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Abstract. Anaerobic digestion is recognized as being an advantageous waste management technique represent-
ing a source of clean and renewable energy. However, biogas production through such practice is complex and
it relies on the interaction of several factors including changes in operating and monitoring parameters. Enor-
mous researchers have focused and gave their full attention to mathematical modeling of anaerobic digestion
to get good insights about process dynamics, aiming to optimize its efficiency. This paper gives an overview
of the different approaches applied to tackle this challenge including mechanistic and data-driven models. This
review has led us to conclude that neural networks combined with metaheuristic techniques has the potential to
outperform mechanistic and classical machine learning models.

1 Introduction
Demographic pressure, industrial development, and
changes in consumption patterns are leading to an increase
in waste volume. It is becoming necessary to involve in-
novative sustainable methods of waste treatment and man-
agement to overcome the challenges of climate change be-
sides air and water pollution. One of the powerful tech-
niques of waste recovery is the anaerobic digestion (AD)
process also known as methanization. It is among the eco-
nomical and effective techniques applied in organic waste
treatment and recovery, that is widely used in the agricul-
tural and industrial domains.

AD is a natural treatment performed by a commu-
nity of microorganisms in the absence of air, that involves
the disintegration of complex organic wastes and gener-
ates biogas which is mainly composed of methane (CH4)
(60-70%) and carbon dioxide (CO2) (30-40%) [1]. Sub-
sequently, the produced biogas is reevaluated to produce
electricity, heat, or can be used as biofuel.

AD is an advantageous waste management practice
since it reduces the polluting organic load in waste and al-
lows the recovery of various types of substrates including
sewage sludge, urban, livestock, agricultural, and indus-
trial waste [2]. It represents a source of clean and renew-
able energy, unlike the conventional energy sources which
have negative implications on the environmental balance.
Furthermore, AD produces digestate that is potentially fit
for use as bedding for livestock or as an organic amend-
ment (i.e. fertilizer) for the benefit of farms and agricul-
tural communities.

The selection and monitoring of indicators that influ-
ence biogas production play a vital role in process opti-
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mization as they provide information on the condition and
functioning of the system. A growing body of literature
has focused and put effort into mathematical modeling of
the AD process because it is a powerful tool for a better
understanding of the process dynamics, thus it provides
optimization opportunities for enhancing digester’s perfor-
mance [3].

This paper reviews AD modeling and optimization re-
garding process parameters as well as architectures built to
predict process behavior. In Section 2, some backgrounds
about AD are presented including main process factors and
monitoring, whereas mechanistic and data-driven based
models are discussed in Section 3. The fourth section is
dedicated to discussing the advantages and limitations of
the presented approaches.

2 Background Review

During the entire AD process, there is a group of anaer-
obic microorganisms for each step that works together to
breakdown the organic substance and generate biogas. As
presented in Fig. 1, the AD process occurs in four main
stages named: hydrolysis, acidogenesis, acetogenesis, and
methanogenesis [4, 5].

At the hydrolysis stage, the complex compounds are
broken into soluble components, it corresponds to the en-
zymatic transformation of high molecular weight compo-
nents (organic polymers and lipids) into simple molecules
(monomers: fatty acids, monosaccharides, amino acids),
which can be assimilated by the microbial metabolism and
thus used as a source of energy [1, 5].
Then comes fermentation which includes the acidogen-
esis and acetogenesis stages. Acidogenesis is the step
where the components resulted from hydrolysis are con-
verted into intermediate components with a lower molec-
ular weight. During this step, simple volatile fatty acids
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Figure 1: Schematic overview of anaerobic digestion process. Long-chain volatile fatty acids (LCVFA), Short-chain
volatile fatty acids (SCVFA) [4].

(VFAs) are formed from the sugar and amino acids. Whilst
acetogenesis refers to the fermentation process of VFAs
and alcohols to acetate, hydrogen, and carbon dioxide
[1, 5].
Finally, a group of archaea organisms called methanogens
carry out the bacterial conversion of intermediate compo-
nents into various simpler end products, mainly CH4 and
CO2 [1, 5].

2.1 Process key factors

The microorganism groups during AD are sensitive to sev-
eral factors such as changes in some monitoring parame-
ters including pH, alkalinity, VFAs as well as some op-
erating parameters (temperature, hydraulic retention time,
substrate composition, and organic loading rate (OLR))
[6]. As in Fig. 2, monitoring and operating parameters
that have been taken into consideration by researchers take
place in the liquid and gas phases.

Temperature influences the metabolic activities of the
microorganisms during fermentation [7], which affects
the rate of digestion and methane production [1]. There
are three operating ranges considered for AD including
psychrophilic (4-15◦C), mesophilic (20-40◦C), and ther-
mophilic (45-70◦C).

OLR is among the key operational parameters in AD
systems. The biogas production rate is correlated to OLR
in a way that maintenance of OLR at an appropriate range
promotes biogas yield [6]. However, a significant increase
in OLR beyond the suitable range is a major factor of
VFAs accumulation, therefore decreasing biogas produc-
tion [6].

pH is a key parameter of AD because it determines the
predominant microorganisms at each stage of fermenta-
tion. During AD process, pH is generally within the range
(0.6-0.8), its variation depends on the evolution of the fer-
mentation of organic matter. pH is important for the ful-
fillment of the methanogenic phase since a decrease in pH
results in an inhibition of the process [6].

The concentration of VFAs has been widely suggested
for the control and monitoring of anaerobic digesters as it
is the main methanogenic intermediate also its accumula-
tion in reactors is reliable in indicating process imbalance
[8]. It is mostly used to determine the stress level of the

Table 1: Process parameters used in previous works.

Used Parameters Reference
Temperature [9–14]
pH [8, 10, 12–17]
Alkalinity [14, 16, 18, 19]
Redox potential [9, 18, 20]
C/N [11, 18, 21]
VFAs [8, 14, 15, 17, 22]
Chemical oxygen demand (COD) [16, 18, 23, 24]
Total solids(TS) [13, 20–22, 25]
Total volatile solids(VS) [10, 13, 14, 20–22, 25]
Ammonium concentration [6, 17, 18, 20, 22, 24]
Biogas flow [9, 10, 12–14, 17, 22, 26]
CH4 yield [9, 11, 13–15, 18]
CO2 content [9, 15, 16, 18]
H2 content [8, 15, 18, 21]
H2S content [9, 18]
Pressure [16]

system because it can provide specific information for pro-
cess diagnosis [6, 8].

The measurement of biogas flow and composition is
very important because they indicate the overall perfor-
mance of the digester [8]. It is reported that low CH4
content in biogas may indicate inhibition of methanogenic
bacteria. CH4 concentration must be above 50% to en-
sure efficient operation. Moreover, the presence of an el-
evated concentration of hydrogen sulfide (H2S ) in biogas
may cause inhibition in AD processes also serious emis-
sion and corrosion problems [9].

Furthermore, it has been reported that considering sin-
gle indicators is not valid for all the digesting systems. Al-
ternatively, the combination of several indicators such as
VFA, the ratio of bicarbonate alkalinity to total alkalin-
ity, and the ratio of VFA to total alkalinity can provide
fast, reliable, and complementary information about the
metabolism of the system; which encourage fast and ef-
fective early warning [19]. The most used indicators in
previous works are summarized in Table 1.

Regular process monitoring helps in providing infor-
mation about the state and process performance, therefore
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Figure 2: Schema of the digester with operating parameters

detecting and reacting to major process imbalances and
disturbances [20]. It is important to detect the process
imbalance at the beginning therefore action can be taken
in time to prevent any process failure. For this reason, it is
crucial to monitor and regularly control AD parameters in
order to ensure that the process is running smoothly thus
maximizing biogas production [1].

3 AD Modeling and Optimization

Process modeling aims to design and describe a system for
the purpose of a better understanding of the occurring op-
erations and its optimal working conditions. It can also
be used to control a system and forecast its behavior and
outcomes. Several research studies took advantage of this
powerful tool to guarantee efficient control and optimiza-
tion of biogas production aiming to enhance digesters per-
formance.
Available AD models can be classified into two main cat-
egories: mechanistic and data-driven models. Mechanis-
tic models are based on biological, physical, and chemical
laws; whereas empirical data-driven models are based on
mathematical equations to determine the relationships be-
tween input and output variables using measured process
data [27].

3.1 Mechanistic Models

Mechanistic models refer to the models using a defined set
of differential equations that describe the biological and
physicochemical laws of a process [28]. More specifically,
they tend to characterize the growth and inhibition of bac-
teria according to the substrate.
The procedures for developing a mechanistic model re-
quire three main components. First, fundamental knowl-
edge of the interactions between process variables. Sec-
ond, determination of model parameters using experimen-
tal data. Last, data collection from the process, which is
needed for validation; and as long as the designed model
is not efficient, the process knowledge is reviewed and the
model is restructured [29, 30].

Among widely used mechanistic models to describe
AD processes there is Anaerobic Digestion Model No. 1
(ADM1) that was proposed by researchers from the inter-
national water association [30], their goal was to develop
a generalized model allowing the best possible simulation
of anaerobic digesters.
ADM1 includes multiple steps describing physicochem-
ical reactions, namely: ion association and dissociation
as well as gas-liquid transfer, besides biochemical inter-
actions including degradation of organic materials of sub-
strate together with bacteria’s growth [30].
ADM1 can be performed as a differential equations model,
which contains 32 dynamic concentration state variables
and 6 acid-base kinetic processes, or as a differential and
algebraic equations model, which contains 26 dynamic
state concentration variables and 8 implicit algebraic [30].
It is well known that ADM1 is one of the most compre-
hensive available AD models, it has been broadly applied
in AD processes for methane production [31–36].

3.2 Data-driven models

In contrast to the models previously discussed, the objec-
tive of data-driven models is to pattern the behavior of the
system without any prior knowledge of the occurring op-
erations. It is an intersection of several domains including
mathematical modeling, statistics, information theory, and
data science. These powerful tools are useful for identify-
ing the structure of a given process together with analyz-
ing the correlations between its components without prior
knowledge [37].

The learning process and the construction of knowl-
edge require historical data (dataset) that is a set of ex-
amples, each is represented by a set of characteristics also
called variables or attributes. Using the experience gained
in the training phase, a testing phase comes immediately
after which serves to evaluate the model formed by a clas-
sification, prediction, or clustering of new examples called
test data. The evaluation of the model is calculated by a
performance measure that improves during data training
[37].
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3.2.1 Classical machine learning

Sathish et al. [12] carried out anaerobic biodigester op-
timization by applying response surface methodology to
evaluate the relationship between biogas yield and four
input variables, namely: pH, temperature, agitation time,
and substrate concentration. This study reported that re-
sponse surface methodology could be used effectively for
predicting the biogas yield of agricultural waste since its
coefficient of determination (R2) was 0.991. Moreover,
temperature and substrate concentration showed the most
significant effect in a way that increasing them can sig-
nificantly boost the biogas output. Besides, the value of
pH and agitation time shows significant interactive effects,
which demonstrates that the inhibition is caused by a de-
crease in pH value.

Akbas et al. [10] have performed the decision tree al-
gorithm on a dataset of 776 data points collected from a
wastewater treatment plant in Turkey. The list of input
variables was: temperature, pH, VS, sludge loading rate,
and total suspended solids, while biogas flow was the out-
put entity. They have reported that the decision tree algo-
rithm gave the most precise prediction with a regression
coefficient of 0.80 compared to the curvature and interac-
tion curvature test.

Wang et al. [11] have carried out a comparison of
the performance of random forest, support vector ma-
chine, and K-nearest neighbors in regression and classi-
fication models. In the classification models, the samples
were classified into 3 groups based on methane production
which were low, medium, and high. The process param-
eters selected as input entities to build the dataset were:
total carbon, total nitrogen, the C/N ratio, xylan content,
and temperature whereas the output variable was methane
production rate.
The classification model using logistic regression along
with the elastic net penalty gave the best precision of 0.73,
and the regression model using K-nearest neighbors gave
the best precision of 26.7 that was evaluated by the root
mean square error. Moreover, they have reported that the
total carbon load was considered the most important char-
acteristic.

In another work, Kazemi and co-authors [16] imple-
mented different data-driven methods including random
forest, support vector machine, and genetic programming
in order to predict the effluent VFAs. The used data consist
of 5 input variables (COD, alkalinity, total soluble solids,
biological oxygen demand, and gas flow). Feature rank-
ing was performed using the fscaret method along with
the support vector machine algorithm, and the best sub-
set of input variables selected was: pH, pressure, CO2,
and ammonia concentration. All models except random
forest achieved precise VFAs prediction and genetic pro-
gramming performance was the best in terms of accuracy,
robustness, and transparency.

3.2.2 Neural networks

Much work on the potential of artificial neural network
(ANN) in the AD field has been carried out [12–15, 22].

Qdais et al. [13] built a multi-layer ANN with two
hidden layers, each with 25 neurons and a sigmoid acti-
vation function in order to determine the nonlinear impact
of digester pH, temperature, TS, and VS on the quantity
of biomethane produced. The daily operational data col-
lected contain 227 records and about 78% of examples
were used for training the model whereas the remaining
records were used for the test. As a result, the neural net-
work was able to predict the methane output with a corre-
lation coefficient of 0.87%.

Dalmau et al. [15] applied a wrapper approach to
select the most significant and relevant features for AD
imbalances, they have used ANNs as learning algorithms
having an input layer, a hidden layer with a sigmoid trans-
fer function, and an output layer with a linear transfer
function. In each step, the wrapper method drops one of
the features and evaluates the accuracy of the learning al-
gorithm using root square mean error. Thereafter, it re-
moves the feature causing the least reduction in the accu-
racy. The measurement of parameters was performed us-
ing online sensors both in the liquid phase (pH, flow rates,
VFAs, total organic carbon, and COD concentrations) and
in the gas phase ( CO2, CH4, H2). Acidogenic state results
showed that pH, VFAs, and entry rates were the most rele-
vant variables whereas in the foaming state incoming flow
and organic carbon were among the relevant variables that
were related to the feedstock of the digester.

Similarly, Sathish et al. [12] carried out anaerobic
biodigester optimization by applying ANN and considered
four input variables( pH, temperature, agitation time, and
substrate concentration). The network consists of an input
layer, a hidden layer with a sigmoid activation function,
and an output layer with a gaussian linear transfer func-
tion. Results showed that ANN was effective for predict-
ing the biogas yield of agricultural waste (R2 = 0.998).

However, Güçlü et al. [14] modeled the anaerobic
sludge digester of the Ankara central wastewater treatment
plant by implementing ANN using two different backprop-
agation methods: the gradient descent with adaptive learn-
ing rate and levenberg–marquardt algorithm. Tempera-
ture, pH, gas flow rate, VFAs, alkalinity, dry matter, and
organic matter were the inputs to predict effluent VS con-
centration and methane yield. Data were collected during
245 days and more than 100 000 neural networks were
trained to determine the best ANN model by tuning sev-
eral hyperparameters such as iteration numbers, transfer
functions, and hidden nodes. The best backpropagation
algorithm was the gradient descent with an adaptive learn-
ing rate; the R2 correlations were 0.89 and 0.71 for VS
concentration and methane yield respectively.

Beltramo et al. [22] performed also ANNs using 15
variables including the concentration of VFAs, TS, VS,
ammoniacal nitrogen, hydraulic retention time, organic
charge rate, and biogas yield. The Measurements were
taken over ten months with a frequency of one sampling
per week. The data of measured variables were used as
input neurons, while the rate of biogas production was cal-
culated by the output neuron. They reported a prediction
with an error of 13.08% and a precision of R2 = 0.76.
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Besides the wide application of ANN in the AD field,
other works explored the performance of other types of
neural networks. For example, Yesileveki et al. [38]
studied the possibility of building an AD adaptive con-
trol system in order to improve biogas production effi-
ciency. The system was based on the recursive neural
network (LSTM) and reinforcement learning. The ex-
periment showed that the learning convergence could be
reached after 600 epochs.

McCormick et al. [17] studied predictive monitoring
of the AD process using LSTM and one-dimensional
convolutional neural network. They performed three
dimensional reduction methods to identify the significant
contributors to process stability. The principal component
analysis showed that TS, carbon, waste loading rate,
nitrogen content of the feed, and the TS concentration
in the digester make the greatest contributions to the
overall variance of the system. Results of the independent
component analysis showed that VFA concentration
and H2 content in the biogas were the most important
independent variables of the data. According to partial
least squares analysis, OLR and the nitrogen content of
the feed had the greatest magnitudes. Authors selected
total mass of feed, pH, ammonium concentration, and
VFA concentration as input features and biogas flow rate
as a target variable. The one-dimensional convolutional
model was best able to accurately make biogas yield
predictions on unseen data.

3.2.3 Neural networks combined with metaheuristic
algorithms

A growing body of literature has explored ANN applica-
tion in predicting biogas through the AD process. With the
purpose to improve its performance, experiments on com-
bining ANN with metaheuristic methods were conducted
and reported prominent results as they helped to identify
the optimal combination of process parameters which con-
sequently improve the prediction of biogas yield.

Qdais et al. [13] used the designed neural network as
a fitness function for the genetic algorithm (GA) in order
to optimize the methane output and it provided the oppor-
tunity to improve methane production by 6,9%.

Ilamathi et al. [39] explored simulated annealing for
predictive modeling and optimization of nitrogen oxides
emission, it was used to determine the optimum level of
input operating parameters that provide minimum nitrogen
oxides emission. They reported that the optimized results
agree well with the experimental experience, leading to
low nitrogen oxide emission.

Beltramo et al. [22] implemented an ant colony and
GA optimization to select and identify the significant pro-
cess variables which reduced the size of the model and im-
proved the ability to identify predicates from ANN mod-
els. The GA and ant colony combination provided the best
prediction of the biogas yield with a coefficient of deter-
mination of R2 = 0.9 and a prediction error of 6.24%.

4 Discussion

The identification and selection of indicators influencing
the AD process are key factor for process optimization be-
cause they provide information on the condition and func-
tioning of the system. Monitoring such indicators is an
essential practice as it ensures the process smooth running
and also gives the ability to detect process malfunctions at
an early stage.

We can notice that each of the previous research has
focused on a limited set of indicators and did not capitalize
on the whole set including those which are related to the
substrate, biodegradation, as well as the ones involved in
the gas phase. It can thus be conceivably hypothesized that
considering the combination of these parameters may im-
prove biogas productivity, namely: temperature, pH, redox
potential, alkalinity, ammonium, and VFA concentrations,
C/N ratio together with pressure, gas flow, and production
rate of the different gas components including CH4, CO2,
H2S , and H2. This suggestion is given based on the direct
influence of each of the mentioned parameters on biogas
production along with their complementary interaction.

Moreover, this review has highlighted that although
mechanistic models are complete patterns in terms of de-
scribing AD steps, some potential weak points need to
be considered. First, the requirement of having a good
knowledge of the kinetic and stoichiometric parameters
of bioreactors. Second, the incomplete understanding of
AD microbial and physicochemical processes as well as
the complexity of implementing it digitally. These limita-
tions are considered as a major obstacle for the optimiza-
tion and synthesis of control laws in fermentation through
such models.

However, data-driven based models have been found
to be more effective in providing information on the be-
havior and the relationships between process factors com-
pared to mechanistic methods. This strength lies in the
fast estimation of optimal conditions in the absence of ex-
plicit knowledge of the system’s dynamic, also the precise
analysis of the relationships among process state variables
with respect to its nonlinear and complex behavior.

Additionally, we have seen that the combination of
metaheuristic algorithms with artificial neural networks is
very efficient in biogas production optimization compared
to classical machine learning methods. On the other hand,
machine learning-based techniques do not require a lot of
data and perform predictions in less time.

In fact, neural networks-based techniques are costly
consuming as they propose high computational prerequi-
sites including processing ability, memory capacity, and
long training time. This leads us to take advantage of
metaheuristic and neural networks algorithms and put an
effort to find a trade-off in robustness, cost, and perfor-
mance.

5 Conclusion

The complex interactive behavior of the various factors
in the AD process, necessitate adopting efficient strate-
gies that seek better modeling of the biogas production
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procedure. Research has tended to focus on data-driven
based models because they allow rapid estimation of opti-
mal conditions without explicit knowledge of the system’s
physical reactions, as well as precise analysis of the rela-
tionships among process state variables with respect to its
nonlinear and complex behavior.
This literature review shows us that the combination of
metaheuristic algorithms with artificial neural networks is
very efficient in biogas production optimization compared
to classical machine learning methods. Nevertheless, neu-
ral networks is costly consuming in terms of performance
and time complexity, it also requires vast and huge data
sets to build accurate models. This guides us to take ad-
vantage of metaheuristic and neural networks algorithms
and put an effort to find a trade-off in robustness, cost, and
performance.
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