

Evaluation of Bio-inspired SLAM algorithm based on a
Heterogeneous System CPU-GPU

Rachid Latif1, Kaoutar Dahmane1, Monir Amraoui1, Amine Saddik1, and Abdelouahed Elouardi2

1LISTI, ENSA Ibn Zohr University Agadir, 80000, Morocco
2SATIE, Digiteo Labs, Paris-Sud University, Paris Saclay University, Orsay, France

Abstract.Localization and mapping are a real problem in robotics which has led the robotics community
to propose solutions for this problem... Among the competitive axes of mobile robotics there is the
autonomous navigation based on simultaneous localization and mapping (SLAM) algorithms: in order to
have the capacity to track the localization and the cartography of robots, that give the machines the power
to move in an autonomous environment. In this work we propose an implementation of the bio-inspired
SLAM algorithm RatSLAM based on a heterogeneous system type CPU-GPU. The evaluation of the
algorithm showed that with C/C++ we have an executing time of 170.611 ms with a processing of 5
frames/s and for the implementation on a heterogeneous system we used CUDA as language with an
execution time of 160.43 ms.

Keywords.SLAM, RatSLAM, Heterogeneous system, CPU-GPU, C/C++, CUDA.

1 Introduction
Embedded systems have the advantage of small size
and low power, are alsopopularlyused in mobile robots
to decreaseweight and increase endurance [1]. In the
promisingfield of mobile robotics, localization has
been a hot topic in recentyears. For navigation
thatisdivided in three phases: mapping, localization,
and planning, the robots needmaps, and in the same
time they have to build a map. The questions that arise
are: in the absence of a map, how to locateoneself, and
withoutknowingone's position, how to build a map?
That meansthat a robot needs to know its position to be
able to map an environmentaccurately [2].
Nevertheless, it must absolutely have a preestablished
map of itsenvironment to be able to locateitselfthere.
Location technologies depend on the environment and
cost, accuracy, frequency and robustness, which can
beobtained by the absolute and relative
positioningmethodssuch as global positioning system
(GPS), inertialmeasurement unit (IMU) and wireless
signal [3]. However, GPS technology can
onlyworkoutdoors ,it does not limit the location error
for indoor use. and the IMU system has a cumulative
errorisused to measurelinear and rotationalacceleration
of robots,WiFilocalization uses a WiFicardbased on a
graph by collecting signal strength in the field. In
thismethod, the mean and standard deviations of WiFi
RSSI observations are approximated by linear
interpolation on a graph [4][5]. Eachmethod assumes
major limitations,underthiseffect, we are pushed to use
algorithmsthatallow robots to map
theirenvironmentswhile locating in the generated map.
SLAM allows the robot to position itself by aligning
the data collected by the sensorswith the data
thatisalreadyavailable. The sensor data collectedwith
the data already collected allows the construction of a
navigation map representing a set of distinctive points
in the environment, otherwiseknown as points of

interest in order to have an orientation and planning of
the trajectorywhilelimitingthe errorthat can be made by
the robot generating the diversion.The process of
solving the problembeginswithodometry techniques.
Odometryis the measurement of the robot'sability to
estimateitsown position. This isnormallycalculated by
the robot from the position of itswheels. One of the key
elements of the SLAM process is the acquisition of
data about the robot environment. A robot will use
differentreference points for differentenvironments.
The reference points must bestationary, and the
waypoints must be unique in relation to the
surroundingenvironment. The waypoints must
alsobenumerous and must be able to
beseenfrommanydifferent angles. By extracting the
sensory input and identifying the differentwaypoints,
once a robot has detected a waypoint, it can
thendetermineitsown position. A method must be in
place for the robot to do this. This landmark extraction
can beperformed in differentways, fromalgorithmssuch
as peak extraction to scan matching. The important
factor to rememberisthat the robot needs a method to
identify a waypoint. Robots can also use
previouslyscannedlandmark data and match them to
eachother to determinetheir location [6].

In this context, Abouzahir et al, 2017 to ensure real-
time performance of SLAM algorithms with their
computational complexity have been executed on high-
performance machines. The use of embedded systems
is necessary to have an architecture that allows
efficient implementation to ensure real-time
constraints. There are attempts to implement SLAM
algorithms on embedded systems. However, the
implementation of SLAM algorithms still limited and
strongly depends on the nature of the algorithm and the
purpose of the embedded architecture [7]. The authors
in Ma et al, 2016 implement large scale SLAM system
that combines dense stereo vision with inertial tracking
of using off on a high-end NVidia TITAN GPU and an

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0

(http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 229, 01023 (2021) https://doi.org/10.1051/e3sconf/202122901023
ICCSRE’2020

Intel i7 quad- CPU desktop [8]. Also, the authors in [7]
provided a case study of the FastSLAM 2.0 algorithm
dedicated to largescale environments implemented in
different embedded architectures such as the Tegra X1
system-on-chip (SoC) which integrates processor 4x
ARM Cortex A57 and 4x ARM Cortex A53 CPUs @
1.9 GHz, also SLAM algorithmimplemented on a high-
performance desktop Core 2 Quad Q6600, @ 2.40
GHz and on the T4300 dual-core, @ 2.10 GHz laptop
computer also the algorithm is implemented on the
ODROID-XU4 which uses a Quad-Core ARM
Cortex15, and on The Panda board, ES includes an
ARM Dual Core Cortex A9 processor @ 1 GHz [7].

In recentwork, NGUYEN et al, 2018 proposes a
vision system implementing a SLAM algorithm on a
heterogeneous architecture. The HOOFR-SLAM
algorithm uses images acquired by a stereo camera to
performsimultaneouslocalization and mapping, the
implementationwasbased on a CPU-GPU architecture
using CUDA and OpenCL. The embedded platforms
used are JETSON Tegra X1 equippedwith 4- Core
ARM and A57 4-Core ARM A53 @ 1.3-1.9 GHz and
Intel core i7 laptop @ 3.40 GHz [9].Recently, the
authors in [10] based on HOOFR extractor , designed
a wholefeature extraction system, dedicated for SLAM
application takingintoaccount the bucketingmethod.
also, theyprovided A hardware-software
codesignapproach in order to implement the system on
FPGA-basedheterogeneous architecture
usingOpenCLprogramming .and using a
publiclydatasetthey can reach the performance of
evaluation of FPGA-basedimplementation versus
embedded GPU-basedimplementation.

Our workaims to achieve an implementation of a
bio-inspired SLAM algorithm in a heterogeneous CPU-
GPU system for the mobile robot, whichis able to
perform real-time localization and mapping. The
evaluation of the algorithmisperformed in laptop
thatcontain the NVIDIA GeForce 940MX and Intel
Core i7 @ 2.70 GHz. The results of the
evaluationshowed us that the processing time with
C/C++ on robot operating system (ROS) is 160.43 ms
using CUDA, evaluated on the New College data set
recorded by a stereo camera.

The presentedworkiscomposed of 4 parts. The first
section for the introduction, the second part provides
an overview on SLAM algorithmembedded for mobile
ro- botic. The third part isdevoted to present the
evaluation and resultobtained by the use of embedded
CPU-GPU system and the last section isconsecrate to
the conclusion.

2 SLAM: overview and approach
In roboticsfieldwe have a diversity of sensorsused

for SLAM algorithmtrackits mission
theirdifferentcapabilities and theirweak points push us
to develop new algorithms. In recentwork, Latif et al.
2019, statedthat SLAM algorithms are
classifiedaccording to the type of sensors and the
nature of the mathematicalapproachused. He
alsoprovided a study on someproposedmethods to
solve the SLAM problem. The first proposed solution
to solve the problem of localization and simultaneous

mapping is Extended Kalman Filter (EKF) in [11],
EKF presents an extension of the Kalman
filterthattakes non-linearsystemsintoaccount. The
advantage of thisalgorithmisgiving the uncertainty on
the position of the robot also the landmarks in the
course of time. ConcerningtheirDisadvantage, wefind
the high algorithmiccomplexitypresented a lot of
problems, mostlywhenweaim to achieve the real-time
implementation, in another hand. This solution
suffersfrom a consistencyproblem, such as another
solution. FastSLAM [12] 00based on the
particulatefilter and developedunder the name
FastSLAM 2.0 [13-14], however, the FastSLAM has
an
advantagethathereducesalgorithmiccomplexitycompare
d to EKF-SLAM. The GraphSLAM, based on
smoothingapproaches, using all the
sensormeasurements can estimate in addition to the
map, the full trajectory of the robot. The strong point of
graph slam isthatallowsavoiding the propagation of
linearizationerrors, despite GraphSLAM gives more
preciseresults,
itsalgorithmiccomplexityremainsrestrained due to the
smoothingcharacteristic. We have also a
totallyvisualalgorithmcalled the ORB SLAM
whichpresent a monocular system based on SLAM
characteristics for small and large, in door, and
outdoorenvironments [15-16]. Stefano et al, 2019
presented the method to modify and customize the
open source SLAM algorithm ORB-SLAM2 in order
to run thisalgorithm in real-time using the NVIDIA
Jetson TX2 board and theyadopted a data flow
paradigm for images processing, achieving an efficient
CPU-GPU load distribution, whichresults in a
processing speed equal a 30 fps. The evaluation of
resultsisbased on KITTI datasets [17]. The
algorithmspresentedabove are probabilisticalgorithms
and westill have the bio-inspiredalgorithmsthat focus
on emulatingbiologicalsystemsthat are supposed to
beresponsible for mapping and navigation in the
animal and humanbrain, can also solve the SLAM
problem. Rodents, in particular, are better at
dealingwithnavigationalproblems: rats can navigateand
updatetheir pose
representationevenwithoutexternalsignals, using the
estimation of self-movement, called path integration.
Bio-inspired SLAM algorithmsinclude the RatSLAM
provided by Milford et al. 2015 [18], based on the
visual SLAM algorithm. It uses a simplified computer
model of the rodent hippocampus to build a real-time
map consistently and stablyusing a single camera.
RatSLAM corrects cumulative errors in odometry by a
map correction algorithm in internal and
externalenvironmentsaccording to [19,20] expertise.

3 EVALUATION AND RESULT
In this work we using the bio-inspired RatSLAM
inspired from hippocampus of rat, the fact that rodents
are able to memorize the location of reference objects
and the store as a virtual map [21]. The RatSLAM
based on the visual SLAM algorithm, Visual SLAM
refers to the process of calculating the position and
orientation of a device with respect to its surroundings,
while mapping the environment at the same time, using
only visual inputs from a camera. Visual SLAM uses

2

E3S Web of Conferences 229, 01023 (2021) https://doi.org/10.1051/e3sconf/202122901023
ICCSRE’2020

only visual inputs to perform location and mapping,
meaning that the only sensor required is a camera that
has to be mounted on board of the device. No other
external sensors are required [22].

The types of cameras are varied, Omnidirectional
cameras are gaining in popularity: they have a 360°
view of the environment and as features stay longer in
the field of view, it is easier to find and track them. To
improve the accuracy of features, some work relies on
a multi-sensor system. The system of Castellanos et al
consists of a 2D laser scanner and a camera, however, a
monocular system has certain weaknesses in certain
situations, for example, it requires additional
calculations for depth estimates, scale propagation
problems, or may lead to failure modes due to non-
observability. Stereo systems are widely adopted in
different environments, both for landmark detection
and motion estimation in indoor and outdoor
environments [23]. The identification of places is
reached by using a neural network, RatSLAM able to
generating topological representations of outdoor and
indoor environments, the RatSLAM algorithm is
composed of 4 blocks, local view, pose cell and the
experience map block, and odometry, data that can be
extracted from the bag file. We evaluated this
algorithm on The New College Dataset [24] includes,
laser, odometry, stereo camera images, panoramic
images, and GPS recordings in a custom format. Data
collection was performed outdoors on the 2.2km path.
In order to run the dataset with OpenRatSLAM the
panoramic images and odometric information have
been re-encoded into a ROS bag file. Timestamps were
extracted from the original dataset to ensure proper
timing. The odometric information has been integrated
to match the panoramic image rate of 3Hz [25],
recorded by a robot using a stereo camera with
resolution of 512 × 382 pixels, a stereo camera system
consists of two cameras separated by a fixed distance
which presents the simplest ways to directly get depth
information; in the same method, that humans do with
our eyes, observations of the position of the same 3D
point in the two cameras provide the depth to be
calculated by triangulation. It can reduce the constraint
that depth information will be inaccessible without the
cameras moving, as is the case with monocular
cameras. Despite, the depth measurement range is
limited by the baseline and resolution [5], with the
version of the RatSLAM code Open Source. Open
RatSLAM algorithm has provided by Ball. 2019 [26],
using an open source, meta-operating system ROS
system (Robot Operating System) is a set of self-
service software that is a meta-operating system for
robots. We can also represent it as a framework for
writing robotic software. Its goal is to create a
standardization of programming in robotics.

 The operation of ROS is similar to that of a client-
server. The master represents the server and the
different nodes of the client. A node is an executable
that can be, the data of a sensor. The master is the
server to which all nodes must subscribe in order to be
able to talk to each other. Once subscribed to the
master, the nodes discuss with topics that are
information transport services. The nodes can either
publish information on these topics or read the
information published in them or publish and read

them at the same time. ROS offers a set of programs
that allow the use of various sensors, visualization
software, inter-machine connections, and simulation
software. It can be used with several programming
languages such as C++ [27]. ROS can ensure package
management, also low-level device control given the
necessary libraries, and allow message passing
between processes, which the RatSLAM uses for
communication between its blocks. Figure 1 shows the
blocks that comprise the Open RatSLAM.

Fig. 1.Open RatSLAM blocks

Firstly, the images captured from sensors or provided
by the dataset will be sent to the local view block to
preprocesse the current image into a visual template
representation in order to determine whether a scene
given by the current view is a new or previously seen
visual template by using image comparison techniques.
The first step is converted image into a mono grayscale
format. and the image then be cropped to bias the
templates towards visually interesting areas of the
camera images. Figure 2 shows the operation of
matching the current view to all of the stored view
templatesto bythe Local View node.

Fig. 2. Matching the current view to all of the stored view

3

E3S Web of Conferences 229, 01023 (2021) https://doi.org/10.1051/e3sconf/202122901023
ICCSRE’2020

 The cropped region may then be subsampled to
defined height and width parameters, also it may
undergo global and local normalization steps which
attempt to alleviate changes in illumination. Global
normalization considers the mean and range of the
entire image and addresses global changes in
illumination. Local normalization preserves contrast in
small patch regions. After pre-processing, the local
view match node compares the visual template that
represents the current camera image with all previously
learned templates, the pose cell corresponding cell, if
the view is new we add it to the templates stored
previously, the block of pose cell networks of position,
forms three dimensional hypotheses of location and
orientation (x′,y′,θ′) for the position of the robot in the
real environment (x, y, θ), responds to two types of
input; odometry and view templates. The action on a
view template input depends on whether this is a new
or existing view template. For new view templates, the
id is associated with the centroid of the current peak
activity packet in the pose cell network. For existing
view templates, activity is injected into the previously
associated location in the pose cells. The injected
activity for consecutive matches of the same view
template decays rapidly but is gradually restored over
time. this node manages the energy packet that
represents pose in response to odometric and local
view connections. In this implementation, this node
handles the decision on when to create new nodes and
links because it requires knowledge of the internal
workings of the Pose Cell Network, which is no longer
available due to the split into separate nodes.
RatSLAM is based on the iterations of the CAN
(Competitive Attractors Network) of pose cells block,
the block called experience map is a topological
representation encoding the pose cells and local view
cells in nodes and links uses the received actions to
create nodes and links, or to set the current node, each
experience has an associated position and orientation.
Creating a new node also creates a link to the
previously active node. Experience map manages
graph building, graph relaxation, and path planning
[25]. Each of these 3 main blocks represents a process
executing simultaneously, the first local view block is
converted into CUDA language with the heterogeneous
architecture CPU-GPU, our choice is based on the
analysis of the code and extraction the execution times
of each functions and methods. This block contains a
function which we can implement on the GPU in order
to be able to complement the CPU architecture by
giving capacity to achieve repetitive calculation
involving massive amounts of data. Heterogeneous
System allows using more than one kind of processor,
to work efficiently and cooperatively. The parallel
programming language CUDA used on GPUs and
CPUs is supported by the heterogeneous system.
Compute Unified Device Architecture (CUDA) based
on the standard C/C++ language represents a parallel
programming paradigm allowing to use of GPU
resources, CUDA is a proprietary framework created
by NVIDIA, it generates better performance results.

CPU and GPU cores cooperate with each other .
They assume that a parallel part of a code: CUDA
cores run on a GPU and a serial part of a code; the rest

of the C program runs on a CPU [28]. In CUDA
applications, a crucial question is therefore how to
structure a certain part of the code to expose so much
data parallelism. We have observed that CUDA
applications are generally designed to exploit massive
parallelism only with GPUs. Figure 3 shows the
proposed CUDA architecture CPU-GPU of the Open
RatSLAM algorithm.

Fig. 3. Block diagram of the proposed CUDA

architecture

When each new image is collected, the algorithm
checks if the current view is identical or similar to the
stored images models, model by model, so that it
decides whether or not to add a new model to the
vector of the different models, then the size of the
visual template increases and the similarity calculation
time also increases. In this work the calculation of the
matching operation is performed in parallel so that the
similarity is calculated for the images collected with all
the templates stored at the same time. In the second
block we apply a filter to the cells of the Pose Cells
matrix to excite these cells, the multiplication of the
matrix by the Pose cell matrix is carried out box by
box, each box represents a laying cell then we have a
large number of iterations for this operation for 204
image sequences there are 129925 iterations. Also the
inhibit function responsible for inhibiting the activation
of cells by the use of convolution matrix, the
multiplication of the two cell-to-cell matrices: the
original and mask is executed several times for 204
image sequences we have 1208636 iterations, then for
both methods, we can apply the 3D multiplication (x,
y, θ) in parallel by the GPU. At the end, the Experience

4

E3S Web of Conferences 229, 01023 (2021) https://doi.org/10.1051/e3sconf/202122901023
ICCSRE’2020

Map block creates the map based on the observations
of the robot. The map is represented by a graph in
which each node is an experiment. Table 1 shows our
execution time, for the blocks on homogeneous CPU
and heterogeneous CPU-GPU architectures.

 Table 1.TOTAL EXECUTION TIME (MS)

Tools

 Laptop, CPU

 (C/C++)

Laptop, Nvidia
GeForce 340MX

CPU-GPU
(CUDA)

Function
al blocks

Local View

170.611

160.43

PoseCell Network

79.7

78.0

Experience Map

54.3

-

Total
time
(ms)

304.611

292.73

As shown in the table above, we have 3 principal
functional blocks, the first block named local view the
use of C/C++ gave us a time of 170.611 ms and the use
of the CUDA language gave us a time of 160.43 ms, so
we can say that there is a change in the execution time.
The pose cell block has a time of 79.7 ms with the
C/C++ language which is already small and we have a
time of 78.0 ms using the CUDA language then we
don't have a big difference between the time resulting
from the two times of this block because the time in
C/C++ is already minimized. For the experience map
block we have an execution time equal to 54.3 ms
using the C /C++ language. We find that the average
execution time of the global code of an image in CPU:
82.742032 ms and using the CUDA language we find
69.23 ms. Figure 4 presents the evolution of times with
the use of GPU GeForce 940Mx to evaluate the time of
40 images.

Fig. 4. The evaluation of 40 views of the function
compare of the local view bloc with CUDA in GeForce
940Mx.

As it is shown in the figure 4, the execution time of
the local view block compare function is minimized,
which generates the reduction of the time of the block
programmed in CUDA language in the Nvidia GeForce
940MX card of the laptop @ 1241 MHz, using also the
Intel Core i7 CPU @ 2.70GHz The time variations are
between 0.75 Ms and 1.32 Ms and which gives 1.01 ms
in average.

4 CONCLUSION
Over the last decade, embedded systems have

received particular attention because of their many
applications. They can also be found in the field of
robotics, so robots need a certain intelligence to work
and make decisions, which is done with the help of
embedded systems. The development engine for
mobile robotics is the operation of embedded systems
for the different implementation architectures made
available. This work presents the implementation of the
bio-inspired SLAM algorithm RatSLAM, on CPU-
GPU architecture with using CUDA language. We
obtained as a result a reduction of 10 ms, compared to
the result with the homogeneous architecture CPU
using (C/C++), which allows us to benefit from the
technological progress, and allows us to respond more
to the constraint of real-time. We aim the validation of
the architecture in HIL (Hardware In the Loop), also
we aim to use other heterogeneous embedded systems,
so as to integrate its board in a robot in the future.

REFERENCES

1. R. A. Rebouças, Q. d. C. Eller, M. Habermann
and E. H. Shiguemori, "Embedded System for
Visual Odometry and Localization of Moving
Objects in Images Acquired by Unmanned Aerial
Vehicles," 2013 III Brazilian Symposium on
Computing Systems Engineering, Niteroi, 2013,
pp. 3540,

2. Huang, B.; Liu, J.; Sun, W.; Yang, F. A Robust
Indoor Positioning Method based on Bluetooth
Low Energy with Separate Channel Information.
Sensors 2019, 19, 3487.

3. Jingbin Liu, Ruizhi Chen, Yuwei Chen, Ling Pei,
and Liang Chen.iparking: An intelligent indoor
location-based smartphone parking service.
Sensors,2012.

0,0002

0,0004

0,0006

0,0008

0,001

0,0012

0,0014

Ti
m

e
(s

)

5

E3S Web of Conferences 229, 01023 (2021) https://doi.org/10.1051/e3sconf/202122901023
ICCSRE’2020

4. Jingbin Liu, Ruizhi Chen, Ling Pei, Robert
Guinness, and Heidi, Kuusniemi: A hybrid
smartphone indoor positioning solution for mobile
lbs. Sensors,2012.

5. Abby Yao, Teaching Robots Presence: What You
Need to Know About
SLAM,https://blog.cometlabs.io/teaching-robots-
presence-what-you-need-to-know-about-slam-
9bf0ca037553Gfgbgd , 2017 .

6. Rebecca Maxwell, Robotic Mapping:
Simultaneous Localization and Mapping (SLAM),
https://www.gislounge.com/robotic-mapping-
simultaneous-localization-and-mapping-slam/ ,
2013 .

7. Mohamed Abouzahir, AbdelhafidElouardi,
Rachid Latif, Samir Bouaziz, and
AbdelouahedTajer. Embedding slam algorithms:
Has it come of age? Robotics and Autonomous
Systems, 2017.

8. Ma, L., Falquez, J. M., McGuire, S., Sibley, G.,
2016.Large scale dense visualinertial slam. In:
Field and Service Robotics. Springer, pp. 141–
155.

9. Dai-Duong Nguyen. A vision system based real-
time SLAM applications. Hardware Architecture
[cs.AR]. Université Paris-Saclay, 2018. English.
NNT: 2018SACLS518ff. tel- 02398765.

10. Nguyen, D.-D., El Ouardi, A., Rodriguez, S.,
Bouaziz, S.: FPGA implementation of HOOFR
bucketing extractor based real time embedded
SLAM applications. Journal of Real-Time Image
Processing ,2020, https://doi.org/10.1007/s11554-
020-00986-9.

11. Smith. R, M. Self, and P. Cheeseman. Estimating
uncertain spatial relationships in robotics,
Autonomous Robot Vehicles, pages 167–193.
Springer Verlag, 1990.

12. Montemerlo, M., Thrun, S., Koller, D., Wegbreit,
B.: FastSLAM: A Factored Solution to the
Simultaneous Localization and Mapping Problem.
In: AAAI National Conference on Artificial
Intelligence, Edmonton,Canada(2002).

13. M. Abouzahir, A. Elouardi, S. Bouaziz, R. Latif,
A. Tajer. Large Scale Monocular FastSLAM2.0
Acceleration on an Embedded Heterogeneous
Architecture EURASIP Jour- nal on Advances in
Signal Processing, SpringerOpen, Juillet 2016.

14. Mohamed Abouzahir, Rachid Latif,
AbdelouahedTajer, AbdelhafidElouardi, Samir
Bouaziz, “Localization and Mapping algorithms
implemented on a low-power embedded
architecture: A case study", 5th International
Conference on Multimedia Computing and
Systems (ICMCS) Marrakech, 2016 IEEE Xplore
digital library.

15. Mur-Artal, R., Montiel, J., Tardos, J. D., 2015.
Orbslam: a versatile and accurate monocular slam
system. Robotics, IEEE Transactions on 31 (5),
1147–1163. R. Nicole, “Title of paper with only

first word capitalized,” J. Name Stand. Abbrev., in
press.

16. R. Latif and A. Saddik, "SLAM algorithms
implementation in a UAV, based on a
heterogeneous system: A survey," 2019 4th World
Conference on Complex Systems (WCCS),
Ouarzazate, Morocco, 2019, pp. 1-6, doi:
10.1109/ICoCS.2019.8930783.

17. S. Aldegheri, N. Bombieri, D. Daniele Bloisi and
A. Farinelli, "Data Flow ORB-SLAM for Real-
time Performance on Embedded GPU Boards",
2019 IEEE/RSJ International Confe- rence on
Intelligent Robots and Systems (IROS), pp. 16,
doi: 10.1109/IROS40897.2019.8967814.

18. Michael J Milford, Gordon F Wyeth et DF Rasser
:Ratslam : a hippocampal model for simultaneous
localization and mapping. In Robotics and
Automation, 2004.Proceedings.ICRA’04. 2004
IEEE International Conference on, volume 1,
pages 403–408. IEEE, 2004.

19. Michael J Milford and Gordon F Wyeth:
Mapping a suburb with a single camera using a
biologically inspired slam system. IEEE
Transactions on Robotics, 24(5):1038–1053, 2008.

20. Arren J Glover, William P Maddern, Michael J
Milford et Gordon F Wyeth: Fab- mapratslam :
Appearance-based slam for multiple times of day.
In Robotics and Automation (ICRA),2010 IEEE
International Conference on, pages 3507–3512.
IEEE, 2010.

21. Milford, Michael, Wyeth, Gordon, and Prasser,
David (2004) RatSLAM: a hippocampal model for
simultaneous localization and mapping. In
Valavanis, K (Ed.) Proceedings of the 2004 IEEE
International Conference on Robotics and
Automation. IEEE, United States of America, pp.
403-408.

22. Dragonfly, How can visual SLAM be used and
what are the applications? ,
https://dragonflycv.com/what-is-visual-slam/.

23. D. Scaradozzi1, S. Zingaretti1, A.Ferrari,
Simultaneous localization and mapping (SLAM)
robotics techniques: a possible application in
surgery,
http://shc.amegroups.com/article/view/4083/4890h
ttps://www.gislounge.com/robotic-mapping-
simultaneous-localization-and-mapping-slam/ ,
2018.

24. Mike Smith, Ian Baldwin, Winston Churchill,
Rohan Paul, and Paul Newman. The new college
vision and laser data set. The International Journal
of Robotics Research, 28(5):595–599, 2009.

25. David Ball, Scott Heath, Janet Wiles, Gordon
Wyeth, Peter Corke, Michael Milford:
OpenRatSLAM: an open source brain based
SLAM system, Autonomous Robots, 2013.

26. David BALL. Open RatSLAM from Internet:
https://github.com/davidmball/ratslam.2019.

27. A. Ouadrhiri , Implémentation d’un SLAM
Monoculaire pour un robot d’intérieure ,

6

E3S Web of Conferences 229, 01023 (2021) https://doi.org/10.1051/e3sconf/202122901023
ICCSRE’2020

https://www.ensta-
bretagne.fr/jaulin/rapport_pfe_amine_ouadrhiri.pd
f , 2018.

28. Nickolls, J., Dally, W.: The gpu computing era.
Micro IEEE 30(2), 56–69 (2010)

7

E3S Web of Conferences 229, 01023 (2021) https://doi.org/10.1051/e3sconf/202122901023
ICCSRE’2020

