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Abstract. Today, Machine Learning is being rolled out in a variety of areas. It is a promising field that can 

offer several assets and can revolutionize several aspects of technology. Nevertheless, despite the advantages 

of machine learning technologies, attackers can exploit learning algorithms to carry out illicit activities. 

Therefore, the field of security of machine learning derives attention in these times to meet this challenge 

and develop secure learning models. This paper will overview a taxonomy that will help us understand and 

analyze machine learning models' security. In the next sections, we conduct a comparative study of the most 

widespread adversarial attacks. Then, we analyze common methods that were advanced to protect systems 

built on Machine learning models from adversaries. Finally, we discuss a proposition of a pattern designed 

to ensure a security assessment of machine learning models.  

1 Introduction 

Nowadays, we are in the golden era of Machine 

Learning. In fact, Machine learning has become a 

promising field of artificial intelligence and one of the 

most rapidly growing technologies. There are several 

ways where machine learning has been proving its 

potential. Today, it is widely applied in many 

applications and is used to solve many real-world 

complex problems, which cannot be resolved with 

traditional methods. For instance, virtual assistants 

integrate ML models to improve the user experience by 

refining interactions based on previous involvement. 

Social media platforms are utilizing machine learning as 

well as toward personalizing the user's news feed and 

customizing advertisements targeting. Traffic prediction 

applications are also powered by ML models that help 

in estimating the regions where congestion can be found 

based on daily experiences [1]. 

However, Machine Learning techniques are held 

back by the challenges and obstacles that it still 

encounters, mainly in security. Indeed, it has been 

shown that Machine learning algorithms are vulnerable. 

In 2017, Papernot et al. [2] showed that remote 

adversarial attacks could be performed on ML models 

without access to the algorithm or the training dataset. 

Many studies have been conducted on the field of 

adversarial machine learning; some of them are 

theoretical and aim to build frameworks and threat 

models for secure learning, while others are merely 

experimental and try to design attacks with concrete 

examples in order to prove that adversaries can 

maliciously exploit machine learning models during 

training or inference phases [3]. Therefore, these 

observations have motivated researchers to explore the 
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security of ML models under the classical security 

approach of confidentiality, integrity, and availability 

(CIA). A group of researchers, including Barreno et al. 

[4], has implemented a taxonomy related to the security 

in Machine Learning systems that provides a 

classification of adversarial attacks against models 

depending on the attacker's goal, knowledge, and 

capabilities. Recent research has also focused on 

developing mitigation techniques to address malicious 

attacks [5]. Defensive mechanisms implemented for 

attacks against ML models are mainly founded on two 

approaches that consist of either cleansing the data used 

in the training and the inference phase or increasing the 

model's complexity to make it more robust towards 

adversarial attacks [6]. Nevertheless, before choosing 

defensive methods that can be employed against 

adversarial attacks, an assessment of the targeted 

system's security is required. In this context, we 

analyzed the existing security assessment patterns, 

although we noticed a significant shortage of resources 

in the literature. For this reason, we have designed in this 

research paper a pattern for evaluating the security of a 

machine learning built system inspired by the existing 

computer security standards. This pattern performs a 

proactive and curative security assessment of the model 

and uses an impact estimation and risk prioritization to 

establish a mitigation strategy to deal with the targeted 

system's vulnerabilities. 

This paper will go through the different security 

aspects in machine learning to establish the security 

assessment pattern that will help us design the 

appropriate defensive strategy for the targeted model 

and the eventual vulnerabilities that they may enfold. 

Below, we will introduce a threat model that many 

researchers have detailed in their works. In the next 
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section, we will conduct a comparative study of the most 

common adversarial attacks targeting systems built on 

machine learning models, and we will present an 

analysis of the most known defensive mechanisms. 

Finally, we will construct a pattern for security 

assessments in both proactive and curative approaches. 

2 Threat Model  

While analyzing the security of Machine Learning 

systems, it is essential to identify a threat model that 

would help us better understand adversarial attacks and, 

therefore, develop effective defensive mechanisms 

against them [7]. The threat model considers the 

attacker's goals and the means at his disposal to perform 

the attack. It also examines the potentials and aptitudes 

that the adversary possesses and the strategy he follows 

to attack Machine Learning models [8]. 

2.1 Attacker’s Goal 

Whereas the attackers are not promoted by the same 

motivations, they all share the same goals, which are all 

converged around three objectives: espionage, sabotage, 

or fraud [6] as presented in the following table: 

Table 1. Attacker’s goal in adversarial learning. 

Goals Methods Damages 

Espionage 
Leakage sensitive 

information 

Compromising the 

confidentiality and the 

privacy of the system 

Sabotage 
denying normal 

operations 

Compromising the 

availability of the 

system 

Fraud 

Injecting 

malicious data 

samples 

Compromising the 

integrity of the system 

2.2 Attacker’s goal in adversarial learning 

Whatever the adversary's incentives are, the success rate 

of the attack is more maximized when he has a fuller 

knowledge of the targeted system [9]. Furthermore, the 

method adopted by the attacker is highly dependent on 

his level of comprehension of the targeted system to 

perform his attack. The more he is informed about the 

dataset used to train the system in the learning phase, or 

the better he understands the model features, the more 

he constitutes a real danger. Papernot et al. [2] have 

established a classification of the attacker's knowledge, 

which can be presented in three levels as illustrated in 

Figure 1.: 
 

 

 

 

 

 

 

 

 

 

Fig. 1. Levels in the attacker’s knowledge 

2.3 Attacker’s Capabilities 

In addition to knowledge of the target system, the 

adversary's objectives, the attacker's capability is 

directly instrumental in determining the method, and the 

approach chosen for executing the attack. In fact, the 

means and potentials that the adversary possesses 

significantly affect the attack's success rate [8]. The 

leverage of the attacker on the targeted system can be 

classified according to three main axes as in Figure 2.: 

 

 
Fig. 2. Classification of adversary’s capabilities 

2.4 Attacker’s Strategy 

Based on the elements seen below that define the threat 

model, we can infer that the attacker's strategy is merely 

an optimization problem that considers all the aspects 

examined in the previous section. Indeed, if we assume 

that the prediction function built by the algorithm during 

the learning phase disposes of a determined cost for each 

prediction error, we can conclude that the adversary's 

strategy is to maximize the prediction function's cost via 

false positives or false negatives [10]. 

Considering a hypothesis ℎɵ(X) representing the 

prediction function, every output value is calculated by 

the prediction function based on the features X and the 

parameters ɵ. The difference between the true output Y 

and the one forecasted by the prediction function ℎɵ(X) 
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is represented by a cost function ℒ(ɵ,X). The attacker 

aims to maximize the cost function by determining the 

parameters and features that would achieve that value.  

 

                   Arg max ℒ(ɵi,xi), ɵi ϵ ɵi,xi ϵ X                       (1) 

This problem can be viewed from another point of view, 

i.e., the attacker seeks to find infinitesimal perturbations 

ε that can be added to the inputs to generate a value 

different from the expected.  

                   ℎɵ (X + ε ) ≠ ℎɵ (X)                                 (2) 

Thus, the attacker seeks to find the optimal and adequate 

method to successfully achieve his malicious goals 

while considering his knowledge of the target system 

and the potentials and the means at his disposal to 

perform the attack [5]. 

3 Comparative study of Adversarial 
Attacks 

Several studies have focused on analyzing potential 

effects that may reside in the flexible aspect of machine 

learning models. These vulnerabilities have given rise to 

several attack experiments that have been published in 

many research papers [11]. This section will explore the 

most widespread attacks that target systems built on 

machine learning models. Then we will conduct a 

comparative study based on the impact and timing of 

each attack. Attacks against machine learning models 

can mainly be classified into two types according to the 

time when they occur: 

3.1 Attacks at Training Time 

The training phase is primordial in the life cycle of a 

classification or regression model. During this phase, 

the algorithm trains on labeled input data to detect 

patterns between the input data and the target outputs. 

These patterns enable the model to generalize the 

observed associations between the training data and 

their labels on new data sets. However, this phase can be 

misused by an attacker who can introduce well-designed 

malicious data to influence the model's behavior and 

thus push it to make inaccurate predictions [12]. This 

type of attack, also known as poisoning attacks, is a 

category of attacks that can be considered as one of the 

most widespread [13]. It occurs in the training phase, 

and it aims to inject malicious data in the training phase 

[14]. This attack usually introduces false negatives in 

the training set and, as a result, generates a huge impact 

on the model by altering its behavior and inducing it to 

make inaccurate predictions. Barreno et al. [4] have 

experimented with this attack against SpamBayes filter 

by injecting ham emails containing a specific set of 

words that resemble spam emails. They succeeded in 

fooling the SpamBayes filter to misclassify 36% of 

benign messages to malicious ones by poisoning only 

1% of the training dataset [15]. The results obtained by 

Shen et al. [16], according to poisoning attacks, are 

impressive. In fact, they achieved a success rate of 99% 

in collaborative deep learning models by taking control 

over 10% of the training dataset. 

This attack was performed by employing a new 

approach to affect the model's ability to produce 

accurate predictions. This attack, also known as 

trojanning, has gained momentum due to the approach 

that most companies are following to build models 

adapted to their needs [5]. Today, most companies do 

not build models from scratch but download existing 

models from the internet and train them on new datasets 

to align them with their business goals [17–19]. This 

gives attackers an important opportunity to replace the 

uploaded models on the internet with their own modified 

version, where they can introduce additional hidden 

behavior for specific instances without altering the 

normal behavior expected for other instances. Liu et al. 

[20] developed an experiment of this attack against 

some models used for image recognition and 

successfully misled the model with a high confidence 

level.  

Another recent attack was derived from poisoning 

attacks and known as backdoors attack. It looks similar 

to trojaning attacks and aims to inject additional hidden 

and malicious behavior into the model and keep this 

behavior even after recycling the algorithm with a new 

dataset. TianyuGu et al. [21] have tested this attack on 

models implemented in traffic sign detectors commonly 

used in automated vehicles. They showed that they 

could induce the backdoored model to detect them as 

speed limit signs with a 94,7% confidence level by 

inserting a simple yellow post-it note in a stop sign. This 

attack also showed impressive results after recycling the 

backdoored model with Swedish road signs. Indeed, the 

compromised model kept other malicious behavior even 

after being recycled with a new dataset. 

3.2 Attacks at Inference Time 

3.2.1 Evasion Attacks 

It is one of the most widespread attacks that has gained 

the interest of several researchers. Indeed, there are 

several research studies about exploratory attacks. This 

attack occurs in the model's inference phase and aims to 

introduce adversarial inputs or perturbations that derive 

the model to produce incorrect classifications. This 

attack has a huge impact on the targeted system. In fact, 

it can push the model to produce incorrect outputs with 

a high confidence level. To test this attack, Abadi et al. 

[22] conducted an experiment of adversarial example by 

employing DREBIN, a malware detector often used in 

the android operating system, as a targeted classifier. 

In this specific evasion attack, Abaid et al. have 

changed some features in malicious applications to 

design false positives and, as a result, evade detection by 

linear classifiers with a success rate of 100%. Several 

works have used exploratory attacks to develop attack 

types capable of achieving a high success rate. Elsayed 

et al. [23] carried out a new type of exploratory attack 

against Deep Neural Network classifiers that were 

designed and trained initially for image recognition and 

managed to reprogram it into a model that calculates the 

number of squares in an input image. Therefore, they 

showed that it is possible to perform successful 
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adversarial reprogramming attacks with a lower 

precision even with a small adversarial program. The 

premise of this attack is based on reprogramming the 

model to perform new tasks using specific inputs. 

Indeed, this attack aims at redirecting the model towards 

the adversary's objectives  [24]. 

3.2.2 Privacy Attacks 

This attack aims to compromise the confidentiality of 

the target system. The adversary tries through particular 

methods to reveal sensitive information related to the 

learning process. Generally, there are three main types 

of attacks in this category, including the membership 

inference attack when the attacker tries to determine 

whether a specific instance belongs to the data set used 

during the algorithm's training phase [25]. The 

malefactors can extract all the data used to train the 

algorithm by performing Input inference attacks. This 

type of attack is the most frequent one currently, as it is 

easy to perform. The parameter inference is the last type 

of privacy attack, and it is considered the less common 

one. In this scenario, the adversary attempts to 

determine the model used in the targeted system or its 

features to plan further severe attacks [26,27]. 

3.2.3 Comparative Analysis of Common Attacks 

The study of attacks involves a comparison by criteria 

of timing, frequency, and impact on the targeted system, 

as shown in Table 2. This analysis is carried out based 

on publications on attacks in research papers. It is worth 

noting that poisoning and evasion attacks are the most 

popular ones. Their high frequency is mainly due to their 

efficiency since they can cause a large degradation of 

performance in various models with minimal 

perturbations. Besides, these attacks can be executed in 

a black-box environment. Moreover, Moosavi-Dezfooli 

et al. [28] have computed nearly imperceptible universal 

perturbation noise in Deep Neural Networks, leading to 

image misclassification with a high success rate. These 

perturbations are doubly universal, both for data and 

Neural Network architectures. The universal 

perturbations computed for the DNN framework 

presented more than a 90% success rate. 

The privacy attack is also common in the literature. 

There are various ways to execute such an attack. 

Indeed, the attacker can expose the properties of the 

model in Parameter Inference attacks or may determine 

the membership of an element to the training dataset and 

completely extract a part of the training data set. The 

privacy attack allows extracting sensitive information 

from the training dataset to plan further evasion and 

poisoning attacks. This attack can produce very harmful 

results, as illustrated by the experiment performed by 

Fredrikson et al. [29] against machine learning models 

to access a database collected by the International 

Warfarin Pharmacogenetics Consortium (IWPC), which 

contains personal information and clinical histories for 

thousands of patients around the world. Surprisingly, 

they have reached a 70% rate of accuracy in the 

information disclosed.  

Trojanning and Backdooring attacks are less 

common since they are very recent. They have 

essentially the same principle and the same impact, 

enabling the generation of specific perturbations called 

triggers that mislead the model yet maintain its normal 

behavior for others input data.  The only difference 

between Trojanning and Backdooring is that the latter 

retains the abnormal behavior for the triggers even after 

recycling the model with a set of data. Tianyu Gu et al. 

[21] demonstrated that the backdoors built into a traffic 

sign detector remained active even after recycling the 

system to identify Swedish traffic signs instead of 

American traffic signs. The reprogramming attack is 

also recent and innovative as it allows redirection of the 

model to new tasks by injecting carefully designed 

inputs in the inference phase. This attack allows the 

opponent to exploit the resources of the targeted system 

to achieve its tasks. Therefore, Research in adversarial 

learning is in perpetual development, and new attacks 

will likely appear, hence promoting new efficient 

defensive methods [30,31].

 

Table 2. Comparative table of most common adversarial attacks  

Attack Frequency Time Taxonomy Impact 

Adversarial 

examples 
Widespread Inference Evasion attack 

Misleading the classifier with specifically designed 

inputs 

Reprogramming Recent Inference 
Evasion Targeted 

attack 
Repurposing the model to new tasks 

Privacy Attack Common Inference 
Evasion Indiscriminate 

attack 
Leaking sensitive information about the model 

Poisoning attacks Widespread Training Causative attack Modifying the model’s behavior 

Trojaning attacks Recent Inference 
Evasion Targeted 

attack 

Affecting the model’s behavior and his ability to 

make accurate predictions 

Backdoors Recent Inference 
Evasion Targeted 

attack 

Altering the model’s behavior for specific triggers 

even after being recycled. 
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4 Analysis of defensive mechanisms 

The alarming situation of machine learning security has 

engendered a growing interest in developing a defensive 

mechanism. This field of study focuses on analyzing 

attacks and developing the required tools and methods 

to guarantee the model required tools and methods to 

guarantee model security [32]. In fact, it aims to ensure 

secure learning and high performance of the model even 

under adversarial conditions. The first works were 

related to poisoning and evasion attacks and have been 

mainly directed towards two important approaches that 

can be summarized as either removing the malicious 

data from the training set  [33] or making the model 

more complex to avoid the influence of malicious data 

on its behavior [3,34,35] as shown in Figure 3. 

 

 
Fig. 3. Approaches followed for developing mitigation 

techniques 

 

Concerning the first option, the RONI (Reject On 

Negative Impact) method was designed by researchers 

specifically to optimize the training set. The RONI 

method takes advantage of the iterative aspect of the 

training phase to measure the influence of each iteration 

on the algorithm’s performance and removes the data 

instances that have a negative impact on the algorithm's 

ability to make accurate predictions. This technique of 

data cleansing protects the algorithm from poisoning 

attacks where the adversary introduces malicious inputs. 

The effectiveness of this method has been evaluated by 

Barreno et al. [4] in their research related to Spam filters 

and has proven its relevance. However, this technique 

remains unsatisfactory for performance evaluation. 

Furthermore, these approaches were used to defend 

against other types of attacks. Indeed, several research 

works have been conducted around mitigation 

techniques for evasion attacks that are mainly based on 

optimizing the training dataset's treatment. For instance, 

adversarial training is a widespread mitigation technique 

that consists of incorporating malicious data into the 

training set to adapt the algorithm to the malicious data 

that can eventually be injected by an attacker willing to 

change the model's behavior. Thus, once the process of 

adversarial training is accomplished, the model acquires 

the ability to distinguish benign and malicious data and 

can easily ignore the latter and exploit only the data 

collected from trusted sources. Although this method's 

effectiveness in building robust models, its application 

remains restrained by the high cost required to generate 

contradictory examples [36,37]. 

Nevertheless, parallel to this technique, the Null 

method is another empirical defense that has proven its 

effectiveness and simplicity of implementation. Indeed, 

in this technique, the model simply abstains from 

defining labels for input data that it is incapable of 

classifying. Thus, instead of forcing the model to predict 

the output data, it simply defines the NULL class as a 

label. Hosseini et al. [38] have suggested a three-step 

approach to applying this technique and tested it on 

images from MINST where they introduced 

perturbations and calculated the probabilities of 

attribution each label. They demonstrated this 

technique's effectiveness, which considerably improves 

the model's resistance to adversarial attacks without 

diminishing its ability to make accurate predictions [39]. 

Meanwhile, the second approach has been implemented 

by the Online prediction with experts method. In this 

method, the focus is on optimizing the model rather than 

controlling the input data. This optimization is done 

iteratively for each data instance. The model considers 

the information and advice provided by a set of models. 

This technique will allow, on the one hand, to adapt the 

model to the dataset and, on the other hand, to harden 

the model since the final model is an optimal 

combination of several models, as shown in Table 3 

[10,16]. 

Table 3. Summary table of analysis of mitigation techniques 

Defensive techniques Methodology Advantages Disadvantages 

Reject On Negative Impact  Data cleansing 
Efficiency in removing 

malicious inputs 

Unsatisfactory for performance 

evaluation 

Adversarial training Data cleansing 
Adaptation of the 

algorithm to data input 

The high cost of optimal adversarial 

sample’s generation 

Performance lowering 

Null method Data cleansing 
Simplicity of 

implementation 

The high cost of optimal adversarial 

sample’s generation 

Online prediction with 

experts 

Enhancing the 

model’s Robustness 

Adaptation of the 

algorithm to data input 
Hard to implement 
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5 Proposition of Security assessment 
pattern 

Recently there is a growing interest in improving the 

security of machine learning models, and manifold 

mitigation techniques were developed [40]. However, 

we believe that to develop defensive mechanisms, it is 

necessary before to be able to evaluate the security of 

the targeted model. However, until today, there is no 

process to evaluate the security of systems based on 

machine learning models. For this reason, we have 

developed a process that allows analyzing the model in 

order to qualify its strengths and weaknesses from a 

security point of view. For this, we have opted for a 

pattern based on two approaches: proactive and curative. 

The proactive approach essentially aims to protect 

against possible adversary attacks before they occur, 

while the main objective of the curative approach is to 

ensure recovery from an adversary attack against the 

targeted system. 

5.1 Proactive approach 

We believe that to immunize a targeted system from 

adversary attacks, it is necessary to start by first of all 

the identification and prioritization of risks, as shown in 

Figure 5. This can be done by assessing the 

vulnerabilities that can generate potential threats, which 

in turn can be exploited by an adversary seeking to carry 

out a malicious operation. This step consists of 

identifying existing vulnerabilities in the model and 

prioritizing them according to their degree of severity. 

During this step, it is necessary to list the system 

functionalities and proceed to risk analysis and 

identification by choosing one of the methods used in 

risk management such as the Ishikawa method [41] 

employed in identifying the causes and effects of 

possible vulnerabilities and then proceed to a risk 

assessment by establishing the risk matrix as illustrated 

in Table 4. The latter classifies risks according to their 

probability of occurrence. 

Table 4. Matrix of the probability of occurrence of risks 

Probability 

of 

occurrence 

Rating Risk 

1 

Risk 

2 

… Risk 

N 

Almost 

certain  
6 

    

Very likely 5 
    

Likely 4 
    

Possible 3 
    

Unlikely 2 
    

Rare 1 
    

Following the vulnerability assessment, an impact 

estimation is required. We have proposed a model that 

can be used to evaluate the impact of the vulnerability 

discovered in the system.  Indeed, if the weakness does 

not allow the attacker to perform any malicious action, 

we consider the impact as level 0 (None) as illustrated 

in Figure 4.: 

 

Fig. 4. Impact Evaluation levels  

However, if the vulnerability causes unauthorized 

access of the adversary to information on the system, we 

assign it as level 1 impact, which is medium. While, if 

the vulnerability gives the adversary the possibility to 

modify the training dataset or the model features, the 

impact is considered as high (level 2). Otherwise, if the 

vulnerability causes a dysfunctionality or a denial of 

normal operation, the impact is classified as level 3, 

which is very high.  

 

Fig. 5. Pattern of the Proactive Approach 
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After estimating the impact, we considered that studying 

the associated risks can help determine the next actions 

to be taken. Indeed, two cases may arise. Either the 

assessed risk is low and can be accepted as residual risk, 

or the risk can be corrected. In this case, a risk mitigation 

strategy must be developed and then applied. The 

security assessment process ends with a step of testing 

and reviewing the points examined from which further 

corrections can be implemented. 

5.2 Curative approach 

The curative approach is based on sensing performance 

degradation and reacting to a security incident. The 

steps of this approach are illustrated in Figure 6. 

The first step of the curative approach consists of 

identifying and evaluating the impact of the attack. This 

step can be carried out using the impact prioritization 

according to the model provided in the Proactive 

Approach paragraph and illustrated in Figure 4. Then, 

an analysis of the corrupted assets should be performed 

to determine the attacker's goals, its knowledge of the 

system, and its capabilities. This information can be 

useful to infer the strategy adopted in the attack and, 

therefore, can help to select the appropriate actions to 

mitigate the damage of the attack. Another essential step 

is to conduct a profound analysis to determine the 

vulnerabilities exploited at the target system to develop 

the required corrective actions, thus ensure the 

availability and integrity of the target system. Following 

the implementation of the corrective actions, the testing 

stage is critical to ensure that the corrupted assets are 

repaired, that the vulnerabilities are removed, and that 

the attacker's strategy is no longer reliable against the 

target system.  

 

Fig. 6. The pattern of the Curative Approach 

The measures deployed must resolve the security 

incident while ensuring the continuity of service offered 

by the machine learning built system. Finally, the test 

results must be analyzed for further iteration of the 

curative process until optimal system protection is 

achieved while ensuring the continuous improvement of 

system security. 

6 Implementation of security 
Assessment Pattern 

Agents: Defender, Attacker. 

Model: Machine learning model with vulnerabilities. 

Input: Model, features, input data. 

6.1 Proactive approach: 

Identifying and prioritizing risks 

• Call a method for risk identification ꬵ :V     R, 

where V is the distribution of vulnerabilities 

and R the distribution of Risks.  

• Compute the probability of occurrence 

Poccurrence for different risks r ϵ R; 

• Classify risks depending on Poccurrence(r) into six 

categories: {Almost certain, Highly likely, 

Likely, Possible, Unlikely, Rare} 

Estimating security impact 

• Estimate Impact using the 4-levels 

Classification  I(r) ={L1, L2, L3, L4} 

Studying associated risks 

• Evaluate the associated risks using the two-

dimension vector (Poccurrence(r), I(r)) 

Elaborating and applying risk mitigation strategy 

• Determine Smitigation, which can be either 

{Accept the risk r, mitigate the risk r} 

Testing and controlling 

• Test whether all risks are being addressed. If 

not, restart the process to cover all the risks. 

6.2 Curative approach: 

Identify and evaluate the impact of the attack. 

• Estimate the impact of the attack using the 4-

levels Classification I = {L1, L2, L3, L4} 

Analyze the corrupted assets 

• Examine the attack and identify the attacker's 

strategy. 

Determine and evaluate the exploited vulnerabilities 

• Determine V, where V is the distribution of 

vulnerabilities 

Develop corrective actions 

• Determine Smitigation, which is a set of actions A 

that mitigate the vulnerabilities defined in the 

previous step {A (v), v ϵ V} 

Testing and controlling 

• Test whether all vulnerabilities are being 

addressed. If not, restart the process to cover all 

the vulnerabilities exploited by the attacker. 
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7 Discussion 

The approaches we have provided in this paper take 

advantage of the flexibility of the model to improve the 

security of machine learning built systems. These 

approaches offer considerable adaptability since they 

can be applied for different attacks and are pertinent 
against different strategies used by the attacker. They 

have several advantages. Indeed, they allow the 

integration of security in the lifecycle of the machine 

learning model, particularly the proactive approach that 

ensures a continuous improvement of the model's 

security. Our pattern also contributes to making a 

judicious choice of the appropriate defensive 

mechanism for the employed model. 

8 Conclusion 

Today, there are several ways to perform attacks against 

machine learning models. Exploiting the vulnerabilities 

that reside in applications on machine learning systems 

can cause harmful and even fatal results in some cases, 

such as smart transportation and automated banking 

services. To face these challenges, the security of 

machine learning is an essential field that can potentially 

guarantee the development of artificial intelligence. 

Nevertheless, most of the mitigation techniques that 

have been developed are specific for particular models. 

Regarding this context, certain studies focus on defining 

techniques that can be generalized to multiple models by 

exploiting the transferability and shared vulnerabilities 

between models. However, this approach remains 

theoretical and, therefore, difficult to implement, given 

the diversity of the model's features and the constraints 

of technical limitations and high implementation costs. 
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