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Abstract. In this paper we consider a constrained optimization of discrete 

time Markov Decision Processes (MDPs) with finite state and action 

spaces, which accumulate both a reward and costs at each decision epoch. 

We will study the problem of finding a policy that maximizes the expected 

total discounted reward subject to the constraints that the expected total 

discounted costs are not greater than given values. Thus, we will 

investigate the decomposition method of the state space into the strongly 

communicating classes for computing an optimal or a nearly optimal 

stationary policy. The discounted criterion has many applications in several 

areas such that the Forest Management, the Management of Energy 

Consumption, the finance, the Communication System (Mobile Networks) 

and the artificial intelligence. 

1 Introduction 

The decomposition method consists in dividing the space of states into subsets which are 

weakly coupled. This technique was first introduced by Bather [1]. In his context, the 

decomposition of the state space is described and based on the accessibility between the 

states. The state space is divided into several Levels. Following Ross and Varadarajan [5] 

have presented a similar decomposition method to solve the constrained problem of the 

long-time average Markov Decision Processes. In this decomposition, the state space is 

partitioned into Strongly Communicating Classes and a set (perhaps empty) of transient 

states. Next, Baykal-Gursoy and Ross [6], Daoui and Abbad [7] investigated the same 

decomposition to solve the unconstrained problem of the long-time average. 
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We model in this work the environment as a Constrained Markov Decision Processes, 

defined by a tuple  

     ⋃  

   

     {  }        {  }              

where S is the set of states  , A is the set of actions  ,                      is the 

transition probability,          is the reward function which denotes immediate reward 

incurred by taking action   in state  ,           is the     cost  function upper bounded 

by ,      of     cost constraint,         is the discount factor and    is the initial fixed 

state. The goal is to compute an optimal policy    that maximizes the expected cumulative 

discounted rewards earned at state    while expected cumulative discounted costs are 

bounded: 

       
      

  [∑             

 

   

] 

     

   

       
  [∑              

 

   

]              

Define the random variable   by 

  ∑             

 

   

 

Here, {  }    is the state process taking values in the finite space S and {  }    is the 

action process taking values in the finite action space  . The notation        represents the 

indicator function. 

Set 

   

     
        

    

where    
 denotes the set of all stationary policies. 

A stationary policy   is called optimal (-optimal) if    
       

 
 (   

       

   ). 

We will solve the problem of the constrained discounted Markov Decision Processes 

exploiting the decomposition of the state space   into the strongly communicating classes 

by steps. First, we solve the restricted MDPs in subsection 3.1. We introduce a new MDP 

called intermediate MDP in subsection 3.2. We find a corresponding optimal policy. In 

section 4, we combine the results in subsections 3.1 and 3.2 in order to construct a nearly 

optimal policy for the original problem. 

2 Preliminaries 

2.1 Sample space, policies and measures 

The finite state and action spaces are denoted by S and A, respectively. The sample space is 

given by    {   } , so that the typical realization   can be represented as   
               . 

The state and action random variables   ,    for         are then defined as the 

coordinate mappings          and         . 

The sample space   will be equipped with the -algebra  generated by the random 

variables                . 
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In order to give a formal definition of a policy, first let  be the set of all probability 

measures on the action space  , i.e: 

  {(         | |)            | |     

         | |} 
where | | is the cardinality of  . Then a policy   is defined to be a sequence   
          where    is a mapping from {   }      to . We write   

 ,     | |, 
for the     component of   . 

For a fixed policy   and initial state  , we can now construct the probability measure   
  for 

the measurable space     . The finite-dimensional distributions of the probability 

measure   
 are defined as follows: 

  
          (1) 

 

  
                                

                 
   

                        

 
 

(2) 
 

  
                                  

                          
 

(3) 

where      is the law of motion, which is given and determined from the physical of the 

problem. From a stantard application of the Kolmogorov consistency theorem, we know 

there exists a unique probability measure   
 , on      such that (1)-(3) hold for all 

possible histories and all    . Thus, for each policy   and initial state  , we have 

constructed a probability space       
  . 

A policy   is said to be stationary if the same decision rule is used in every epoch. It 

is determined by a nonnegative function   on     such that 

∑       

   

   

for every    . 

A stationary policy   is called deterministic (non-randomized) if for every   , we have 

         for exactly one action    . The set of deterministic policies is denoted by 

   
. For a stationary policy   the corresponding transition matrix      [       ]

     
 is 

defined by 

        ∑           

   

 

 
Fig. 1. The movement of a robot 
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2.2 Decomposition theory  

The state space S has a naturel partition into strongly communicating classes   ,...,    and a 

set of states  . This decomposition has the following properties: 

i) The states in   are transient under all stationary policies. 

ii) If   is a recurrent class associated with some stationary policy, then   is contained in 

one of the strongly communicating classes. 

iii) There exists a stationary policy whose associated recurrent classes exactly correspond to 

the strongly communicating classes. 

iv) Under any stationary policy   and initial state   given, we have 

∑  
              

 

   

   

 

(4) 

where      abbreviates "almost always". Hence, for all policy u, the state process 

eventually enters one of the strongly communicating classes and remains forever. 

v) The partition {         } can be obtained by an efficient polynomial-time algorithm 

(KW. Ross and R. Varadarajan). It is based on a depth-first procedure of graph theory. 

In this subsection, any restricted MDP of the given MDP has the same laws of motion 

as the original MDP. Given an MDP M, with state space  , we define the state-dependant 

action spaces to be     , for all    . Then, we invoke the recursive procedure FIND-

CLASSES to find the strongly communicating classes of M. 

Algorithm (Ross-Varadarajan) 

Procedure FIND-CLASSES(Input: M; Output:  ,T) 

(Given a MDP M, with state space   and action spaces       , returns the set  of 

strongly communicating classes of M and the set T of states that are transient under all 

stationary policies) 

1. Partition de state space of M into communicating classes           . 

2. If    , set   {  },    : STOP. 

3. Otherwise, set    ,    ; DO for           

4. For each     , set    {                         } and  ̅       . 

5. If  ̅    for all     , set 
 

 {  },     , GO to STEP 9. 

6. Otherwise, call FIND-RESTRICTED-MDP(  ,        
;  ̿ ,  ̿ ). 

7. If     ̿ , set 
 

  ,     ̿ , GO to STEP 9. 

8. Otherwise, call FIND-CLASSES(     , ̅̅); set     ̅   ̿ . 

9. Set     
 

,       . 

Procedure FIND-RESTRICTED-MDP(Input: D,  ,    ; Output:  ̿, ̿) 

(Given a set of states D and the action sets   ,   , returns a MDP  ̿, restricted to    ̿, 

where all the states in  ̿   are transient under all stationary policies for  ) 

1. Set  ̿   ,  ̿   ,  ̿     for all    . 

2. While  ̿    for some    ̿ DO 

3.    {   ̿    ̿   }. 

4.  ̿   ̿    ;  ̿   ̿    . 

5. For all    ̿, set  ̿   ̿  {                      }. 

6.  ̿ is the MDP with state space  ̿ and action spaces  ̿     ̿. 

Complexity 
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The time complexity of this algorithm is       , where   | | and   | |. 

Example 1. Consider an MDP with the following data: 

  {       };    {  };    {     };    {     };    {  }; 

       ;          ;           ;         ;           ; 

          ;          ;           . 
 

 

Fig.2. The state transition diagram 

Ross-Varadarajan algorithm provides de strongly communicating classes:    {   }; 
   { } and the set of transient states:   { }. 

 
Fig.3. The decomposition method 

We set for each state     ,        : 

   {                 } 

By starting from a state     , the set    contains the actions which guarantee that the 

state process will remain in the strongly communicating class   . 

Proposition 1 (see [5]). For all policy   and all initial state    , 

∑  
              

 

   

   

 

(5) 

 

  
        

          (6) 

where      abbreviates "almost always". 
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For        , we set 

                  

3 New MDPs 

3.1 Restricted MDPs 

For each         we define a new MDP, called MDPi as follows: 

1) The state space is   ; 

2) For each     , the set of available actions is given by the state-dependent action spaces 

  ; 

3) The laws of motion, cost and reward functions are the same as for the original MDP but 

restricted to the state-dependent action spaces   . 

Proposition 2 (see [5]). For all        , we have: 

i)    is nonempty for all     ; 

ii) ∑         
   for all     ,     . 

iii) Each MDPi is a communicating MDP. 

For fixed        , consider the evolution of the state and action processes for MDPi. For 

all         we have  

        and         

Each policy   determines a probability measure     
   on the sample space associated with 

MDPi. The corresponding expected total discounted reward and costs for MDP i are given 

by 

   

         
  [∑             

 

   

] 

and 

   

           
  [∑              

 

   

]          

Definition 1. A policy   is said to be feasible for MDPi if    

         , for all        . 

   
 denotes the set of all feasible policies. 

For each MDPi, we also need to introduce an associated linear program (   ) with decision 

variables {    
            }. 

Linear Program (   ) 

  
      ∑ ∑           

  

        

 

Subject to 

∑ ∑                 
  

        

            

∑ ∑            
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where     
   can be interpreted as a discounted occupancy measure of      , and        if 

    and 0 otherwise. 

Denote 

  {                         } 

and set   
      for each    . The relationship between MDPi and     is expressed in 

the following theorem. 

Theorem 1. There exists a feasible policy for MDPi if and only if    , then there exists 

an optimal stationary policy    
  for MDPi. 

Proof. The proof follows from the results which are established by Altman [8]. 

Let {    
  } be an optimal extreme point for    . An optimal stationary policy and the 

corresponding optimal value are computed as 

   
       {

    
  

∑      
  

     

    ∑      
  

     

  

                 

 

where          are arbitrary and     . 

and  

   

 (   
 )     

        

     ∑ ∑           
  

        

   
   

Theorem 2. For all policy      
 and        , we have 

  
  (    

      )    
        

Proof. If   
        , then it follows   

  (    
      )   . 

Thus,   
  (    

      )    
        

Unless then,  

  
  (    

      )    
  (    

     )   
          

        

(See Rosenthal [9]). 

Corollary 1. If      
 and    , then we have 

  
          

Proof. If    , then   
     . Since the reward function        is bounded below (due to 

the finite state and action spaces), the result then directly follows from theorem 2. 

Remark 1. Corollary 1, combined with the fact that {  }   
 

 form a partition of the sample 

space   implies that   is nonempty whenever     
 is nonempty. 

3.2 Intermediate MDP 

Over the original sample, define for each policy   the following expected time-average 

reward 

        
 [    

   
   

 

 
∑ ∑  

           

 

   

 

   

]      
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In this subsection we consider the unconstrained problem of maximizing       over all 

stationary policy   and    . From the proposition 1 and the Lebesgue’s dominated 

convergence theorem we have for all policy   

   
    ∑  

    
  [    

   
   

 

 
∑         

 

   

]

 

   

 ∑   
    

  

 

   

     

 

(7) 

It is well known that there exists an optimal pure policy   for this problem which can be 

found by standard tools of the dynamic programming such that policy improvement, value 

iteration algorithm or linear programming approach (see Ross and Varadarajan [5], Baykal-

Gursoy and Ross [6], Puterman [11], Bertsekas [16]). The following lemma gives an upper 

bound for the supremum of the original discounted reward. 

Lemma 1. Let    
    

        
    and    

     
        

   . Then,    

     
. 

Proof. Let   a stationary policy. From theorem 2, corollary 1 and Rosenthal [9] it follows 

   
      

    ]  ∑   
       ]   

     ]

    

 ∑  
    

  

 

   

     

where    {       
      }. 

By    , we have    
       

 for all stationary policy  . Thus, we conclude that    

  

   
. 

Let   be an optimal policy for the intermediate MDP associated with the supremum 

value    
 and let   be the subset of   defined as 

  {                                          } 

Without loss of generality, we may assume that each        is closed under  , 

(Otherwise, modify   so that         for all         . Clearly the modified policy 

has the desired property, and is not difficult to show that it continues to maximize    
   ). 

3.3 Aggregated MDP 

For solving the intermediate MDP problem, we use the well-known technique that is called 

aggregated MDP method. 

The aggregated MDP is defined as follows: 

1) The state space is  ̃  {         }, where   | |. 
2) The state-dependent action space  ̃ ,    ̃, are 

 ̃  { }  {                },       . 

 ̃    ,                                 

3) For          , the law of motion is given by 

 ̃      

 ̃        ∑         
 for all      ,        ̃  

 ̃             for all          ,        ̃  

4) For            , the law of motion is given by 

 ̃    ∑         
 for all      ,    ̃  

 ̃         for all          ,    ̃  

4) The rewards are: 

 ̃             for all           and      
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 ̃        
   for all       

 ̃                 for all       

By considering the evolution of the aggregated MDP, the corresponding average reward is 

defined as follows: 

 ̃       
 [    

   
   

 

 
∑ ∑   

          

 

   

 

   

] 

and denote  ̃     
      ̃        ̃. 

4 An optimal policy for the original MDP 

In this section we construct a stationary policy    as follows: 

1) For each     let    
  be the optimal stationary policy for the MDPi as given in 

subsection 3.1; 

2) Let   be the optimal policy as given in subsection 3.2. Let   the set of     such that    

is closed under  ; 

3) Define a stationary policy    as follows: when in state      with    , apply the 

policy    
 , otherwise apply  . 

Theorem 3. The stationary policy    as constructed above is optimal for the original 

problem. 

Proof. Since    is identical to   outside of ⋃      , and since        is closed under both 

   and  , we get 

   
         

        for all   
 

(8) 

From Rosenthal [9] and the fact that    is identical to   over    for each    , we have for 

        

   

      ∑   
          

   (   
 )

   

  ∑   
      

   

   
 

(9) 

Thus,    is a feasible policy for the original problem (i.e.       
). 

In the other hand, we have 

   
     ∑   

          

 (   
 )

   

 ∑   
         

  

   

 

By combining (5), (7), (8) and lemma 1, we get 

   
     ∑   

         
  

   

    
    

 
 

Hence, the stationary policy    is optimal for the original problem. 

Remark 2. If there exists some     such that the policy    
  is nearly optimal for the 

MDPi, then    is a nearly optimal for the original problem. 

5 Conclusion 

The theoretical framework of Markov decision processes gives the semantic foundation for 

a wide range of problems involving planning under uncertainty. For solving large-scale 
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MDPs, the decomposition method is required. This approach consists to lead a naturel 

decomposition of state space into subsets that are weekly coupled. Hence, each small MDP 

is solved separately via the linear programming. In artificial intelligence with many rooms, 

this literature will be well applied. Thus, the decomposition method allows reducing the 

complexity of computing an optimal or a nearly optimal policy for the Constrained Markov 

Decision Processes Problems using the intermediate MDP technique. 

In the future work, we will study the possibility to apply dynamic programming tools for 

solving the constrained Markov decision processes in the discounted case. 
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