

The history and recent advances of Natural Language
Interfaces for Databases Querying

Khadija Majhadi1*, and Mustapha Machkour1

1Team of Engineering of Information Systems, Faculty of Sciences Agadir, Morocco

Abstract. Databases have been always the most important topic in the study of information systems, and

an indispensable tool in all information management systems. However, the extraction of information stored
in these databases is generally carried out using queries expressed in a computer language, such as SQL
(Structured Query Language). This generally has the effect of limiting the number of potential users, in
particular non-expert database users who must know the database structure to write such requests. One
solution to this problem is to use Natural Language Interface (NLI), to communicate with the database,

which is the easiest way to get information. So, the appearance of Natural Language Interfaces for Databases
(NLIDB) is becoming a real need and an ambitious goal to translate the user’s query given in Natural
Language (NL) into the corresponding one in Database Query Language (DBQL). This article provides an
overview of the state of the art of Natural Language Interfaces as well as their architecture. Also, it
summarizes the main recent advances on the task of Natural Language Interfaces for databases.

1 Introduction

For several years, databases have become the preferred

medium for data storage in all information management

systems. It has been an active research topic for a long

time, especially since there is always a need for database

users to automatize the process of accessing data on the

database. The extraction of this data requires prior

knowledge of a language called Database Query

Language (DBQL), such as SQL (Structured Query
Language). However, this is an honest limitation for

non-expert users who do not have the technical skills to

write such queries. Several solutions have been

proposed to face this problem [1]. One of these solutions

is the use of Natural Language to interact directly with

a database.

Natural Language Processing (NLP) is one of the

most challenging areas in Artificial Intelligence (AI)

research located at the intersection of Computer

Science, AI, and Linguistics [2]. NLP is used in Human-

Computer Interaction for information retrieval, machine

translation, and linguistic analysis. Natural Language
Interface to Database (NLIDB) is one of the traditional

applications of the NLP domain. It is a powerful

example of Question answering systems (QAS) for

querying structured and unstructured databases. NLIDB

has been an interactive area of research that aims to

provide accurate answers to user questions expressed in

Natural Language and generalize access to databases for

different types of users regardless of their technical

skills. It is one of the fundamental subjects of artificial

intelligence and databases [3].

 The main objective of this paper is to present the
history of the NLIDB systems and provide an overview

* Corresponding author: khadija.majhadi@gmail.com

of recent Natural Language Interfaces for databases by

highlighting the architectures they used before

concluding and giving some perspectives on our future

work.

2 Natural Language Interfaces to
Databases (NLIDB)

2.1 Definition

Natural Language Interface has been an interesting area

of research. NLIDB is an intelligent and flexible system

that has already appeared in the late 1960s and early

1970s. It can translate a request in Natural Language

into a request in the database query language. So, users
can interact with the database more conveniently and

flexibly.

 There have been different approaches and

architectures in the field of NLIDBs: [4]

a. Pattern matching systems: Pattern Matching systems

appeared in the late 60s and early 70s. It uses the FLIP

(Formal List Processor) language based on the structure

of the LISP (List Processing) language. It creates a

query in NLIDB from an entry corresponding to a

predefined model using a set of rules. Many NLIDB

systems use Pattern matching systems because of its

simplicity to map user inputs expressed in natural
language (NL) to a query in database query language:

the NL query is processed by first associating it to a

model. Then it is transformed into a logical form

according to the model to which it belongs. Finally, the

system formulates the query in NLIDB. Moreover, these

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 229, 01039 (2021) https://doi.org/10.1051/e3sconf/202122901039
ICCSRE’2020

systems often manage to find reasonable answers to user
requests. But, they are limited just to a specific database.

One of the best systems based on this architecture is

ELIZA.

b. Syntax-based systems: In syntax-based systems, the

Natural Language query is parsed syntactically, and the

resulting parsing tree is directly mapped to a Database

Query Language expression. These systems use

grammatical rules that describe the different possible

syntactic structures of queries and a lexicon of words

that may appear in the user's queries. The main

advantage of this approach is that it provides detailed
information about sentence structure, words,

grammatical function, the relationships between these

words, and how sentences can be grouped to form more

complex sentences. The best known syntax-based

NLIDB is LUNAR [5].

c. Semantic grammar systems: A semantic grammar

system is similar to a syntax-based system. The query

result is obtained by mapping the analysis tree to a

database query [6]. The basic idea of such a system is to

simplify the analysis tree as much as possible, by

removing unnecessary nodes or combining some nodes.

But, the main disadvantage is that the analysis tree in
this system has specific structures and node labels,

which makes it useless for other applications [7]. Many

NLIDBs such as Planes, Ladder, and Rel are based on

this architecture.

d. Intermediate Representation Languages: Intermediate

representation systems were proposed because of the

difficulties of translating user queries expressed in

Natural Language (NLQ) directly into a database query

language. The idea of this method is to first match the

NLQ to an intermediate logical query expressed in a

representation language. Then, it will be translated into
a query in NLIDB. One known system that uses this

architecture is PRECISE [8].

 There are different ways of classifying NLIDB

systems:

- Graphical NLIDBs: Presents users with an interface

where they can make proposed selections for query

formulation. NL-Menu system as an example [9].

- Textual NLIDBs: Allows users to express their queries

in NL by directly writing it easily, LUNAR and

PRECISE are systems that use Textual NLIDB.

- NLIDBs dependent on the database domain: it is

necessary to know beforehand all the particularities of
the field of application like LUNAR, ASK, and

GILNDB systems.

- NLIDBs independent of the database domain:

PRECISE is an example of this type of NLIDB system

where knowledge of the field of application is not

necessary.

- Classification of NLIDB by language: Most of the

NLIDBs that exist answer English requests since this

language is the main language of several countries.

However, this does not prevent having other NLIDBs

that allow access to the information stored in a database
through the formulation of user queries in other

languages: Arabic NLIDBs [10], Indien NLIDBs [11],

French NLIDBs [12], Chinese NLIDBs [13], Bengali

Language Query Processing System [14], and

multilingual NLIDBs (the EDITE system which
supports French, English, and Spanish languages).

2.2 Advantages and disadvantages of NLIDBs

The main advantages of NLIDBs are listed below:

 Absence of artificial language: NLIDB
systems allow users to access the information
stored in a database using queries written in
Natural Language easily.

 Simple to use: The use of NLIDB is easier than
the query languages of databases or forms [15].

 Better for some questions: some queries that
involve negation or quantification can be easily
expressed in Natural Language.

 Easy to use for multiple tables: queries that
involve joins between tables have no difficulty
for users, it is sufficient that the user types the
query and the system displays the requested
results.

 Tolerance for grammatical errors: most
NLIDB systems support small grammatical
errors. While the majority of computer systems
require syntax rules.

Despite the development of many NLIDB systems, their

use is not widespread due to a set of constraints, some

of which are listed below:

 Lack of obvious language coverage: Some
NLIDB systems cannot answer all questions
expressed in Natural Language.

 Absence of explanations in case of failures: In
the case of failures, some NLIDBs do not
provide any explanation at all.

 Disappointment with user expectations:
Individuals can be misled by the ability of an
NLIDB system to process all their queries in
Natural Language.

 Suitability of NLIDB for any user.

3 The history of NLIDB systems:
literature survey

Over the past 50 years, many attempts have been made

to create intelligent Natural Language Interfaces for

querying databases. The first NLIDBs had appeared in

the late sixties and early seventies and included two very

well-known systems: BASEBALL (created to answer

questions about baseball games that were played in the

American League in that period) [16] and LUNAR

(answers questions about rock samples brought back

from the moon. It managed to answer 80% of the

proposed queries without any errors). Both of these
systems are NLIDBs dependent on the database domain

and could not be easily reconfigured for use in other

areas of the database [17]. At the end of the 1970s,

several other NLIDB systems appeared: like PLANES

(this system even managed to respond to incoherent or

vague user requests) [18], LIFER/LADDER (it uses

semantic grammar systems to analyze and then respond

2

E3S Web of Conferences 229, 01039 (2021) https://doi.org/10.1051/e3sconf/202122901039
ICCSRE’2020

to user requests) [19] and the RENDEZVOUS system
[20] (developed in San José at the IBM laboratory, it

helps users to ask or formulate their requests in case of

ambiguity for analysis). In the mid-1980s, several

NLIDBs emerged. CHAT-80 is one of the best-known

systems for its effectiveness in this period. It uses

Semantic grammar techniques to process user queries

written in Natural Language. The major problem with

this system is that it can only be used for a specific

database domain [21]. This system has formed the basis

of several other systems such as MASQUE, DIALOGIC

which allow users to answer their requests very quickly.
Research in this area of NLIDB continued in the 1990s.

The majority of these contributions focused on querying

Relational Databases using Natural Language (NL)

instead of SQL. However, these systems are still

designed for a specific field of application.

Androutsopoulos et al have developed a system called

MASQUE/SQL to answer any query written in English

as a Natural Language that depends on commercial

databases [22].

 After 1990, interesting NLIDB approaches have been

proposed, which have a major advantage regarding the

operation of these NLIDB systems/interfaces
independently of the database domain without any need

for reconfiguration. PRECISE is a system developed at

the University of Washington by Ana and al (2004) [23].

It targets relational databases and the language used to

query the database is SQL. The PRECISE system is

motivating because it combines linguistic and

mathematical approaches to achieve complete

independence of information, without any support or

configuration. It is one of the first NLIDBs that used the

analyzer as a plug-in, so it could be easily modified to

employ the latest advantages in the field of analyzers.
But, PRECISE suffers from the problem of managing

nested structures. NALIX (Natural Language Interface

for an XML Database) is a generic and interactive

interface, developed at the University of Michigan by

Yunyao Li et al. in 2006 [24]. The database used for this

system is an XML database with 'Schema-Free XQuery'

as the database query language. This language is

primarily designed to retrieve information from XML

databases and perform keyword searches. The main

advantage of Schema-Free XQuery is that it finds

automatically all given relationships to many key-words

without mapping a query into the exact schema of the
database. The process of translating the query into

Natural Language is a three-step process: generation,

validation, and translation of the analysis tree into an

XQuery request. The NaLIR system (2014) is a generic

Interactive Natural Language Interface for Querying

Relational Databases. NaLIR can accept a logically

complex English language sentence as query input to

resolve ambiguous interpretations. There is also a

system that is developed this year that allows user

queries to be evaluated with high security: when

ambiguities exist, the system generates multiple
probable interpretations for the user. Next, so many

systems were developed such as a system for querying

the database using a Universal Natural Language

Interface based on Machine Learning approach (2016)

[25], An Arabic Natural Language Interface for

Querying Relational Databases based on Natural
Language Processing and Graph theory methods (2018)

[26].

4 Architectural analysis of the most
current NLIDB systems

The majority of the existing systems, as discussed in the
previous section, are NLIDB systems dependent on the

database domain and have developed for a specific use.

A lot of efforts by researchers have been done in recent

years to find a perfect solution to the problem of

transforming queries expressed in Natural Language

into Structured Query Language to get the

predetermined information from the database.

 With the rise of deep learning techniques, especially

convolutional and recurrent neural networks (CNN and

RNN), the most recent works used the encoder-decoder

model, and semantic analysis approach. Current deep
learning-based end-to-end systems use sequence-to-

sequence architecture or a variation of it [27]. Seq2seq

and Sketch-based are two major approaches to process

the Text-To-SQL task. Seq2SQL encodes the text using

an encoder/decoder (CNN or RNN) to get the semantic

representation of the input text to decode it for

generating the SQL statement [28]. These systems

apply the necessary analysis to the input request without

taking into consideration its structure neither the schema

of the database and maintain deep learning techniques in

its core elements. The next present some of the efficient

models utilized in this field. Recently proposed
architectures achieved more than 80% accuracy on the

well-known Text-to-SQL benchmarks such as WikiSQL

[29] and Spider [30].

PHOTON:

It takes the user's query and the database schema as input

and apply deep learning techniques in its core elements.

It enhanced the robustness of the task of SQL Query

Formation for Database facings the non-translatable

user input with 63% structure accuracy on the spider

dataset. So, PHOTON attains a competing performance
on the field of text to SQL benchmark [31]. But, the

current PHOTON system is still a prototype, with very

limited user interactions and functions.

 PHOTON consists of (a) a powerful neural semantic

parser: It uses a question encoder based on the BERT

DB schema and a pointer-generating decoder with static

SQL correctness check control. (b) A human-in-the-

loop question corrector wish is a discriminative neural

sequence editor which detects potential confusion

span(s) in the input question and suggests possible

corrections for the user to give rephrasing until a
translatable input is given by the user or a maximum

number of iterations are conducted (c) SQL query

executor and (d) a natural language response generator.

The robustness and effectiveness of the system are

generalized by evaluating the performance of each

module separately.

3

E3S Web of Conferences 229, 01039 (2021) https://doi.org/10.1051/e3sconf/202122901039
ICCSRE’2020

 An information extraction approach text-to-SQL
called IE-SQL [32] was proposed in this field. The

unified BERT-based extraction model is operated to

perceive all types of slot mentions presented in the input

sentence. Then, a BERT-based linker maps the

recognized columns to the table schema for

incorporating executable SQL queries.

 Another new neural network architecture based on the

pre-trained BERT called M-SQL [33]. The extraction of

column-based value is split into value extraction

modules, and value column matching. M-SQL was

evaluated on a more complicated TableQA dataset. M-
SQL achieves state-of-the-art results on TableQA. M-

SQL consists of three parts, encoder that used BERT-

wwm-ext to better learn Chinese word vector

representation, column representation, and several sub-

models. The global M-SQL model consists of eight sub-

models to predict the select and the where clause of the

SQL statement. The overall architecture of the model is

explained in the original paper. M-SQL improves the

performance of single-table SQL generation. But, the

problem of whether the query can be answered for a

certain database has not been studied by the system.

 DBPal [34] is also a new approach that improves the
performance of existing deep learning models for

natural language to SQL translation. It automatically

generates synthetic training data to improve overall

translation accuracy and increase robustness to

linguistic variation. The system includes the training

phase and runtime phase as shown in the following

figure.

Fig. 1. DBPal system architecture.

RAT-SQL:

RAT-SQL [35] is a centralized framework wish Based

on the relation-aware schema encoding and linking for

Text-to-SQL parsers that use a self-attention mechanism

to direct schema encoding, schema linking, and feature

representation in a text-to-SQL encoder. The system can
effectively encode more complex SQL queries that need

joints and relationships within a non-ordered set of

elements. This framework raises the exact match

accuracy to only 57% to compare to PHOTON that has

reached 63% on the same challenging Spider dataset. It

represents first the database schema as a directed graph;

its nodes are the columns and tables of the database

schema. Then it applies relational self-attention to join

global reasoning on schema entities and question words

and then applies RAT-SQL to schema encoding and

linking problems.

Bertrand-DR:

Bertrand-DR [36], a Discriminative-Reranker encoder-

decoder based generative model, is a binary classifier

that uses BERT to predict whether a given user's query

is the right query for given utterance and schema

information. First, the utterance and the query are

encoded using BERT. It used SEP to separate utterance

and the query, and Word-Piece to tokenize the speech.

The tokens are combined to form the input token

sequence. The token sequence is then encoded using

BERT. The resulting encoding is passed through a linear

classification layer and the model is trained using binary
cross-entropy loss.

Fig. 2. Architecture overview of Bertrand-DR.

RYANSQL:

Recursively Yielding Annotation Network for SQL [37]

is a neural network approach that Applies Sketch-based

Slot Fillings for complex text-to-SQL in cross-domain

databases. So considering the following sentence if we

want to find out the names of STUDENTS who have

either enrolled in ‘SMI’ or ‘SMA’, it can be done as:

Find the name of the student who has either enrolled in

‘SMI’ or ‘SMA’

The SQL output of the previous nested query is:

Select NAME from STUDENTS where S_ID IN

(Select S_ID from STUDENTS_DEPARTMENT where
D_ID IN

4

E3S Web of Conferences 229, 01039 (2021) https://doi.org/10.1051/e3sconf/202122901039
ICCSRE’2020

(SELECT D_ID from COURSE where
D_NAME=’SMA’ or D_NAME=’SMI’))

 The nested SQL query is transformed into a set of

non-nested SELECT statements. The system predicts

and analyzes each SELECT statement separately. The

input encoder consists of five layers. The input encoder;

the process sketch-based slot-filling decoder is

described in detail in the paper. The model could be

improved by updating slot values based on other slots

prediction results.

 Another example of Natural Language Querying for

Complex Nested SQL Queries is ATHENA++ [38]. It
combines linguistic patterns from NL queries with deep

domain reasoning, using ontologies to capture the

semantics of the domain schema on a new challenged

Benchmark dataset called FIBEN. The overall

architecture of the system contains Translation Index,

Domain Ontology, Ontology to Database Mapping, and

Query Translator.

Fig. 3. The architecture of Athena++ system.

ValueNet:

ValueNet [39] is an end to end text-to-SQL system. The

main idea of this approach is to use all the information

on the base data as input for the neural network

architecture. It’s a new architecture sketch to extract

values from a user question and predict the possible

value candidates which are not specially mentioned in

the question. Then a neural model is based on an

encoder-decoder architecture used to synthesize the
SQL query. The model is evaluated using the Execution

accuracy on the Spider dataset (64%).

NLonSpark:

Natural Language on Spark [40] is implemented on top

of Spark and Spark SQL which integrates relational

functional programming API. It supports SQL queries

and Hive Query Language. NLonSpark is based on

NALIX system architecture. The Node Mapper

communicates with an SQL concept abstraction layer

that provides the functionality of an RDBMS. The SQL

concept abstraction layer provides first the necessary
schema information. Then, it provides indexing

capabilities that Spark lacked, by implementing inverted

indexes functionality on top of Apache Spark. The
Spark-enabled Node Mapper achieved three operations:

(1) Full-Text search (2) Columns summations: This

functionality provides similarity amongst numerical

columns and was implemented using the Dataframe API

of Spark. (3) Column name similarity: This was

provided by the SQL concept abstraction layer without

calling Spark. The system could be improved to adapt

NLonSpark to run on multi-application environments.

5 Evaluation

In this section, we provide some experimental results of
recently developed systems highlighted in Sect. 4 based

on the execution accuracy of the generated SQL queries

on the development and the test, except the NLonSpark

system evaluated in terms of scalability and impact of

optimizations on YELP dataset. There are also different

aspects on which a system can be evaluated (e.g.,

number of user interaction, ambiguity, efficiency, type

of requests processed: simple or advanced queries, etc.),

which we do not discuss in this paper. Each system

category, based on its technical approach, has its

strengths and weaknesses. But, since the current
research included Deep Learning techniques in their

translation process, the results are drastically improving.

Table.1 shows the comparing results of the execution

accuracy of each system.

Table 1. Execution accuracy of current NLIDB systems.

Model

 Dataset

Accuracy (%)

Dev Test

RAT-SQL

Spider

62,7

 57,2

Bertrand-DR

Spider

57,9

54,6

RYANSQL

Spider

66,6

58,2

M-SQL

TableQA

91,86

92,13

Photon

Spider

63,2

TABERT

Spider

65,2

ValueNet

Spider

64

IE-SQL

WikiSQL

94,2

Athena++

 Spider

78,82

5

E3S Web of Conferences 229, 01039 (2021) https://doi.org/10.1051/e3sconf/202122901039
ICCSRE’2020

6 Conclusion

The objective of this survey is to present the state of the

art of research with a long history of five decades that

has been carried out in the field of Natural Language for

Databases (NLIDB). NLIDB is a very active field in

automatic language processing. Its purpose is to accept

requests expressed in natural languages often used by

non-technical users and to generate responses. It is a

type of human-machine interface. Most of the tools

developed are very efficient and have obtained

encouraging results, but unfortunately, the majority of

them have been developed so far for a specific use.
These tools are developed only to be the interface of a

database and are therefore exclusively compatible with

it. Research in NLIDB is still in its infancy and needs to

be continued. The use of NLIDB systems is not

widespread and is not the optimal option for querying

databases. This is mainly due to a large number of

deficiencies in the NLIDB systems and the lack of a

generic model that meets user expectations.

 Our future work is to propose a model-based deep

learning technique facing the following challenges: a

simple NLIDB system that works independently to the

database domain neither the database structure. A
system that supports more complex SQL queries (Joins,

nested queries) helps the user types the query that is not

necessarily long or simply the user can interact with the

system through voice queries. Then, the system displays

a suitable answer in a reduced time with appropriate

error messages displayed in case of failure. Other new

directions could be used in terms of increasing human-

computer interaction by allowing our system to ask for

clarification if the model cannot translate a given query.

References

1. Androutsopoulos, I., Ritchie, G. and Thanisch, P.

(1995) « Natural language interfaces to databases:

an introduction », Natural Language Engineering,

Vol. 1, No. 1, pp.29–81.

2. N. Ranjan, K. Mundada, K. Phaltane, and S.
Ahmad, “A Survey on Techniques in NLP,” Int. J.

Comput. Appl., vol. 134, no. 8, pp. 6–9, (2016).

3. Karam.A, Mustapha.M, Mourad.E, Brahim.E,

Jilali.A, « Comparative study of existing

approaches on the Task of Natural Language to

Database Language », ICCSRE, p 1-6. (2019).

4. E. U. Reshma and P. C. Remya, “A review of

different approaches in natural language interfaces

to databases,” in Proceedings of the International

Conference on Intelligent Sustainable Systems,

ICISS 2017, (2018).

5. Woods, William A, Ronald M Kaplan, and Bonnie
Nash-Webber, « natural language information

system », (1972).The lunar sciences.

6. Javubar SK, Jay A. (2015). «Natural language to
SQL generation for semantic knowledge extraction

in social web sources». Indian Journal of Science

and Technology, 8(1): 1-10.

7. Mrs. Neelu Nihalani, Dr. Sanjay Silakari, Dr.
Mahesh Motwani. “Natural language Interface to

Database using Semantic Matching", International

Journal of Computer Application, Vol. 31, no.11,

Oct. (2011) ISSN: 0975 – 8887.

8. Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,

David Ko, and Alexander Yates, « Modern Natural
Language Interfaces to Databases: Composing

Statistical Parsing with Semantic Tractability »,

COLING (2004).

9. Harry R. TennantKenneth M. RossRichard M.

Saenz, « Menu-based natural language
understanding system », national computer

conference and exposition (1984), Pages 629–635.

10. Hanane Bais, Mustapha Machkour, Lahcen Koutti,

« An Arabic natural language interface for querying

relational databases based on natural language

processing and graph theory methods »,
International Journal of Reasoning-Based

Intelligent Systems, (2018).

11. Mohit Dua, Sandeep Kumar, Zorawar Singh Virk,

« Hindi Language Graphical User Interface to

Database Management System », (2013) 12th

International Conference on Machine Learning and
Applications.

12. Bentamar Hemerelain, Hafida Belbachir, «

Semantic Analysis of Natural Language Queries for

an Object-Oriented Database », Software

Engineering & Applications, (2010), 3, 1047-105.

13. XIAOFENG.M, S.WANG, and KAM FAI WONG,
« Overview of A Chinese Natural Language

Interface to Databases: NChiql », International

Journal of Computer Processing of Languages, Vol.

14, No. 03, pp. 213-232 (2001).

14. Kailash Pati Mandala, Prasenjit Mukherjee,
Baisakhi Chakraborty and Atanu Chattopadhyay. A

novel Bengali Language Query Processing System

(BLQPS) in medical domain. Intelligent Decision

Technologies -1 (2019) 1–16.

15. Basik, F., Hättasch, B., Ilkhechi, A., Usta, A.,
Ramaswamy, S., Utama, P., & Cetintemel, U. «A

Learned NL-Interface for Databases ».International

Conference on Management of Data (pp. 1765-

1768), (2018).

16. B Green, A Wolf, C.Chomsky, K Laughery, «
BASEBALL: an automatic question answerer »,

western joint IRE-AIEE-ACM computer

conference May (1961), Pages 219–224.

17. Woods, William A, Ronald M Kaplan, and Bonnie
Nash-Webber, « natural language information

system », (1972).The lunar sciences.

18. David L. Waltz, «An English language question
answering system for a large relational database »,

Communications of the ACM, (1978).

19. G.Hendrix, « A NATURAL LANGUAGE

INTERFACE », Computational Linguistics, vol.8,

no.2, pp.55-61, (1982).

20. E.F.Codd, « A STEP Towards Realizing Codd’s
Vision of Rendezvous with the Casual User », Data

6

E3S Web of Conferences 229, 01039 (2021) https://doi.org/10.1051/e3sconf/202122901039
ICCSRE’2020

Base Management, Ed: North-Holland Publishers,
(1974).

21. David H. D. Warren, Fernando C. N. Pereira, «An

efficient easily adaptable system for interpreting

natural language queries », Computational

Linguistics (1982).

22. G. Ritchie, I. Androutsopoulos, P. Thanisch, «
Masque/sql », (1993).

23. Ana-Maria Popescu, Alex Armanasu, Oren Etzioni,
David Ko, and Alexander Yates, « Modern Natural

Language Interfaces to Databases: Composing

Statistical Parsing with Semantic Tractability »,

COLING (2004).

24. Yunyao Li, Huahai Yang, and H.V. Jagadish,
Nalix: « an Interactive Natural Language Interface

for Querying XML», SIGMOD (2005).

25. Hanane Bais, Mustapha Machkour, Lahcen Koutti,

« Querying database using a universal natural
language interface based on machine learning »,

(2016) International Conference on Information

Technology for Organizations Development

(IT4OD).

26. Hanane Bais, Mustapha Machkour, Lahcen Koutti,

« An Arabic natural language interface for querying
relational databases based on natural language

processing and graph theory methods »,

International Journal of Reasoning-Based

Intelligent Systems, (2018).

27. J. Gu, Z. Lu, H. Li, and V. O. K. Li. Incorporating

Copying Mechanism in Sequence-to-Sequence
Learning. ArXiv e-prints, March (2016).

28. Victor Zhong, Caiming Xiong, and Richard Socher.

Seq2sql: Generating structured queries from natural

language using reinforcement learning.arXiv

preprint arXiv: 1709.00103, (2017).

29. V. Zhong, C. Xiong, and R. Socher, “Seq2sql:

Generating struct queries from natural lang. using

reinforcement learning,” CoRR, vol.

abs/1709.00103, (2017).

30. T. Yu, R. Zhang, K. Yang, M. Yasunaga, D. Wang,
Z. Li, J. Ma, I. Li, Q. Yao, S. Roman, et al., “Spider:

A large-scale human-labeled dataset for complex

and cross-domain semantic parsing and text-to-sql

task,” in Proc. of the 2018 Conf. on Empirical

Methods in Natural Lang. Process., pp. 3911–3921,

(2018).

31. Jichuan Zeng, Xi Victoria Lin, Caiming Xiong,
Richard Socher, Michael R. Lyu, Irwin King,

Steven C.H. Hoi. Photon: A Robust Cross-Domain

Text-to-SQL System. The 58th Annual Meeting of

the Association for Computational Linguistics.

ACL 2020.

32. IE-SQL: Text-to-SQL as Information Extraction.

(2020) Association for Computing Machinery.

33. X. Zhang, F. Yin, G. Ma, B. Ge and W. Xiao, "M-
SQL: Multi-Task Representation Learning for

Single-Table Text2sql Generation," in IEEE

Access, vol. 8, pp. 43156-43167, (2020), doi:

10.1109/ACCESS.2020.2977613.

34. Nathaniel Weir, Prasetya Utama, Alex Galakatos,
Andrew Crotty, Amir Ilkhechi, Shekar

Ramaswamy, Rohin Bhushan, Nadja Geisler,

Benjamin Hättasch, Steffen Eger, Ugur Cetintemel,

and Carsten Binnig. DBPal: A Fully Pluggable

NL2SQL Training Pipeline. SIGMOD '20:

Proceedings of the (2020) ACM SIGMOD

International Conference on Management of Data,

June 2020 Pages 2347–2361.

35. Bailin Wang, Richard Shin, Xiaodong Liu,
Oleksandr Polozov, Matthew Richardson. RAT-

SQL: Relation-Aware Schema Encoding and

Linking for Text-to-SQL Parsers. Proceedings of

the 58th Annual Meeting of the Association for

Computational Linguistics, pages 7567–7578, July

5 - 10, (2020).

36. Amol Kelkar, Rohan Relan, Vaishali Bhardwaj,
Saurabh Vaichal, Chandra Khatri, Peter Relan.

Bertrand-DR: Improving Text-to-SQL using a

Discriminative Re-ranker. WeCNLP (2020).

Computation and Language (cs.CL).

37. DongHyun Choi, Myeong Cheol Shin, EungGyun
Kim, Dong Ryeol Shin. RYANSQL: Recursively

Applying Sketch-based Slot Fillings for Complex

Text-to-SQL in Cross-Domain Databases. (2020)

Computation and Language (cs.CL).

38. Jaydeep Sen, Chuan Lei, Abdul Quamar, Fatma
Ozcan2, Vasilis Efthymiou, Ayushi Dalmia, Greg

Stager, Ashish Mittal, Diptikalyan Saha, and

Karthik Sankaranarayanan. ATHENA++: natural

language querying for complex nested SQL queries.

(2020) proceedings of the VLDB Endowment, Vol.

13, No. 11, ISSN 2150-8097.

39. Ursin Brunner, Kurt Stockinger. ValueNet: A
Neural Text-to-SQL Architecture Incorporating

Values. (2020) proceedings of the VLDB

Endowment.

40. Apostolos Glenis, Georgia Koutrika. NLonSpark:
NL to SQL translation on top of Apache Spark.

(2020) Association for Computing Machinery.

7

E3S Web of Conferences 229, 01039 (2021) https://doi.org/10.1051/e3sconf/202122901039
ICCSRE’2020

