 
 

(2) 

The convolution moves by a number of steps 
called strides, from left to right and from top to 
bottom on the input to generate the feature map. To 
preserve a maximum of features, several distinct 
kernels are applied to the input to obtain 
corresponding feature maps. The ReLU function is 
for adding nonlinearity into the model. Max-pooling 
scans each feature map, and selects the maximum 
value according to filter size, then creates a pooled 
feature map. 

2.2 CNNs Shortcomings 

Convolutional Neural Networks were introduced two 
decades ago. Through all these years, CNNs were 
widely developed and adjusted. However, they still 
have some shortcomings: 
- Inability to understand data structure (Hosseini et 
al., 2017): CNNs are not interested in position 
properties and hierarchical structures i.e. relations 
between objects’ parts. Max-pooling reduces the 
dimension of images and causes a loss of some useful 
features. 
- Inability to be spatially invariant: CNNs are only 
invariant to translation, but if the input images have 
been reversed, rotated or tilted the performance 
decreases drastically. They are unable to detect 
deformation, pose and texture of an image (Sabour et 
al., 2017). 
- Viewpoint variance: different viewpoints of an 
object lead to changes in neural activities. Hence, to 
recognize objects, the network should learn different 
variations of the images. That requires a lot of 
training data and a long training time. 
- Overfitting: when the camera or the illumination of 
the image is changed, CNNs cannot perform well 
(Ahmadvand et al., 2016). 
- Sensitive to adversarial attacks (Su et al., 2019): 
CNNs can easily be fooled by adding some carefully 
constructed noise to the input image. 

3 CAPSULES NETWORK 
PROGRESS 

The idea of Capsule Network was introduced in 2011 
to overcome the shortcomings of CNNs regarding 
robustness. It has been tested on different types of 
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datasets and showed a high performance. The 
following sub-chapters describe the main milestones 
in the progress of CapsNets. 

3.1 Transforming Auto-encoders 

Transforming Auto-encoders (TAEs) (Hinton et al., 
2011) were the first seed of capsule networks. TAEs 
are Auto-encoders that apply a transformation matrix 
to the extracted pose features, so the network can be 
trained to predict transformations like rotation, 
scaling and translation. 

Unlike CNNs that are only invariant to translation, 
TAEs are equivariant. This property makes them 
understand proportion change and adjust themselves 
accordingly to keep the pose features information. 
Equivariance is achieved in these Auto-encoders by 
using vectors to represent objects, where each vector 
contains scalar values that represent the instantiation 
parameters of the object. 

TAEs consist of several capsules, where each 
capsule is a group of neurons that represent an object 
or a part of an object in a specific location using 
inverse rendering. They extract instantiation 
parameters from the image to draw it again. 

A TAEs’ capsule is composed of recognition units 
and generative units. The output of each capsule 
represents the contribution to reconstruct the output 
image. Figure 2 details the structure of the TAEs. 

Recognition units (blue circles in Figure 2) detect 
pose parameters represented by matrix A and 
compute P, the probability that the capsule’s feature 
is present in the image. Then, the capsule will transfer 
these values to the generative units layer.  

Generative units (red circles in Figure 2) are fed 
with TA, where T is the transformation matrix. These 
units compute the capsule’s contribution to the 

transformed image and multiply it by the probability 
P. Finally, all capsules’ contributions are combined to 
reconstruct the output image. However, this 
architecture could not work properly in 2011, because 
of computer hardware limitations and the absence of 
efficient algorithms. 

3.2 Dynamic Routing Between Capsules 

In 2017, (Sabour et al., 2017) succeeded to implement 
an efficient algorithm to relate capsules, that showed 
better performance than CNNs on the MNIST dataset. 
It is called Dynamic Routing Between Capsules or 
Routing by Agreement between capsules (RBA). This 
paper (Sabour et al., 2017) was the official definition 
of CapsNets as a network of capsules. The output of 
a capsule is called activation or instantiation vector. 
The length of this vector represents the probability 
that the feature actually exists. The orientation of the 
vector encodes the feature’s instantiation parameters, 
i.e. thickness, localization, width and so on. The 

Figure 1: CNNs structure with one Convolution+ReLU layer. 

Figure 2: Transforming Auto-encoders’ capsule 
structure. 
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CapsNets Encoder consists of three main parts: 
Convolutional layer, PrimaryCaps layer and 
ClassCaps layer (also called as DigitCaps) (Figure 3). 
The Convolutional layer extracts image features 
through convolution kernels to construct a feature 
map. Then, a ReLU function is applied to provide 
non-linearity and to activate the feature map values. 
The output feature map is scanned another time by 
kernels and generates a new feature map. 
PrimaryCaps group the generated features to vectors 
to create primary capsules. Finally, the PrimaryCaps 
are routed to the ClassCaps layer by Dynamic 
Routing Between Capsules (Algorithm 1). The 
original CapsNets are used to classify MNIST 
dataset, so the ClassCaps consists of 10 classes. The 
contribution of each capsule i in PrimaryCaps to each 
capsule j in ClassCaps is computed as follows: 

 
û୨୧  =  W୧୨u୧    (3)

 
Where u୧ is the output of capsule i, and ûji is a 

prediction vector. Wij is a weight matrix. 
Each capsule j in ClassCaps computes the total 

prediction vector sj (equation 4). To ensure that the 
vector length is between 0 and 1, a squashing function 
is applied (equation 5), which does not affect the 
instantiation parameters. 

 

𝐬𝑗 =  ෍ 𝑐𝑖𝑗û𝑗𝑖

௜

 

 
(4) 

𝑉௝ =
|ห𝑆௝ห|ଶ  

1 + ห|𝑆௝ห|ଶ  
 

𝑆௝

|ห𝑆௝ห|
  

 

(5) 

𝑐𝑖𝑗  is the coupling coefficient determined by a 
SoftMax function (equation 6). This coefficient is 
used by Dynamic Routing to determine the relation 
between low-level and high-level capsules through 
repetitive routing. The agreement between capsules is 
reflected by the product of the prediction vector and 
a coupling coefficient. If the agreement is high, the 
low-level capsule and the high-level capsule are 
related to each other and the coupling coefficient will 
increase otherwise, it will decrease. Notice that 𝑐𝑖𝑗 is 
updated in this step by updating 𝑏𝑖𝑗  (equation 7), 
unlike Wij that are updated by backpropagation. 

 

The Decoder part (Figure 4) reconstructs the input 
image, it is made up of three FC layers using ReLU 
and Sigmoid activation functions to generate the 
output which is reshaped to a grayscale image. 

As long as the CapsNets consist of classification 
and reconstruction part, the total loss TL will be 
calculated in two halves: (i) The first one punishes 
incorrect classifications 𝐿௞  (encoder-part), (ii) and 
the second punishes reconstruction error D  (decoder-
part) by mean square loss. 
 

𝑐𝑖𝑗 =
𝑒௕𝑖𝑗

∑ 𝑒௕𝑖𝑘
௞

 

 
(6) 

𝑏௜௝ = 𝑏௜௝ + 𝑉௝û୨୧  

 
(7) 

Figure 3: CapsNets Encoder, Decoder, Routing by Agreement. 
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Figure 4: CapsNets Decoder. 

The following equation represents the margin loss 
of classification: 

 
𝐿௞ = 𝐸௞ max(0, 𝑡ା − ‖𝑣௞‖)ଶ +  λ(1

− 𝐸௞) max(0, ‖𝑣௞‖ − 𝑡ି)ଶ 
(8)

 

 
Where 𝐸௞max (0, 𝑡ା − ‖𝑣௞‖)ଶ is calculated if an 

object of class k is present with Ek is set to 1, and 
λ(1 − 𝐸௞) max (0, ‖𝑣௞‖ − 𝑡ି)ଶ is calculated for the 
opposite case with 𝐸௞ = 0 . 𝑡ା = 0.9 and 𝑡ି = 0.1 
are set to prevent the length from max out or collapse 
the loss function unreasonably, λ  is set to 0.5 to 
control the down weighting of initial weights from 
influencing model decisions. This entity loss (𝐿௞) is 
then summed with the reconstruction loss (equation 
9) to compute the total loss (equation 10), which is 
used to evaluate the model performance.  

 
D = MSELoss(y,y’) (9)

 
y is the input image and y’ is the reconstructed 

image. 
 

TL = Lk + αD (10)
 

α is the down-scaling factor (taken as 0.0005) 
used to prevent the D loss from dominating over the 
Lk loss. 

3.3 Matrix Capsules with EM Routing  

In (Hinton et al., 2018), another algorithm was 
proposed for routing between capsules called 
Expectation Maximization Routing (EMR). Unlike 
RBA’s capsules that use elements’ vectors to 
represent the pose of an object and the vectors’ 
lengths to represent the probability of existence, EMR 
capsules use pose matrix and activation probability 
separately. Expectation Maximization is a clustering 
algorithm that clusters data points into Gaussian 
distribution, with each cluster defined by (μ: mean, σ: 
standard deviation). In capsule network, EMR groups 
child capsules into a parent capsule. The high-level 
capsule is activated if there is an agreement among 
votes from low-level capsules. The low-level capsule 
makes votes on the pose matrices of its potential 
parent capsule. The vote ( 𝑉 ) is calculated by 

RBA EMR 

A
lgorithm

 

i: capsule in layer L 
j: capsule in layer L+1 
Algorithm 1 Dynamic Routing (Sabour et 

al., 2017). 
procedure ROUTING(ûji, k, L) 

        ∀ 𝑏௜௝ , 𝑏௜௝← 0 
           For k iterations do 
                𝑐௜௝  ←  SoftMax(bij)    equation 6 
                𝑠௝   ←  ∑ 𝑐௜௝û௝௜௜  

                𝑉௝   ←  squash(𝑠௝)       equation 5 

                𝑏௜௝  ←  𝑏௜௝ + 𝑉௝û୨୧ 

         Return Vj 

ΩL capsules of the layer L 
Algorithm 2 EM Routing (Hinton et al., 2018). 

Procedure EM  ROUTING(a,V) 
        ∀ i  ∈ ΩL,  j  ∈ ΩL+1 :  Rij ← 1/| ΩL+1 | 
        For t iterations do 
               ∀  j  ∈ ΩL+1 : M-Step(a,R,V,j)   
               ∀  i  ∈ ΩL : E-Step(μ,σ,a,V,i)   
   Return a,M 
M-Step: updates (μ,σ,a) based on R the assignment 
probability. 
E-Step: recalculates R based on new μ,σ and a. 

Properties 

- The representation of a capsule’s input 
and output is a vector. 

-  The probability of existence is 
represented by the length of a vector. 

- Squashing function for probability. 
- Prediction vector: û୨୧  =  W୧୨u୧.  
- Returns: Probability (V). 
- Coupling coefficient: C. 
- Loss = Margin loss + MSELoss. 

- New parameter: capsule’s pose matrix M. 
- The representation of a capsule’s input and output 

is a matrix. 
- The probability of presence is represented by a 

parameter a (activation probability). 
- Gaussian probability. 
- Vote: Vij = MiWij 
- Returns: Activation probability + Pose matrix. 
- Assignment probability: R quantifies the runtime 

connection between child capsule and its parent 
capsule. 

- Spread loss: maximizes directly the divide between 
the wrong class’s activation and target one. 

Table 1: Difference between RBA and EMR. 
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multiplying the pose matrix (𝑀 ) of the low-level 
capsule with a viewpoint invariant transformation 
(𝑊). 

 
𝑉 = 𝑀𝑊 (11) 

 
In EMR, the representation of a capsule’s input 

and output are matrices instead of vectors. Moreover, 
the likeliness of the existence of an entity is presented 
by the activation probability a instead of a length 
vector. The probability is computed without using a 
squashing function, which is considered “not 
objective and sensible” (Hinton et al., 2018). Table 1 
clarifies the difference between RBA algorithm 1 and 
EMR algorithm 2. 

3.4 Stacked Capsule Auto-encoders 

In 2019, (Kosiorek et al., 2019) introduced an 
unsupervised capsule Auto-encoder called Stacked 
Capsule Auto-encoders (SCAEs). This capsule 
network uses objects to predict parts, in contrast to 
EM Routing and Routing by Agreement that use a 
part-whole relationship to predict the presence of the 
object. The inference routing used in both previous 
works is inefficient and it is discussed in further 
research (Li et al., 2018; S. Zhang et al., 2018), while 
SCAEs amortized this inference. 

The SCAEs consist of two stages: i) Part Capsule 
Auto-encoder (PCAE) predicts presences and poses 
of part templates directly from the image and tries to 
reconstruct the image by appropriately arranging the 
templates, ii) Object Capsule Auto-encoder (OCAE) 
organizes discovered parts and their poses into a 
smaller set of objects. These objects reconstruct the 
part poses using a separate mixture of predictions for 
each part. 

SCAEs are the only method that achieves 
competitive results in unsupervised object 
classification without relying on mutual information. 

4 IMPLEMENTATIONS 

CapsNets showed their performance in various fields 
such as medical or chemical image recognition, audio 
and video processing and many others. 

This type of network has the best performance in 
detecting spoof attacks. (Nguyen et al., 2019) applied 
capsule network to the forensics task. It is used to 
detect various kinds of spoofs from replay attacks 
using printed images or recorded videos to computer-
generated videos. Furthermore, the RBA algorithm 
improves detection performance on complex and 

almost perfectly forged images and videos. It showed 
a great performance and had perfect accuracy at 
frame level and video level dataset. 

Capsule networks have also proven their 
efficiency in the 3D domain. In (Y. Zhao et al., 2019), 
they are used to treat sparse 3D point clouds. They 
preserve spatial arrangements of the input data with 
good learning ability and generalization properties. 
The model performs well under rotation, part-
segmentation and 3D reconstruction and it has a low 
reconstruction error. 

(Duarte et al., 2018) introduced a 3D CapsNets for 
action detection in videos, by introducing capsule-
pooling with skip connections in the convolutional 
layer to decrease the routing computation. 

In the medical domain (Mobiny & Nguyen, 
2018), capsules have also been developed to handle 
characteristics of 3D lung nodule classification, and 
speed up CapsNets by a consistent RBA mechanism. 
The proposed dynamic routing mechanism consists of 
enforcing all capsules in the PrimaryCaps layer 
referring to the same pixels to have the same coupling 
coefficient, which reduces the number of routing 
coefficients and speeds up the model while keeping 
the accuracy of the original CapsNets. 

1D-CapsNet (Butun et al., 2020) has been 
introduced for automated detection of coronary artery 
disease (CAD) from electrocardiography-signal 
(ECG). Even though the model achieved a high 
accuracy it needs to overcome the long training time. 
Furthermore, the model needs a large dataset for 
training. This issue could be addressed by few-shot 
learning (Ren et al., 2020). 

CapsCarcino (Y.-W. Wang et al., 2020) has been 
introduced to distinguish between carcinogens and 
noncarcinogens. This capsule network is very helpful 
for carcinogen risk assessment in drugs. CapsCarcino 
is very robust for small-sized sparse datasets: with 
just 20% of the dataset, it performs comparably to the 
other methods using the full training dataset. 

WB-Caps (Baydilli & Atila, 2020) is a capsule 
network architecture that classifies white blood cells 
(WBCs) into five categories. WB-Caps can help to 
interpret the patient’s condition by performing blood 
tests with little cost, based on some characteristics of 
WBCs like ratio or shape. The model obtained a high 
accuracy without over-fitting.  

CapsNet-static-routing (Kim et al., 2020) is a 
CapsNets model used for text classification. It shows 
a high performance and stable results even after 
adding random noise to the dataset, the result does not 
change, and sentences keep their meaning. The 
experimental results of the classification indicate that 
the accuracy of the static routing is higher than the 
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dynamic one. Moreover, the model has a shorter 
training time than the original CapsNets. On the other 
hand, due to the high variability in text, CapsNet-
static-routing is not robust enough for document 
classification as opposed to image classification. It 
needs to be flexible for text modifications, like word 
order shuffling. 

(Lei et al., 2020) introduced Attention-Based 
Capsule Network (ACN) for tag recommendation. 
The model is based on the CapsNets with RBA plus 
an attention mechanism. The model is flexible to be 
applied for image and video tagging, too. Moreover, 
ACN could be improved by using Expectation 
Maximization routing, where pose matrix might 
extract more information and give better tag results. 

For intelligent fault diagnosis, Capsule Auto-
encoder (Ren et al., 2020) (CaAE) has been proposed 
to resolve the problems of traditional and modern 
intelligent fault diagnosis: the need for a large set of 
samples of faults and the need for diagnosis models 
to possess the ability of quick updating. The ability of 
CaAE to extract and fuse features reduces the 
dependence on the number of samples and training 
time, which makes CaAE suitable for few-shot 
learning without overfitting. The model is very robust 
under noisy datasets and it shows higher accuracy, 
less training time and a smaller number of epochs 
compared to methods in (J. Wang et al., 2019) and 
(Jia et al., 2016). 

5 CAPSNETS UPDATES & 
IMPROVEMENTS 

(Nguyen et al., 2019) proposed CAPSULE-
FORENSICS to improve the algorithm of (Sabour et 
al., 2017). A Gaussian random noise has been added 
to the weight tensor to reduce over-fitting, and an 
additional squash has been applied before routing by 
iterating to keep the network more stable.  

(Kim et al., 2020) suggest a static routing method 
instead of dynamic routing and ELU-gate (Dauphin 
et al., 2017) instead of pooling. Static routing reduces 
the computational complexity of dynamic routing. 
ELU-gate method selects which neurons to be 
activated without losing spatial information.  

(Rajasegaran et al., 2019) have gone deep with 
capsule network (Deepcaps) using the concept of skip 
connections and 3D convolutions to build a 3D 
convolution system based on the dynamic routing 
algorithm. Skip connections within a capsule cell 
allow good gradient flow in backpropagation, and 3D 
convolution reduces the number of parameters. The 

original CapsNets decoder (Sabour et al., 2017) has 
been replaced by a Deconvolutional decoder, which 
strengthens the use of reconstruction loss as a 
regularization term. This decoder is better at 
reconstructing spatial relationships and at 
regularizing capsules. 

(Phong & Ribeiro, 2019) introduced two 
advanced models (Capsule 32 V1 for images 32*32 
pixels and Capsule 32 V2 for images of 64*64 pixels) 
to improve CapsNets by expanding more pooling 
layers to filter image backgrounds and more 
reconstruction layers to allow better image 
restoration. Both models showed a good performance 
but they are more sensitive to changes.  

To reduce epistemic and homoscedastic 
uncertainty, (Ramírez et al., 2020) presented a 
Bayesian formulation of Capsule networks (BCN). 
They hybridized Deep Bayesian Neural Networks 
(DBNN) (Zhu & Zabaras, 2018) with Capsule 
Networks. The model attained good results with less 
uncertainty and less error due to performing dropout 
and including the homoscedastic uncertainty in the 
loss function and using a regularization term over the 
linear transformations in the inverse graphics.  

As it has been introduced in the RBA algorithm, 
the SoftMax activation function is used to compute 
the coupling coefficient 𝐜𝑖𝑗. (Z. Zhao et al., 2019a) 
demonstrated that SoftMax prevents CapsNets to find 
the optimal coupling to route between low-level and 
high-level capsules. After multiple routing iterations, 
it often leads to uniform probabilities. For that, 
SoftMax has been replaced by the Max-Min 
normalization. This normalization reduces the test 
error to 0.17% on MNIST and allows to increase the 
number of routing iterations without overfitting. 

To reduce CapsNets parameters (Yi et al., 2019) 
designed the CapsNetPr network that uses a pooling 
method, decomposition and sharing of the 
transformation matrix to address this issue. As a 
result, the CapsNets parameters have been reduced 
significantly across different datasets while keeping 
the performance of CapsNets. 

6  CAPSULE NETWORKS 
SERIES, ADVANTAGES AND 
SHORTCOMINGS 

Capsule Networks are used for treating various kinds  
of  data  such as images, text, videos. The  variety  of 
data requires some modifications to the original 
network structure. Table 2 summarizes the CapsNets 
series. 
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Table 2: CapsNets series. 

Paper 
Propo

sed 
model 

Task Characteristics Additions Dataset 
Accuracy on 

proposed model 
(%)/ Metric 

Baseline 
model 

Accuracy on 
baseline model 

(%)/Metric 

Capsule-
forensics: Using 
Capsule 
Networks to 
Detect Forged 
Images and 
Videos (Nguyen 
et al., 2019) 

C
A

P
S

U
L

E
-

F
O

R
E

N
S

IC
S

 

S
poofs detection 

Has the best 
performance and 
accuracy at frame 
level and video level 
dataset. 

VGG-19 layer before 
the primary layer. 
Addition of Gaussian 
noise to the weight 
matrix. 
Application of one 
additional squash before 
RBA. 

Deepfake 
dataset 

99.23% MesoIncept
ion-4 
Meso-4   

98.4% 
 
96.90% 

DeepCaps: 
Going Deeper 
with Capsule 
Networks 
(Rajasegaran et 
al., 2019) 

D
eep

C
ap

s 

Im
age 

classification 

Surpasses the 
CapsNets’ results on 
CIFAR10, SVHN and 
Fashion MNIST. 
Reduces the number 
of parameters. 

Skip connections within 
capsule cells. 
3D convolution 
CapsCells. 
Class-independent 
decoder. 

CIFAR10 
SVHN 
F-MNIST 
MNIST 

CIFAR10: 92.74% 
SVHM: 97.56% 
F-MNIST: 94.73% 
MNIST: 99.75% 

RBA CIFAR10: 
89.40%  
SVHM: 95.70% 
F-MNIST: 
93.60%  
MNIST: 99.75% 

3D Point 
Capsule 
Networks (Y. 
Zhao et al., 2019) 

3D
-

P
oin

tC
ap

sN
et 

3D
 points 

clouds process 

A higher accuracy 
compared with 
Latent-GAN and 
smaller training-set 
compared to AtlasNet. 

3D Capsule-Encoder. 
3D Capsule-Decoder. 

ShapeNet
55 

89.3% Latent-
GAN 
FoldingNet 

85.7% 
 
88.4%  

Text 
Classification 
using Capsules 
(Kim et al., 2020) 

C
ap

sN
et-static-

rou
tin

g 

T
ext 

 C
lassification 

 

Higher performance 
and noise-robustness 
compared to the state-
of-the-art methods of 
text classification. 

Static routing. 
ELU-gate instead of 
pooling. 
Removal of the 
coupling coefficient 
used in RBA. 

Sentences 
from 
TREC-
QA 

74% Dynamic 
Routing 

65% 

Classification of 
white blood cells 
using capsule 
networks 
(Baydilli & Atila, 
2020) 

W
B

C
ap

s 

W
hite blood cells 
classification 

High performance 
compared with Deep 
Learning methods and 
medical analysis 
techniques. 

Optimization of hyper-
parameters using the 
”babysitting” method. 
PReLU function for the 
convolutional and the  
FC layer. 

LISC 
dataset 

96.86% Inception-
ResNETv2  
Inceptionv3 
ResNET50  
VGG19 

82.50% 
 
80.00% 
80.00% 
77.50% 
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1D-
CADCapsNet: 
One dimensional 
deep capsule 
networks for 
coronary artery 
disease detection 
using ECG 
signals (Butun et 
al., 2020) 

1D
-C

A
D

C
ap

sN
et 

D
etection of C

A
D

 E
C

G
 

signals  

High performance 
using raw ECG 
signals without any 
feature 
extraction/selection or 
QRS detection. 

Redefinition of layers’ 
parameters. 
Addition of some sub-
layers to detect CAD 
ECG signal segments: 
tow 1D-Conv before 
PrimaryCaps then ECG 
caps. 

ECG 
dataset 

2 second ECG 
segments: 99.4% 
5 second ECG 
segments: 98.6% 

CNN 
 
 
 
 
CNN-
LSTM 

2 second ECG 
segments: 94.95%  
5s second ECG 
segments: 95.11% 
 
5s second ECG 
segments: 99.85% 

A model with the 
ability of few-
shot learning 
and quick 
updating for 
intelligent fault 
diagnosis (Ren et 
al., 2020) 

C
aA

E
 

Intelligent fault 
diagnosis 

The ability of few-
shot learning. 
Rapid updating and 
the ability to resist 
noise. 

Combination of AE and 
CapsNets, which is 
composed of three 
parts: feature extraction, 
feature fusion and fault 
diagnosis. 

motor 
bearings 
data 

99.85% SEFAM 
BNSAEs 
BNAE 

99.07% 
97.65% 
98.53% 

CapsCarcino: A 
novel sparse data 
deep learning 
tool for 
predicting 
carcinogens (Y.-
W. Wang et al., 
2020) 

C
ap

sC
arcin

o 

M
olecules 

classification 

Higher accuracy 
compared with SVM, 
RF, KNN, XGBoost, 
CNN. 
Robust for small size 
sparse dataset. 

Architecture: 
Two convolutional 
layers, one fully 
connected layer, one 
PrimaryCaps layer and 
one ToxCaps layer. 

Carcinoge
nic 
Potency 
Database 
(CPDB) 

81.8% SVM 
RF 
KNN 
XGBoost 
CNN 

70.0%  
64.2% 
65.7% 
59.6% 
66.8% 

Bayesian capsule 
networks for 3D 
human pose 
estimation from 
single 2D images 
(Ramírez et al., 
2020) 

B
ayesian C

ap
sN

et 

3D
 pose estim

ation 
from

 a single 2D
 

im
age 

Reduces the 
homoscedastic 
uncertainty. 
 

Bayesian Capsules. 
Bayesian FC neurons. 
Dropout of initial 
capsules. 
Regularization term 
over the linear 
transformations in the 
inverse graphics. 

Human3.6
M dataset 

Error (mm.): 71.7  
Tome 
(Tome et 
al., 2017) 
Rogez 
(Rogez et 
al., 2019) 

Error (mm.)  
79.6 
 
 
56.5 

Tag 
Recommendatio
n by Text 
Classification 
with Attention-
Based Capsule 
Network (Lei et 
al., 2020) 

A
tten

tion
-based

 
C

ap
sN

ets (A
C

N
) 

T
ag R

ecom
m

endation 

Outperforms the 
standard capsule 
networks. 
Flexibility to be 
applied for image and 
video tagging. 

Architecture: 
Embedding layer, 
attention layer, 
convolutional layer, 
primary capsule layer, 
Fully connected layer, 
dropout layer. 

TPA from 
AMiner 
 
 
AG from 
ComeTo
MyHead 

TPA: 
macro-P 0.829 
macro-R 0.825 
macro-F1 0.824 
AG: 
macro-P 0.926 
macro-R 0.922 
macro-F1 0.923 

CapsNets TPA: 
macro-P 0.820 
macro-R 0.815 
macro-F1 0.814 
AG: 
macro-P 0.921  
macro-R 0.918 
macro-F1 0.920 
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The majority of CapsNets research papers worked 
on the RBA algorithm, either in the original 
implementation or in improvement, while EMR and 
SCAE did not get the same attention from 
researchers. Just like the use of CapsNets in the 3D 
domain, only a few works have been focused on this 
field (Y. Zhao et al., 2019),(Duarte et al., 2018), 
(Weiler et al., 2018), (Jiménez-Sánchez et al., 2018; 
Mobiny & Nguyen, 2018). 

6.1 Advantages 

CapsNets are a very promising Deep Learning model, 
which possesses the capacity of learning relationships 
among image objects. This architecture has so many 
positive aspects: 
- Viewpoint invariance (Hinton et al., 2011). 
- The dynamic routing algorithm extracts more 

meaningful features compared to CNNs (Sabour 
et al., 2017). 

- They are equivariant, they are unaffected by 
positional changes. 

- They efficiently classify small data sets without 
data augmentation (Su et al., 2019),(Y.-W. Wang 
et al., 2020). 

- They are more robust than traditional CNNs to 
white box adversarial attacks (Hinton et al., 2018) 

- EMR achieved higher accuracy than the state-of-
the-art CNNs on the smallNORB dataset (Hinton 
et al., 2018). 

- They are robust to an imbalanced class 
distribution (Jiménez-Sánchez et al., 2018). 

- They increase the certainty to recognize the pose 
of an object since RBA and EMR activate a 
capsule after comparing several incoming pose 
vectors. 
These characteristics make CapsNets more 

powerful compared to other DL approaches in terms 
of generalization capability, accuracy, required 
training time and robustness to viewpoint changes. 

6.2 Shortcomings 

From RBA to Stacked Capsule Auto-encoder, 
CapsNets have shown good performance in different 
domains like in image classification, signal treatment, 
pose extraction, text classification and many other 
tasks. They are applicable to various kinds of datasets 
by adapting the architecture or the learning algorithm 
to the specificity of the data. Nevertheless, Capsule 
Networks suffer some drawbacks. Routing by 
agreement is not optimal for document classification, 
unlike for image classification, due to the high 
variability in a text (Kim et al., 2020). 

Although the CapsNets showed an impressive 
result in the MNIST dataset and did well on SVHM, 
they still perform poorly on CIFAR10, even when 
going deep in the Capsule network by DeepCaps 
(Rajasegaran et al., 2019), achieving an error of 
8.99%, which is higher than the error rate of the 
current state-of-the-art 3.47%. The high error rate can 
be explained with the complexity of the background 
and the intra-class variation of CIFAR10. 

A downside of the treated network is the high 
number of parameters to be trained (School of 
Computing, Northwestern Polytechnical University, 
Xi’an 710072, Shaanxi, P.R. China et al., 2019). With 
a small input image of 28x28, the original CapsNets 
architecture needs 8,2 M training parameters. More 
than half of these parameters come from the 
PrimaryCaps layer that executes reshaping and 
dynamic routing operations. The larger the images to 
be processed become, the greater becomes the 
number of parameters to be trained. Deepcaps 
(Rajasegaran et al., 2019) managed to reduce the 
number of parameters by 68%, while (Xiong et al., 
2019; Yi et al., 2019) used a pooling method which 
loses meaningful information. 

The learning process of RBA is slow due to the 
routing process that requires a loop to refine the 
coupling coefficient (Z. Zhao et al., 2019b). 
Moreover, CapsNets require more computational 
resources since the outputs of primary capsules are 
activity vectors rather than scalars, which require 
more memory. 

7 CONCLUSION AND 
DIRECTIONS FOR FUTURE 
WORK 

In this paper, Capsule networks have been introduced  
with their main progress steps: Transforming Auto-
encoders, Routing by Agreement Between Capsules, 
Matrix capsules with EM routing and Stacked 
Capsule Auto-encoders. The advantages of grouping 
extracted features into capsules to keep all input 
information have been explained as well as learning 
algorithms, architecture and CapsNets series. Capsule 
networks guarantee equivariant properties which 
make the network robust when undergoing a 
transformation. Furthermore, CapsNets achieved a 
very promising result with a small training dataset 
and without overfitting. However, they need to be 
improved to perform well with multi-class data and 
complex data such as CIFAR10. This Deep Learning 
networks need more experiments, searches and tests 

10

E3S Web of Conferences 229, 01048 (2021) https://doi.org/10.1051/e3sconf/202122901048
ICCSRE’2020



to explore their maximum capacity. Besides, more 
attention for the EM Routing and SCAE are necessary 
to make them more powerful and applicable in 
different datasets and to realize the full potential of 
CapsNets. 

New insights could be provided from going deep 
with EM routing and Stacked Capsule Auto-encoders 
as advanced CapsNets, also from working on 
reducing the complexity of these models and 
combining Capsule networks with other Deep 
Learning methods. Furthermore, self-driving cars can 
take advantage of the CapsNets’ accuracy and 
robustness against transformations made on inputs to 
trick the network. 
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