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Abstract. Databases have been always the most important topic in the study of information systems, and 

an indispensable tool in all information management systems. However, the extraction of information stored 
in these databases is generally carried out using queries expressed in a computer language, such as SQL 
(Structured Query Language). This generally has the effect of limiting the number of potential users, in 
particular non-expert database users who must know the database structure to write such requests. One 
solution to this problem is to use Natural Language Interface (NLI), to communicate with the database, 

which is the easiest way to get information. So, the appearance of Natural Language Interfaces for Databases 
(NLIDB) is becoming a real need and an ambitious goal to translate the user’s query given in Natural 
Language (NL) into the corresponding one in Database Query Language (DBQL). This article provides an 
overview of the state of the art of Natural Language Interfaces as well as their architecture. Also, it 
summarizes the main recent advances on the task of Natural Language Interfaces for databases.  

1 Introduction 

For several years, databases have become the preferred 

medium for data storage in all information management 

systems. It has been an active research topic for a long 

time, especially since there is always a need for database 

users to automatize the process of accessing data on the 

database. The extraction of this data requires prior 

knowledge of a language called Database Query 

Language (DBQL), such as SQL (Structured Query 
Language). However, this is an honest limitation for 

non-expert users who do not have the technical skills to 

write such queries. Several solutions have been 

proposed to face this problem [1]. One of these solutions 

is the use of Natural Language to interact directly with 

a database. 

Natural Language Processing (NLP) is one of the 

most challenging areas in Artificial Intelligence (AI) 

research located at the intersection of Computer 

Science, AI, and Linguistics [2]. NLP is used in Human-

Computer Interaction for information retrieval, machine 

translation, and linguistic analysis. Natural Language 
Interface to Database (NLIDB) is one of the traditional 

applications of the NLP domain. It is a powerful 

example of Question answering systems (QAS) for 

querying structured and unstructured databases. NLIDB 

has been an interactive area of research that aims to 

provide accurate answers to user questions expressed in 

Natural Language and generalize access to databases for 

different types of users regardless of their technical 

skills. It is one of the fundamental subjects of artificial 

intelligence and databases [3]. 

    The main objective of this paper is to present the 
history of the NLIDB systems and provide an overview 
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of recent Natural Language Interfaces for databases by 

highlighting the architectures they used before 

concluding and giving some perspectives on our future 

work. 

2 Natural Language Interfaces to 
Databases (NLIDB) 

2.1 Definition 

Natural Language Interface has been an interesting area 

of research. NLIDB is an intelligent and flexible system 

that has already appeared in the late 1960s and early 

1970s. It can translate a request in Natural Language 

into a request in the database query language. So, users 
can interact with the database more conveniently and 

flexibly. 

    There have been different approaches and 

architectures in the field of NLIDBs: [4] 

a. Pattern matching systems: Pattern Matching systems 

appeared in the late 60s and early 70s. It uses the FLIP 

(Formal List Processor) language based on the structure 

of the LISP (List Processing) language. It creates a 

query in NLIDB from an entry corresponding to a 

predefined model using a set of rules. Many NLIDB 

systems use Pattern matching systems because of its 

simplicity to map user inputs expressed in natural 
language (NL) to a query in database query language: 

the NL query is processed by first associating it to a 

model. Then it is transformed into a logical form 

according to the model to which it belongs. Finally, the 

system formulates the query in NLIDB. Moreover, these 
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systems often manage to find reasonable answers to user 
requests. But, they are limited just to a specific database. 

One of the best systems based on this architecture is 

ELIZA. 

b. Syntax-based systems: In syntax-based systems, the 

Natural Language query is parsed syntactically, and the 

resulting parsing tree is directly mapped to a Database 

Query Language expression. These systems use 

grammatical rules that describe the different possible 

syntactic structures of queries and a lexicon of words 

that may appear in the user's queries. The main 

advantage of this approach is that it provides detailed 
information about sentence structure, words, 

grammatical function, the relationships between these 

words, and how sentences can be grouped to form more 

complex sentences. The best known syntax-based 

NLIDB is LUNAR [5]. 

c. Semantic grammar systems: A semantic grammar 

system is similar to a syntax-based system. The query 

result is obtained by mapping the analysis tree to a 

database query [6]. The basic idea of such a system is to 

simplify the analysis tree as much as possible, by 

removing unnecessary nodes or combining some nodes. 

But, the main disadvantage is that the analysis tree in 
this system has specific structures and node labels, 

which makes it useless for other applications [7]. Many 

NLIDBs such as Planes, Ladder, and Rel are based on 

this architecture. 

d. Intermediate Representation Languages: Intermediate 

representation systems were proposed because of the 

difficulties of translating user queries expressed in 

Natural Language (NLQ) directly into a database query 

language. The idea of this method is to first match the 

NLQ to an intermediate logical query expressed in a 

representation language. Then, it will be translated into 
a query in NLIDB. One known system that uses this 

architecture is PRECISE [8]. 

     There are different ways of classifying NLIDB 

systems: 

- Graphical NLIDBs: Presents users with an interface 

where they can make proposed selections for query 

formulation. NL-Menu system as an example [9]. 

- Textual NLIDBs: Allows users to express their queries 

in NL by directly writing it easily, LUNAR and 

PRECISE are systems that use Textual NLIDB. 

- NLIDBs dependent on the database domain: it is 

necessary to know beforehand all the particularities of 
the field of application like LUNAR, ASK, and 

GILNDB systems. 

- NLIDBs independent of the database domain: 

PRECISE is an example of this type of NLIDB system 

where knowledge of the field of application is not 

necessary. 

- Classification of NLIDB by language: Most of the 

NLIDBs that exist answer English requests since this 

language is the main language of several countries. 

However, this does not prevent having other NLIDBs 

that allow access to the information stored in a database 
through the formulation of user queries in other 

languages: Arabic NLIDBs [10], Indien NLIDBs [11], 

French NLIDBs [12], Chinese NLIDBs [13], Bengali 

Language Query Processing System [14], and 

multilingual NLIDBs (the EDITE system which 
supports French, English, and Spanish languages). 

2.2  Advantages and disadvantages of NLIDBs 

The main advantages of NLIDBs are listed below: 
 

 Absence of artificial language: NLIDB 
systems allow users to access the information 
stored in a database using queries written in 
Natural Language easily. 

 Simple to use: The use of NLIDB is easier than 
the query languages of databases or forms [15].  

 Better for some questions: some queries that 
involve negation or quantification can be easily 
expressed in Natural Language. 

 Easy to use for multiple tables: queries that 
involve joins between tables have no difficulty 
for users, it is sufficient that the user types the 
query and the system displays the requested 
results. 

 Tolerance for grammatical errors: most 
NLIDB systems support small grammatical 
errors. While the majority of computer systems 
require syntax rules. 
 

Despite the development of many NLIDB systems, their 

use is not widespread due to a set of constraints, some 

of which are listed below: 

 Lack of obvious language coverage: Some 
NLIDB systems cannot answer all questions 
expressed in Natural Language. 

 Absence of explanations in case of failures: In 
the case of failures, some NLIDBs do not 
provide any explanation at all.  

 Disappointment with user expectations: 
Individuals can be misled by the ability of an 
NLIDB system to process all their queries in 
Natural Language. 

 Suitability of NLIDB for any user. 
 

3 The history of NLIDB systems: 
literature survey 

Over the past 50 years, many attempts have been made 

to create intelligent Natural Language Interfaces for 

querying databases. The first NLIDBs had appeared in 

the late sixties and early seventies and included two very 

well-known systems: BASEBALL (created to answer 

questions about baseball games that were played in the 

American League in that period) [16] and LUNAR 

(answers questions about rock samples brought back 

from the moon. It managed to answer 80% of the 

proposed queries without any errors). Both of these 
systems are NLIDBs dependent on the database domain 

and could not be easily reconfigured for use in other 

areas of the database [17]. At the end of the 1970s, 

several other NLIDB systems appeared: like PLANES 

(this system even managed to respond to incoherent or 

vague user requests) [18], LIFER/LADDER (it uses 

semantic grammar systems to analyze and then respond 
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to user requests) [19] and the RENDEZVOUS system 
[20] (developed in San José at the IBM laboratory, it 

helps users to ask or formulate their requests in case of 

ambiguity for analysis). In the mid-1980s, several 

NLIDBs emerged. CHAT-80 is one of the best-known 

systems for its effectiveness in this period. It uses 

Semantic grammar techniques to process user queries 

written in Natural Language. The major problem with 

this system is that it can only be used for a specific 

database domain [21]. This system has formed the basis 

of several other systems such as MASQUE, DIALOGIC 

which allow users to answer their requests very quickly. 
Research in this area of NLIDB continued in the 1990s. 

The majority of these contributions focused on querying 

Relational Databases using Natural Language (NL) 

instead of SQL. However, these systems are still 

designed for a specific field of application. 

Androutsopoulos et al have developed a system called 

MASQUE/SQL to answer any query written in English 

as a Natural Language that depends on commercial 

databases [22]. 

     After 1990, interesting NLIDB approaches have been 

proposed, which have a major advantage regarding the 

operation of these NLIDB systems/interfaces 
independently of the database domain without any need 

for reconfiguration. PRECISE is a system developed at 

the University of Washington by Ana and al (2004) [23]. 

It targets relational databases and the language used to 

query the database is SQL. The PRECISE system is 

motivating because it combines linguistic and 

mathematical approaches to achieve complete 

independence of information, without any support or 

configuration. It is one of the first NLIDBs that used the 

analyzer as a plug-in, so it could be easily modified to 

employ the latest advantages in the field of analyzers. 
But, PRECISE suffers from the problem of managing 

nested structures. NALIX (Natural Language Interface 

for an XML Database) is a generic and interactive 

interface, developed at the University of Michigan by 

Yunyao Li et al. in 2006 [24]. The database used for this 

system is an XML database with 'Schema-Free XQuery' 

as the database query language. This language is 

primarily designed to retrieve information from XML 

databases and perform keyword searches. The main 

advantage of Schema-Free XQuery is that it finds 

automatically all given relationships to many key-words 

without mapping a query into the exact schema of the 
database. The process of translating the query into 

Natural Language is a three-step process: generation, 

validation, and translation of the analysis tree into an 

XQuery request. The NaLIR system (2014) is a generic 

Interactive Natural Language Interface for Querying 

Relational Databases. NaLIR can accept a logically 

complex English language sentence as query input to 

resolve ambiguous interpretations. There is also a 

system that is developed this year that allows user 

queries to be evaluated with high security: when 

ambiguities exist, the system generates multiple 
probable interpretations for the user. Next, so many 

systems were developed such as a system for querying 

the database using a Universal Natural Language 

Interface based on Machine Learning approach (2016) 

[25], An Arabic Natural Language Interface for 

Querying Relational Databases based on Natural 
Language Processing and Graph theory methods (2018) 

[26]. 

4 Architectural analysis of the most 
current NLIDB systems 

The majority of the existing systems, as discussed in the 
previous section, are NLIDB systems dependent on the 

database domain and have developed for a specific use. 

A lot of efforts by researchers have been done in recent 

years to find a perfect solution to the problem of 

transforming queries expressed in Natural Language 

into Structured Query Language to get the 

predetermined information from the database.  

     With the rise of deep learning techniques, especially 

convolutional and recurrent neural networks (CNN and 

RNN), the most recent works used the encoder-decoder 

model, and semantic analysis approach. Current deep 
learning-based end-to-end systems use sequence-to-

sequence architecture or a variation of it [27]. Seq2seq 

and Sketch-based are two major approaches to process 

the Text-To-SQL task. Seq2SQL encodes the text using 

an encoder/decoder (CNN or RNN) to get the semantic 

representation of the input text to decode it for 

generating the SQL statement [28].  These systems 

apply the necessary analysis to the input request without 

taking into consideration its structure neither the schema 

of the database and maintain deep learning techniques in 

its core elements.  The next present some of the efficient 

models utilized in this field. Recently proposed 
architectures achieved more than 80% accuracy on the 

well-known Text-to-SQL benchmarks such as WikiSQL 

[29] and Spider [30]. 

 

PHOTON:  

It takes the user's query and the database schema as input 

and apply deep learning techniques in its core elements.    

It enhanced the robustness of the task of SQL Query 

Formation for Database facings the non-translatable 

user input with 63% structure accuracy on the spider 

dataset. So, PHOTON attains a competing performance 
on the field of text to SQL benchmark [31]. But, the 

current PHOTON system is still a prototype, with very 

limited user interactions and functions.  

     PHOTON consists of (a) a powerful neural semantic 

parser: It uses a question encoder based on the BERT 

DB schema and a pointer-generating decoder with static 

SQL correctness check control. (b) A human-in-the-

loop question corrector wish is a discriminative neural 

sequence editor which detects potential confusion 

span(s) in the input question and suggests possible 

corrections for the user to give rephrasing until a 
translatable input is given by the user or a maximum 

number of iterations are conducted (c) SQL query 

executor and (d) a natural language response generator. 

The robustness and effectiveness of the system are 

generalized by evaluating the performance of each 

module separately. 
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    An information extraction approach text-to-SQL 
called IE-SQL [32] was proposed in this field. The 

unified BERT-based extraction model is operated to 

perceive all types of slot mentions presented in the input 

sentence. Then, a BERT-based linker maps the 

recognized columns to the table schema for 

incorporating executable SQL queries. 

    Another new neural network architecture based on the 

pre-trained BERT called M-SQL [33]. The extraction of 

column-based value is split into value extraction 

modules, and value column matching. M-SQL was 

evaluated on a more complicated TableQA dataset. M-
SQL achieves state-of-the-art results on TableQA. M-

SQL consists of three parts, encoder that used BERT-

wwm-ext to better learn Chinese word vector 

representation, column representation, and several sub-

models. The global M-SQL model consists of eight sub-

models to predict the select and the where clause of the 

SQL statement. The overall architecture of the model is 

explained in the original paper. M-SQL improves the 

performance of single-table SQL generation. But, the 

problem of whether the query can be answered for a 

certain database has not been studied by the system. 

    DBPal [34] is also a new approach that improves the 
performance of existing deep learning models for 

natural language to SQL translation. It automatically 

generates synthetic training data to improve overall 

translation accuracy and increase robustness to 

linguistic variation. The system includes the training 

phase and runtime phase as shown in the following 

figure.   

 

Fig. 1. DBPal system architecture. 

RAT-SQL:  

RAT-SQL [35] is a centralized framework wish Based 

on the relation-aware schema encoding and linking for 

Text-to-SQL parsers that use a self-attention mechanism 

to direct schema encoding, schema linking, and feature 

representation in a text-to-SQL encoder. The system can 
effectively encode more complex SQL queries that need 

joints and relationships within a non-ordered set of 

elements. This framework raises the exact match 

accuracy to only 57% to compare to PHOTON that has 

reached 63% on the same challenging Spider dataset.   It 

represents first the database schema as a directed graph; 

its nodes are the columns and tables of the database 

schema. Then it applies relational self-attention to join 

global reasoning on schema entities and question words 

and then applies RAT-SQL to schema encoding and 

linking problems. 

Bertrand-DR: 

Bertrand-DR [36], a Discriminative-Reranker encoder-

decoder based generative model, is a binary classifier 

that uses BERT to predict whether a given user's query 

is the right query for given utterance and schema 

information. First, the utterance and the query are 

encoded using BERT. It used SEP to separate utterance 

and the query, and Word-Piece to tokenize the speech. 

The tokens are combined to form the input token 

sequence. The token sequence is then encoded using 

BERT. The resulting encoding is passed through a linear 

classification layer and the model is trained using binary 
cross-entropy loss. 

 

Fig. 2. Architecture overview of Bertrand-DR. 

RYANSQL:  

Recursively Yielding Annotation Network for SQL [37] 

is a neural network approach that Applies Sketch-based 

Slot Fillings for complex text-to-SQL in cross-domain 

databases. So considering the following sentence if we 

want to find out the names of STUDENTS who have 

either enrolled in ‘SMI’ or ‘SMA’, it can be done as: 

Find the name of the student who has either enrolled in 

‘SMI’ or ‘SMA’ 

The SQL output of the previous nested query is: 

Select NAME from STUDENTS where S_ID IN 

(Select S_ID from STUDENTS_DEPARTMENT where 
D_ID IN  
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(SELECT D_ID from COURSE where 
D_NAME=’SMA’ or D_NAME=’SMI’)) 

    The nested SQL query is transformed into a set of 

non-nested SELECT statements. The system predicts 

and analyzes each SELECT statement separately.  The 

input encoder consists of five layers. The input encoder; 

the process sketch-based slot-filling decoder is 

described in detail in the paper. The model could be 

improved by updating slot values based on other slots 

prediction results. 

     Another example of Natural Language Querying for 

Complex Nested SQL Queries is ATHENA++ [38]. It 
combines linguistic patterns from NL queries with deep 

domain reasoning, using ontologies to capture the 

semantics of the domain schema on a new challenged 

Benchmark dataset called FIBEN. The overall 

architecture of the system contains Translation Index, 

Domain Ontology, Ontology to Database Mapping, and 

Query Translator. 

Fig. 3. The architecture of Athena++ system. 

ValueNet: 

ValueNet [39] is an end to end text-to-SQL system. The 

main idea of this approach is to use all the information 

on the base data as input for the neural network 

architecture. It’s a new architecture sketch to extract 

values from a user question and predict the possible 

value candidates which are not specially mentioned in 

the question. Then a neural model is based on an 

encoder-decoder architecture used to synthesize the 
SQL query. The model is evaluated using the Execution 

accuracy on the Spider dataset (64%). 

NLonSpark: 

Natural Language on Spark [40] is implemented on top 

of Spark and Spark SQL which integrates relational 

functional programming API. It supports SQL queries 

and Hive Query Language. NLonSpark is based on 

NALIX system architecture. The Node Mapper 

communicates with an SQL concept abstraction layer 

that provides the functionality of an RDBMS. The SQL 

concept abstraction layer provides first the necessary 
schema information. Then, it provides indexing 

capabilities that Spark lacked, by implementing inverted 

indexes functionality on top of Apache Spark. The 
Spark-enabled Node Mapper achieved three operations: 

(1) Full-Text search (2) Columns summations: This 

functionality provides similarity amongst numerical 

columns and was implemented using the Dataframe API 

of Spark. (3) Column name similarity: This was 

provided by the SQL concept abstraction layer without 

calling Spark. The system could be improved to adapt 

NLonSpark to run on multi-application environments. 

5 Evaluation 

In this section, we provide some experimental results of 
recently developed systems highlighted in Sect. 4 based 

on the execution accuracy of the generated SQL queries 

on the development and the test, except the NLonSpark 

system evaluated in terms of scalability and impact of 

optimizations on YELP dataset. There are also different 

aspects on which a system can be evaluated (e.g., 

number of user interaction, ambiguity, efficiency, type 

of requests processed: simple or advanced queries, etc.), 

which we do not discuss in this paper.  Each system 

category, based on its technical approach, has its 

strengths and weaknesses.  But, since the current 
research included Deep Learning techniques in their 

translation process, the results are drastically improving. 

Table.1 shows the comparing results of the execution 

accuracy of each system. 

Table 1. Execution accuracy of current NLIDB systems. 

 

 

Model 

 

 

  Dataset 

 

Accuracy (%) 

 

Dev Test 

 

RAT-SQL 

 

 

Spider 

 

62,7 

 

 57,2 

 

Bertrand-DR 

 

 

Spider 

 

57,9 

 

54,6 

 

RYANSQL 
 

 

Spider 

 

66,6 

 

58,2 

 

M-SQL 

 

 

TableQA 

 

91,86 

 

92,13 

 

Photon 

 

 
Spider 

 
63,2 

 

TABERT 

 

 

Spider 

 

65,2 

 

ValueNet 

 

 

Spider 

 

64 

 

IE-SQL 

 

 

WikiSQL 

 

94,2 

 

Athena++ 

 

 

 Spider 

 

78,82 
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6 Conclusion 

The objective of this survey is to present the state of the 

art of research with a long history of five decades that 

has been carried out in the field of Natural Language for 

Databases (NLIDB). NLIDB is a very active field in 

automatic language processing. Its purpose is to accept 

requests expressed in natural languages often used by 

non-technical users and to generate responses. It is a 

type of human-machine interface. Most of the tools 

developed are very efficient and have obtained 

encouraging results, but unfortunately, the majority of 

them have been developed so far for a specific use.  
These tools are developed only to be the interface of a 

database and are therefore exclusively compatible with 

it. Research in NLIDB is still in its infancy and needs to 

be continued. The use of NLIDB systems is not 

widespread and is not the optimal option for querying 

databases. This is mainly due to a large number of 

deficiencies in the NLIDB systems and the lack of a 

generic model that meets user expectations.  

     Our future work is to propose a model-based deep 

learning technique facing the following challenges: a 

simple NLIDB system that works independently to the 

database domain neither the database structure. A 
system that supports more complex SQL queries (Joins, 

nested queries) helps the user types the query that is not 

necessarily long or simply the user can interact with the 

system through voice queries. Then, the system displays 

a suitable answer in a reduced time with appropriate 

error messages displayed in case of failure.  Other new 

directions could be used in terms of increasing human-

computer interaction by allowing our system to ask for 

clarification if the model cannot translate a given query. 
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