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Abstract. Solar resource assessment by clear sky models is of great 
importance in the solar energy field: verifying the performance of 
photovoltaic systems during stable conditions, clouds effects evaluation, the 
determination of geographical areas where irradiation is more uncertain and 
the preparation of forecasts with sky cameras. But before using these models 
they must be validated against high performances soil measurements.  Since 
there is no radiometric sensor that measures clear-sky radiation, then 
historical clear-sky time periods must be identified only from long-term all-
sky irradiation records. The contribution of this study is to exploit the ground 
measurements, analyze them and retrieve the information they contain 
concerning the clear sky instants. The study will be performed by comparing 
the clear sky instants identified by an algorithm proposed by Reno and 
Hansen with a physical clear sky model. This comparison is made using high 
frequency global horizontal irradiation (GHI) data from high performances 
meteorological station installed at Benguerir in Morocco. 

1 Introduction 
The knowledge of the solar irradiation available on the ground is of great importance for 
different applications of solar energy.  However, solar irradiation is often influenced by 
clouds, which makes it difficult to accurately estimate the solar resource. However, it is 
possible to estimate approximately the irradiation under clear sky conditions, given its 
importance in solar resource studies, to estimate the potential of solar energy for the 
concentration of solar energy and the concentration of photovoltaic technologies that cannot 
produce under cloudy conditions, to define the geographical areas where irradiation is more 
uncertain. Clear sky irradiance can also be used for data quality control and solar panel 
production calculation or forecasting. 

In several studies, solar analysts are required to estimate clear sky irradiance using clear 
sky models. Even in the absence of clouds, solar radiation is impacted by various atmospheric 
variables such as ozone, water vapor, aerosols and other atmospheric absorption and 

                                                 
* Corresponding author: omaima.elalani@usmba.ac.ma 

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons 
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 229, 01008 (2021)
ICCSRE’2020

 https://doi.org/10.1051/e3sconf/202122901008



scattering elements. These clear sky models need to be validated against similar time series, 
obtained from ground-based radiometric observations at sites.  

The difficulty of this validation lies in the fact that cloud observations are normally not 
available from radiometric stations, clear sky irradiance is not measured directly, but rather 
by extracting clear sky values from total sky data sets. So it is necessary to identify clear sky 
times from all-sky pyranometric measurements to obtain data corresponding to the clear sky 
model data, because when validating these models an accidental presence of clouds during 
an assumed cloudless period could have adverse consequences leading to erroneous results. 
Many studies have been made in this context, but until now the scientific community has not 
yet established a universal method suitable for the detection of clear sky instants. 

Long and Ackerman [1] provided a method to detect clear sky instants from high 
frequency pyranometric measurements, using GHI (Global Horizontal Irradiance), DHI 
(Diffuse Horizontal Irradiance) and zenith angle as inputs, their method is based on 4 tests:  
1) normalized total shortwave magnitude test, 2) maximum diffuse shortwave test, 3) change 
in magnitude with time test, and 4) normalized diffuse ratio variability test. The method has 
been largely used in atmospheric studies and solar literature and has become a de facto 
standard in the solar measurement community [2]. 

Some authors used only GHI and GHIcs under clear sky conditions to identify clear sky 
moments ,  [3–6], others used in addition to GHI and GHIcs solar geometry calculations such 
as the zenithal angle [7, 8], while others used the diffuse and/or the direct components, the 
zenithal angle and extraterrestrial radiation [1, 4, 9, 10], [11–14]. Some authors use also the 
Optical thickness of aerosols as input [15, 16]. 

Irradiation analysis under clear sky conditions is of great relevance, especially for 
Morocco, where solar energy is one of the most important energy resources. The country has 
a high insolation rate: around 3000 hours of sunshine per year, and the sky is mostly clear, 
especially in summer, with relatively low cloud cover. 

In this work, we will use the algorithm proposed by Reno and Hansen [5] to identify clear 
sky moments from the pyranometric measurements of GHI only because, it’s the most 
important for photovoltaic applications. This algorithm requires the use of a clear sky model, 
and the model chosen is that of Ineichen [17]. The strength of this model is that in addition 
to the use of normal extraterrestrial irradiance, solar zenith, air mass as input, it also takes 
Linke Turbidity factor, which is a factor representing the effects of absorption and diffusion 
by aerosols, and absorption by water vapor.  

The validation will be conducted in two steps. Firstly, a visual inspection of the algorithm 
output will be conducted to have a qualitative insight on the performance and robustness of 
the considered method. The output of this first validation step will be described using 
representative case studies. The second validation step will consist of feeding the clear-sky 
detection model with output of a clear-sky model to test the behavior of the different 
algorithm in this situation. 

2 Data sources 

2.1 Ground-measured GHI data 

For our study the clear sky instants will be detected from high frequency GHI observations. 
The 1-minute ground observations of GHI have been collected at the Benguerir site (latitude= 
32.12, longitude=-7.94, altitude=480).  The GHI was measured with a high performance Kipp 
& Zonen CMP21 pyranometer (Fig. 1 (a)), which fully complies with all the performance 
criteria of the ISO 9060 spectrally flat class A instrument which is the highest possible ISO 
performance category [18, 19]. An example of 1 min measured GHI at the Benguerir station 
is illustrated in Fig. 1 (b). 
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(a) (b) 

 
 

Fig. 1. (a) Kipp & Zonen CMP21 pyranometer used to measure the GHI, (b) Daily Profile of the1 
minute measured GHI at Benguerir station. 

2.2 Clear sky model 

Clear sky irradiation is defined as an estimate of the radiation incident on the Earth's surface 
in the absence of clouds over the entire sky dome. Even if in the absence of clouds, solar 
radiation is influenced by the parameters of the clear atmosphere, such as aerosols, water 
vapor, ozone, etc. Clear sky solar irradiation models aim to simplify atmospheric attenuation 
with relatively simple parameterizations in order to estimate solar irradiation under clear sky 
conditions [20]. Clear sky models used in solar energy applications are of the broadband 
nature, normally based on transport equations or empirical relationships [21]. 

For the method proposed by Reno and Hansen [5] we will keep the same model used by 
them, which 'is the one proposed by Ineichen [17], based on the [22] model. In the view of 
the authors, this clear sky model proved to be generally accurate and fairly easy to implement. 
This model uses as inputs the extraterrestrial irradiance at normal incidence I0, solar zenith 
angle Z (radians), air mass AM (without unit), Linke the turbidity factor TL (without unit), 
and the elevation h (m): 
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The air mass is calculated using the formula of Kasten and Young [23]. 
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The monthly link turbidity (TL) factor is downloaded from the HelioClim website 
(http://www.soda-pro.com). 

The validation will be conducted in two steps. Firstly, a visual inspection of the algorithm 
output will be conducted to have a qualitative insight on the performance and robustness of 
the considered method. The output of this first validation step will be described using 
representative case studies. The second validation step will consist of feeding the clear-sky 
detection model with output of a clear-sky model to test the behavior of the different 
algorithm in this situation. 
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For this last step, we chose the McClear model [14], that is a clear-sky model based on 
the libRadtran radiative transfer model and that exploits aerosol properties (total and partial 
optical depths of aerosols at different wavelengths), total water vapor and ozone content 
supplied by the Copernicus Air Monitoring Service (CAMS) and provides time series of 
irradiation for any location in the world at any time from 2004 to the current day 2. 

It should be noted that the McClear error was not considered during the whole study and 
we assume that McClear estimates perfectly radiation under clear skies, considering the 
satisfactory results obtained when validating the model against ground measurements of the 
same Benguerir station [24]. 

Fig. 2 displays an example of the daily profile of the measured GHI compared to the 
modeled GHIcs under clear sky from McClear for a clear and an overcast day respectively. 
We can observe that on a clear day the error between GHI and GHIcs is nearly negligible. 
Contrary to a cloudy day where the difference between the GHI and GHIcs is very large. 

 
Fig. 2. 1 min daily profile of measured GHI and GHIcs under a clear day (left), and an overcast day 
(right). The green line represents the difference between the GHI and the GHIcs. 

3 Validation 

3.1 Clear sky detection 

We will apply the Reno and Hanssen algorithm to detect clear sky moments from our all-sky 
time series. The algorithm uses five statistics computed from the GHI data and the results of 
the clear sky model to identify clear sky periods:  1) The mean value of GHI for the entire 
period: checks the mean value of GHI, which is notably lower under overcast conditions than 
clear sky conditions. 2) The maximum value of GHI: it is possible that clouds cause GHI 
higher than clear sky GHI during events such as cloud edge improvement, which can result 
in a GHI average close to the GHIcs average. The calculation of the maximum GHI value is 
the easiest way to identify such events. 3) The line length: Any measured variability of the 
GHI will increase the length of the GHI line compared to the clear sky model GHIcs. 4) The 
standard deviation of the rate of change in irradiance. And 4) the maximum difference 
between changes in GHI and GHIcs time series: during a clear sky period, the change between 
successive measurements must be similar to the change in irradiance expected by the clear 
sky model. 

We will validate the algorithm by a visual inspection of the GHI measured at Benguerir 
for different days. The figures present the results of the detection by the Reno and Hansen 
algorithm applied to the 1 min data from Benguerir ground station. The blue line shows the 
measured GHI and the orange dotted line represents the clear sky moments detected by the 

4

E3S Web of Conferences 229, 01008 (2021)
ICCSRE’2020

 https://doi.org/10.1051/e3sconf/202122901008



algorithm. The visual verification was done for three types of periods: clear, cloudy and 
mixed.                                             

For clear sky conditions Fig.3 where the sun is not blocked by clouds, we obtain a smooth 
curve. We can see in the figure that all moments are clear and well detected by the algorithm. 

 
Fig. 3. Visual representation of clear sky detection for a clear period. The blue curve represents the 
measured GHI, the orange markers indicate the minutes identified as clear. 

For highly overcast days as shown in Fig. 4, there may be brief periods when the sun is 
not obscured by the clouds from which clear periods are observed. And vice versa on 
generally clear days where the passage of certain clouds results in the appearance of brief 
cloudy periods. And as can be seen in the figure, the algorithm used detects the few clear sky 
moments that appear during cloudy days. 

 
Fig. 4. Visual representation of clear sky detection for a cloudy period. The blue curve represents the 
measured GHI, the orange markers indicate the minutes identified as clear. 

Fig.5 shows an example of mixed days, for example we observe in the figure that of the 
26th, August in the morning and mid-afternoon the sky is perfectly clear excluding a brief 
period where there is some cloud cover and towards the end of the afternoon a decrease of 
the measured irradiance and high variability are observed, where we can conclude that there 
is a presence of clouds that block the sun for a long time. 

The same remark for August 27th, where in the morning there is a high variability of the 
measured GHI as opposed to mid-morning and afternoon when the sky is clear. 
According to our visual inspection, we can conclude that the algorithm is capable of well 
detecting clear sky moments when they are present. 
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Fig. 5.  Visual representation of clear sky detection for a cloudy period. The blue curve represents the 
measured GHI, the orange markers indicate the minutes identified as clear. 

3.2 Clear sky model validation  

One of the purposes of using clear sky detection algorithms is the validation of clear sky 
models, in this study we will present an example of McClear validation using the clear sky 
moments detected by the Reno algorithm. Our objective is not to validate McClear but rather 
provide a practical example of the utility of clear period identification algorithms. 
The Fig.6 shows an example of clear sky GHI from McClear validation against measured 
GHI.  

It can be clearly seen on the figure when performing the validation without detecting the 
clear sky moments, automatically the error will be high and the points are more dispersed. 
When validating after clear sky moments detection, we observe that the dots are more highly 
correlated and the MBE (Mean Bias Error) decreases from 54.64 W/m2 to 0.137 W/m2, 
RMSE (Root Mean Square Error) pass from 125.6 W/m2 to 17.10 W/m2 and the STD 
(Standard Deviation) from 113.15 W/m2 to 17.1 W/m2 and a CC (correlation coefficient) of 
0.99.  

  
Fig. 6. Validation of McClear GHIcs against ground measured GHI: without clear sky detection (left), 
with clear sky detection (right).  

4 Conclusion 
Clear sky solar radiation is of high importance for many solar energy studies. Different 
models of clear sky radiation are available, however, before using these models it is necessary 
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to validate them through high performances ground data. Since there are no sensors to 
measure clear sky radiation, it is necessary to detect clear sky instants from all-sky time series 
before proceeding with the validation. A number of studies have provided different 
algorithms to detect clear sky times from GHI measurements, but so far no method has been 
recommended. The objective of our study was to validate a clear sky detection method from 
GHI using high quality ground-based measurements of GHI. For this purpose we have 
chosen, the Reno and Hansen algorithm and the validation was done based on a visual 
inspection allowing to have a qualitative overview of the performance and robustness of the 
considered method. Then a practical example of a clear sky model McClear validation against 
the measured GHI using the outputs of this model was given. 
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