
 

Evaluation of Bio-inspired SLAM algorithm based on a      
Heterogeneous System CPU-GPU 

 
Rachid Latif1, Kaoutar Dahmane1, Monir Amraoui1, Amine Saddik1, and Abdelouahed  Elouardi2 

 
1LISTI, ENSA Ibn Zohr University Agadir, 80000, Morocco 
2SATIE, Digiteo Labs, Paris-Sud University, Paris Saclay University, Orsay, France 

Abstract.Localization and mapping are a real problem in robotics which has led the robotics community 
to propose solutions for this problem... Among the competitive axes of mobile robotics there is the 
autonomous navigation based on simultaneous localization and mapping (SLAM) algorithms: in order to 
have the capacity to track the localization and the cartography of robots, that give the machines the power 
to move in an autonomous environment. In this work we propose an implementation of the bio-inspired 
SLAM algorithm RatSLAM based on a heterogeneous system type CPU-GPU. The evaluation of the 
algorithm showed that with C/C++ we have an executing time of 170.611 ms with a processing of 5 
frames/s and for the implementation on a heterogeneous system we used CUDA as language with an 
execution time of 160.43 ms. 
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1 Introduction 
Embedded systems have the advantage of small size 
and low power, are alsopopularlyused in mobile robots 
to decreaseweight and increase endurance [1]. In the 
promisingfield of mobile robotics, localization has 
been a hot topic in recentyears. For navigation 
thatisdivided in three phases: mapping, localization, 
and planning, the robots needmaps, and in the same 
time they have to build a map. The questions that arise 
are: in the absence of a map, how to locateoneself, and 
withoutknowingone's position, how to build a map? 
That meansthat a robot needs to know its position to be 
able to map an environmentaccurately [2]. 
Nevertheless, it must absolutely have a preestablished 
map of itsenvironment to be able to locateitselfthere. 
Location technologies depend on the environment and 
cost, accuracy, frequency and robustness, which can 
beobtained by the absolute and relative 
positioningmethodssuch as global positioning system 
(GPS), inertialmeasurement unit (IMU) and wireless 
signal [3]. However, GPS technology can 
onlyworkoutdoors ,it does not limit the location error 
for indoor use. and the IMU system has a cumulative 
errorisused to measurelinear and rotationalacceleration 
of robots,WiFilocalization uses a WiFicardbased on a 
graph by collecting signal strength in the field. In 
thismethod, the mean and standard deviations of WiFi 
RSSI observations are approximated by linear 
interpolation on a graph [4][5]. Eachmethod assumes 
major limitations,underthiseffect, we are pushed to use 
algorithmsthatallow robots to map 
theirenvironmentswhile locating in the generated map. 
SLAM allows the robot to position itself by aligning 
the data collected by the sensorswith the data 
thatisalreadyavailable. The sensor data collectedwith 
the data already collected allows the construction of a 
navigation map representing a set of distinctive points 
in the environment, otherwiseknown as points of 

interest in order to have an orientation and planning of 
the trajectorywhilelimitingthe errorthat can be made by 
the robot generating the diversion.The process of 
solving the problembeginswithodometry techniques. 
Odometryis the measurement of the robot'sability to 
estimateitsown position. This isnormallycalculated by 
the robot from the position of itswheels. One of the key 
elements of the SLAM process is the acquisition of 
data about the robot environment.  A robot will use 
differentreference points for differentenvironments. 
The reference points must bestationary, and the 
waypoints must be unique in relation to the 
surroundingenvironment. The waypoints must 
alsobenumerous and must be able to 
beseenfrommanydifferent angles. By extracting the 
sensory input and identifying the differentwaypoints, 
once a robot has detected a waypoint, it can 
thendetermineitsown position. A method must be in 
place for the robot to do this. This landmark extraction 
can beperformed in differentways, fromalgorithmssuch 
as peak extraction to scan matching. The important 
factor to rememberisthat the robot needs a method to 
identify a waypoint. Robots can also use 
previouslyscannedlandmark data and match them to 
eachother to determinetheir location [6]. 

In this context, Abouzahir et al, 2017 to ensure real-
time performance of SLAM algorithms with their 
computational complexity have been executed on high- 
performance machines. The use of embedded systems 
is necessary to have an architecture that allows 
efficient implementation to ensure real-time 
constraints. There are attempts to implement SLAM 
algorithms on embedded systems. However, the 
implementation of SLAM algorithms still limited and 
strongly depends on the nature of the algorithm and the 
purpose of the embedded architecture [7]. The authors 
in Ma et al, 2016 implement large scale SLAM system 
that combines dense stereo vision with inertial tracking 
of using off on a high-end NVidia TITAN GPU and an 
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Intel i7 quad- CPU desktop [8]. Also, the authors in [7] 
provided a case study of the FastSLAM 2.0 algorithm 
dedicated to largescale environments implemented in 
different embedded architectures such as the Tegra X1 
system-on-chip (SoC) which integrates processor 4x 
ARM Cortex A57 and 4x ARM Cortex A53 CPUs @ 
1.9 GHz, also SLAM algorithmimplemented on a high-
performance desktop Core 2 Quad Q6600, @ 2.40 
GHz and on the T4300 dual-core, @ 2.10 GHz laptop 
computer also the algorithm is implemented on the 
ODROID-XU4 which uses a Quad-Core ARM 
Cortex15, and on The Panda board, ES includes an 
ARM Dual Core Cortex A9 processor @ 1 GHz [7].  

In recentwork, NGUYEN et al, 2018 proposes a 
vision system implementing a SLAM algorithm on a 
heterogeneous architecture. The HOOFR-SLAM 
algorithm uses images acquired by a stereo camera to 
performsimultaneouslocalization and mapping,  the 
implementationwasbased on a CPU-GPU architecture 
using CUDA and OpenCL. The embedded platforms 
used are JETSON Tegra X1 equippedwith 4- Core 
ARM and A57 4-Core ARM A53 @ 1.3-1.9 GHz and 
Intel core i7 laptop @ 3.40 GHz [9].Recently,  the 
authors in [10] based on HOOFR extractor  , designed  
a wholefeature extraction system, dedicated for SLAM 
application takingintoaccount the bucketingmethod. 
also, theyprovided  A hardware-software 
codesignapproach in order to implement the system on 
FPGA-basedheterogeneous architecture 
usingOpenCLprogramming .and using a 
publiclydatasetthey can reach the performance of 
evaluation of FPGA-basedimplementation versus 
embedded GPU-basedimplementation. 

Our workaims to achieve an implementation of a 
bio-inspired SLAM algorithm in a heterogeneous CPU-
GPU system for the mobile robot, whichis able to 
perform real-time localization and mapping. The 
evaluation of the algorithmisperformed in laptop 
thatcontain the NVIDIA GeForce 940MX and Intel 
Core i7 @ 2.70 GHz. The results of the 
evaluationshowed us that the processing time with 
C/C++ on robot operating system (ROS) is 160.43 ms 
using CUDA, evaluated on the New College data set 
recorded by a stereo camera. 

The presentedworkiscomposed of 4 parts. The first 
section for the introduction, the second part provides 
an overview on SLAM algorithmembedded for mobile 
ro- botic. The third part isdevoted to present the 
evaluation and resultobtained by the use of embedded 
CPU-GPU system and the last section isconsecrate to 
the conclusion. 

2 SLAM: overview and approach 
In roboticsfieldwe have a diversity of sensorsused 

for SLAM algorithmtrackits mission 
theirdifferentcapabilities and theirweak points push us 
to develop new algorithms. In recentwork, Latif et al. 
2019, statedthat SLAM algorithms are 
classifiedaccording to the type of sensors and the 
nature of the mathematicalapproachused. He 
alsoprovided a study on someproposedmethods to 
solve the SLAM problem. The first proposed solution 
to solve the problem of localization and simultaneous 

mapping is Extended Kalman Filter (EKF) in [11], 
EKF presents an extension of the Kalman 
filterthattakes non-linearsystemsintoaccount. The 
advantage of thisalgorithmisgiving the uncertainty on 
the position of the robot also the landmarks in the 
course of time. ConcerningtheirDisadvantage, wefind 
the high algorithmiccomplexitypresented a lot of 
problems, mostlywhenweaim to achieve the real-time 
implementation, in another hand. This solution 
suffersfrom a consistencyproblem, such as another 
solution. FastSLAM [12] 00based on the 
particulatefilter and developedunder the name 
FastSLAM 2.0 [13-14], however, the FastSLAM has 
an 
advantagethathereducesalgorithmiccomplexitycompare
d to EKF-SLAM. The GraphSLAM, based on 
smoothingapproaches, using all the 
sensormeasurements can estimate in addition to the 
map, the full trajectory of the robot. The strong point of 
graph slam isthatallowsavoiding the propagation of 
linearizationerrors, despite GraphSLAM gives more 
preciseresults, 
itsalgorithmiccomplexityremainsrestrained due to the 
smoothingcharacteristic. We have also a 
totallyvisualalgorithmcalled the ORB SLAM 
whichpresent a monocular system based on SLAM 
characteristics for small and large, in door, and 
outdoorenvironments [15-16]. Stefano et al, 2019 
presented the method to modify and customize the 
open source SLAM algorithm ORB-SLAM2 in order 
to run thisalgorithm in real-time using the NVIDIA 
Jetson TX2 board and theyadopted a data flow 
paradigm for images processing, achieving an efficient 
CPU-GPU load distribution, whichresults in a 
processing speed equal a 30 fps. The evaluation of 
resultsisbased on KITTI datasets [17]. The 
algorithmspresentedabove are probabilisticalgorithms 
and westill have the bio-inspiredalgorithmsthat focus 
on emulatingbiologicalsystemsthat are supposed to 
beresponsible for mapping and navigation in the 
animal and humanbrain, can also solve the SLAM 
problem. Rodents, in particular, are better at 
dealingwithnavigationalproblems: rats can navigateand  
updatetheir pose 
representationevenwithoutexternalsignals, using the 
estimation of self-movement, called path integration. 
Bio-inspired SLAM algorithmsinclude the RatSLAM 
provided by Milford et al. 2015 [18], based on the 
visual SLAM algorithm. It uses a simplified computer 
model of the rodent hippocampus to build a real-time 
map consistently and stablyusing a single camera. 
RatSLAM corrects cumulative errors in odometry by a 
map correction algorithm in internal and 
externalenvironmentsaccording to [19,20] expertise. 

3   EVALUATION AND RESULT 
In this work we using the bio-inspired RatSLAM 
inspired from hippocampus of rat, the fact that rodents 
are able to memorize the location of reference objects 
and the store as a virtual map [21]. The RatSLAM 
based on the visual SLAM algorithm, Visual SLAM 
refers to the process of calculating the position and 
orientation of a device with respect to its surroundings, 
while mapping the environment at the same time, using 
only visual inputs from a camera. Visual SLAM uses 
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only visual inputs to perform location and mapping, 
meaning that the only sensor required is a camera that 
has to be mounted on board of the device. No other 
external sensors are required [22]. 

The types of cameras are varied, Omnidirectional 
cameras are gaining in popularity: they have a 360° 
view of the environment and as features stay longer in 
the field of view, it is easier to find and track them. To 
improve the accuracy of features, some work relies on 
a multi-sensor system. The system of Castellanos et al 
consists of a 2D laser scanner and a camera, however, a 
monocular system has certain weaknesses in certain 
situations, for example, it requires additional 
calculations for depth estimates, scale propagation 
problems, or may lead to failure modes due to non-
observability. Stereo systems are widely adopted in 
different environments, both for landmark detection 
and motion estimation in indoor and outdoor 
environments [23]. The identification of places is 
reached by using a neural network, RatSLAM able to 
generating topological representations of outdoor and 
indoor environments, the RatSLAM algorithm is 
composed of 4 blocks, local view, pose cell and the 
experience map block, and odometry, data that can be 
extracted from the bag file. We evaluated this 
algorithm on The New College Dataset [24] includes, 
laser, odometry, stereo camera images, panoramic 
images, and GPS recordings in a custom format. Data 
collection was performed outdoors on the 2.2km path. 
In order to run the dataset with OpenRatSLAM the 
panoramic images and odometric information have 
been re-encoded into a ROS bag file. Timestamps were 
extracted from the original dataset to ensure proper 
timing. The odometric information has been integrated 
to match the panoramic  image rate of 3Hz [25], 
recorded by a robot using a stereo camera with 
resolution of 512 × 382 pixels, a stereo camera system 
consists of two cameras separated by a fixed distance 
which presents the simplest ways to directly get depth 
information; in the same method, that humans do with 
our eyes, observations of the position of the same 3D 
point in the two cameras provide the depth to be 
calculated by triangulation. It can reduce the constraint 
that depth information will be inaccessible without the 
cameras moving, as is the case with monocular 
cameras. Despite, the depth measurement range is 
limited by the baseline and resolution [5], with the 
version of the RatSLAM code Open Source. Open 
RatSLAM algorithm has provided by Ball. 2019 [26], 
using an open source, meta-operating system ROS 
system (Robot Operating System) is a set of self-
service software that is a meta-operating system for 
robots. We can also represent it as a framework for 
writing robotic software. Its goal is to create a 
standardization of programming in robotics. 

 The operation of ROS is similar to that of a client-
server. The master represents the server and the 
different nodes of the client. A node is an executable 
that can be, the data of a sensor. The master is the 
server to which all nodes must subscribe in order to be 
able to talk to each other. Once subscribed to the 
master, the nodes discuss with topics that are 
information transport services. The nodes can either 
publish information on these topics or read the 
information published in them or publish and read 

them at the same time. ROS offers a set of programs 
that allow the use of various sensors, visualization 
software, inter-machine connections, and simulation 
software. It can be used with several programming 
languages such as C++ [27]. ROS can ensure package 
management, also low-level device control given the 
necessary libraries, and allow message passing 
between processes, which the RatSLAM uses for 
communication between its blocks. Figure 1 shows the 
blocks that comprise the Open RatSLAM. 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.Open RatSLAM blocks 

 

Firstly, the images captured from sensors or provided 
by the dataset will be sent to the local view block to 
preprocesse the current image into a visual template 
representation in order to determine whether a scene 
given by the current view is a new or previously seen 
visual template by using image comparison techniques. 
The first step is converted image into a mono grayscale 
format. and the image then be cropped to bias the 
templates towards visually interesting areas of the 
camera images. Figure 2 shows the operation of 
matching the current view to all of the stored view 
templatesto bythe Local View node. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 2. Matching the current view to all of the stored view   
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 The cropped region may then be subsampled to 
defined height and width parameters, also it may 
undergo global and local normalization steps which 
attempt to alleviate changes in illumination. Global 
normalization considers the mean and range of the 
entire image and addresses global changes in 
illumination. Local normalization preserves contrast in 
small patch regions. After pre-processing, the local 
view match node compares the visual template that 
represents the current camera image with all previously 
learned templates, the pose cell corresponding cell, if 
the view is new we add it to the templates stored 
previously, the block of pose cell networks of position, 
forms three dimensional hypotheses of location and 
orientation (x′,y′,θ′) for the position of the robot in the 
real environment (x, y, θ), responds to two types of 
input; odometry and view templates. The action on a 
view template input depends on whether this is a new 
or existing view template. For new view templates, the 
id is associated with the centroid of the current peak 
activity packet in the pose cell network. For existing 
view templates, activity is injected into the previously 
associated location in the pose cells. The injected 
activity for consecutive matches of the same view 
template decays rapidly but is gradually restored over 
time.  this node manages the energy packet that 
represents pose in response to odometric and local 
view connections. In this implementation, this node 
handles the decision on when to create new nodes and 
links because it requires knowledge of the internal 
workings of the Pose Cell Network, which is no longer 
available due to the split into separate nodes. 
RatSLAM is based on the iterations of the CAN 
(Competitive Attractors Network) of pose cells block, 
the block called experience map is a topological 
representation encoding the pose cells and local view 
cells in nodes and links uses the received actions to 
create nodes and links, or to set the current node, each 
experience has an associated position and orientation. 
Creating a new node also creates a link to the 
previously active node. Experience map manages 
graph building, graph relaxation, and path planning 
[25]. Each of these 3 main blocks represents a process 
executing simultaneously, the first local view block is 
converted into CUDA language with the heterogeneous 
architecture CPU-GPU, our choice is based on the 
analysis of the code and extraction the execution times 
of each functions and methods. This block contains a 
function which we can implement on the GPU in order 
to be able to complement the CPU architecture by 
giving capacity to achieve repetitive calculation 
involving massive amounts of data. Heterogeneous 
System allows using more than one kind of processor, 
to work efficiently and cooperatively. The parallel 
programming language CUDA used on GPUs and 
CPUs is supported by the heterogeneous system. 
Compute Unified Device Architecture (CUDA) based 
on the standard C/C++ language represents a parallel 
programming paradigm allowing to use of GPU 
resources, CUDA is a proprietary framework created 
by NVIDIA, it generates better performance results. 

CPU and GPU cores cooperate with each other . 
They assume that a parallel part of a code: CUDA 
cores run on a GPU and a serial part of a code; the rest 

of the C program runs on a CPU [28].  In CUDA 
applications, a crucial question is therefore how to 
structure a certain part of the code to expose so much 
data parallelism. We have observed that CUDA 
applications are generally designed to exploit massive 
parallelism only with GPUs. Figure 3 shows the 
proposed CUDA architecture CPU-GPU of the Open 
RatSLAM algorithm.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Block diagram of the proposed CUDA 

architecture 

When each new image is collected, the algorithm 
checks if the current view is identical or similar to the 
stored images models, model by model, so that it 
decides whether or not to add a new model to the 
vector of the different models, then the size of the 
visual template increases and the similarity calculation 
time also increases. In this work the calculation of the 
matching operation is performed in parallel so that the 
similarity is calculated for the images collected with all 
the templates stored at the same time. In the second 
block we apply a filter to the cells of the Pose Cells 
matrix to excite these cells, the multiplication of the 
matrix by the Pose cell matrix is carried out box by 
box, each box represents a laying cell then we have a 
large number of iterations for this operation for 204 
image sequences there are 129925 iterations. Also the 
inhibit function responsible for inhibiting the activation 
of cells by the use of convolution matrix, the 
multiplication of the two cell-to-cell matrices: the 
original and mask is executed several times for 204 
image sequences we have 1208636 iterations, then for 
both methods, we can apply the 3D multiplication (x, 
y, θ) in parallel by the GPU. At the end, the Experience 
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Map block creates the map based on the observations 
of the robot. The map is represented by a graph in 
which each node is an experiment. Table 1 shows our 
execution time, for the blocks on homogeneous CPU 
and heterogeneous CPU-GPU architectures. 

  

 

 

 Table 1.TOTAL EXECUTION TIME (MS) 

 
Tools 

 
 

                                           Laptop, CPU     
 

                                      (C/C++) 

Laptop, Nvidia 
GeForce 340MX 

CPU-GPU 
(CUDA) 

 
 
 
 
 
 
Function
al blocks 

 
 
Local View 

 
 
170.611 

 
 
160.43 

 
 
PoseCell Network 

 
 
79.7 

 
 
 
78.0 

 
 
Experience Map 

 
 
54.3 

 
 
- 

 
Total 
time 
(ms) 

 
304.611  
 

 
292.73 

 

As shown in the table above, we have 3 principal 
functional blocks, the first block named local view the 
use of C/C++ gave us a time of 170.611 ms and the use 
of the CUDA language gave us a time of 160.43 ms, so 
we can say that there is a change in the execution time. 
The pose cell block has a time of 79.7 ms with the 
C/C++ language which is already small and we have a 
time of 78.0 ms using the CUDA language then we 
don't have a big difference between the time resulting 
from the two times of this block because the time in 
C/C++ is already minimized. For the experience map 
block we have an execution time equal to 54.3 ms 
using the C /C++ language. We find that the average 
execution time of the global code of an image in CPU: 
82.742032 ms and using the CUDA language we find 
69.23 ms. Figure 4 presents the evolution of times with 
the use of GPU GeForce 940Mx to evaluate the time of 
40 images. 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 4. The evaluation of 40 views of the function 
compare of the local view bloc with CUDA in GeForce 
940Mx. 

 

As it is shown in the figure 4, the execution time of 
the local view block compare function is minimized, 
which generates the reduction of the time of the block 
programmed in CUDA language in the Nvidia GeForce 
940MX card of the laptop @ 1241 MHz, using also the 
Intel Core i7 CPU @ 2.70GHz The time variations are 
between 0.75 Ms and 1.32 Ms and which gives 1.01 ms 
in average. 

4  CONCLUSION 
Over the last decade, embedded systems have 

received particular attention because of their many 
applications. They can also be found in the field of 
robotics, so robots need a certain intelligence to work 
and make decisions, which is done with the help of 
embedded systems. The development engine for 
mobile robotics is the operation of embedded systems 
for the different implementation architectures made 
available. This work presents the implementation of the 
bio-inspired SLAM algorithm RatSLAM, on CPU-
GPU architecture with using CUDA language. We 
obtained as a result a reduction of 10 ms, compared to 
the result with the homogeneous architecture CPU 
using (C/C++), which allows us to benefit from the 
technological progress, and allows us to respond more 
to the constraint of real-time. We aim the validation of 
the architecture in HIL (Hardware In the Loop), also 
we aim to use other heterogeneous embedded systems, 
so as to integrate its board in a robot in the future. 
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