
From Auto-encoders to Capsule Networks: A Survey 

Omaima El Alaoui-Elfels, Taoufiq Gadi 
University Hassan First, Faculty of Science and Technology of Settat, Computing, Imaging and Modeling of Complex 

Systems Laboratory, Morocco 
elalaoui-elfels.fst@uhp.ac.ma, gtaoufiq@yahoo.fr 

Keywords: Convolutional Neural Networks, Auto-encoders, Capsule Networks, Routing by Agreement Between 
Capsules, EM Routing, Stacked Capsule Network, Deep Learning. 

Abstract: Convolutional Neural Networks are a very powerful Deep Learning structure used in image processing, 
object classification and segmentation. They are very robust in extracting features from data and largely 
used in several domains. Nonetheless, they require a large number of training datasets and relations between 
features get lost in the Max-pooling step, which can lead to a wrong classification. Capsule 
Networks(CapsNets) were introduced to overcome these limitations by extracting features and their pose 
using capsules instead of neurons. This technique shows an impressive performance in one-dimensional, 
two-dimensional and three-dimensional datasets as well as in sparse datasets. In this paper, we present an 
initial understanding of CapsNets, their concept, structure and learning algorithm. We introduce the 
progress made by CapsNets from their introduction in 2011 until 2020. We compare different CapsNets 
series architectures to demonstrate strengths and challenges. Finally, we quote different implementations of 
Capsule Networks and show their robustness in a variety of domains. This survey provides the state-of-the-
artof Capsule Networks and allows other researchers to get a clear view of this new field. Besides, we 
discuss the open issues and the promising directions of future research, which may lead to a new generation 
of CapsNets. 

1 INTRODUCTION 

Imitating the human brain used to be a dream for 
scientists until the creation of Artificial Neural 
Networks (ANNs). ANNs are the artificial version 
of Biological Neural Networks that constitute our 
nervous system. Simulating human brain ability in 
object classification was the goal of Convolutional 
Neural Networks (CNNs). This kind of neural 
networks shows high performance in object 
classification and image processing. CNNs extract 
the most significant features from images and use 
them for classification. However, CNNs are not able 
to detect object deformation and relationships 
among object entities. These limitations may lead to 
incorrect classification, hence influencing the model 
performance negatively. 

Capsule Networks have been introduced to adjust 
CNNs and overcome their shortcomings. These 
networks are a combination of Auto-encoders and 
capsules. Auto-encoders (AE) are simple neural 
networks consisting of an encoder, latent space 
representation and decoder. The encoder compresses 
the input to latent space representation, then the 

decoder reconstructs the input based on this 
representation only. The network is trained by 
updating weights using backpropagation with a 
gradient optimizer. This kind of network is used for 
data denoising, dimensionality reduction and 
generative model. They were widely developed to 
extract more features while keeping the capacity of 
generalization, by Denoising AE (Vincent et al., 
2008), Sparse AE (H. Lee et al., 2008), Variational 
AE (Pu et al., 2016) and Transforming AE(Hinton et 
al., 2011). 

The introduction of Capsule Networks was in 
2011. They were presented as Transforming AE by 
(Hinton et al., 2011) who noticed that Convolutional 
Neural Networks are misguided in what they are 
trying to achieve. CNNs lose meaningful 
information like object entities’ poses and 
relationships between features in the Max-pooling 
layer. Transforming AE proposed capsules instead 
of neurons to keep the maximum information, e.g. 
pose and velocity. However, the idea did not work 
efficiently until the introduction of the Routing by 
Agreement algorithm in 2017(Sabour et al., 2017), 
which outperforms CNNs in some databases and 
shows impressive results. 
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This paper highlights the limitations of CNNs 
and the high performance of CapsNets in diverse 
implementations. We present a variety of selections 
of the best performing works in CapsNets from 
various viewpoints. We compare different 
CapsNets’ models, and we discuss their benefits and 
challenges. This survey is done after consulting 
other similar papers. We believe that our review 
presents the most recent works in this field. It gives 
a clear view of CapsNets’ series and updates, and it 
explores a possible future scope of research. 

This paper is organized as follows: In Section 2, 
we introduce CNNs and their limitations. Then, we 
detail Capsule Network architecture and its progress 
in Section 3. Furthermore, we present 
implementations’ domains and fields of this Deep 
Learning (DL) network in Section 4. After that, we 
describe CapsNets updates in Section 5. The series 
and shortcomings of Capsule Networks are 
described in Section 6. Finally, we conclude in 
Section 7. 

2 CONVOLUTIONAL NEURAL 
NETWORKS 

Convolutional Neural Networks (CNNs) are very 
powerful in image classification and processing(Q. 
Zhang et al., 2016)(Krizhevsky et al., 2012).They 
are considered state-of-the-artin computer vision and 
widely used in object recognition systems(Maturana 
& Scherer, 2015) and self-driving cars(Jung et al., 
2016). 

2.1 Overview of CNNs 

CNNs treat an input image by four kinds of layers: 
convolutional layers, pooling layers, flattening 
layers and fully connected layers. Convolutional 
layers apply multiple kernels to the input and 
activate the output according to the rectified 
linear activation function (ReLU)(He et al., 2015)to 
generate a features map(equation 1).The pooling 
generates a pooled feature map using Max-pooling 
(equation 2), which chooses the most important 
pixels to be passed to the next layer.Therefore, it 
reduces the dimension of images. These two layers 
are repeated several times to refine feature 
extraction. Next, the flattening layerflattens the 
pooled feature map into a column matrix. This 
matrix will be passed toa Fully Connected (FC) 
artificial neural network that consists of an input 
layer, hidden layers and output layer. Figure 1 shows 
the CNNs’ structure. 

X'1,1,1=ReLU(X1,1*k1,1+X1,2*k1,2+X2,1*k2,1+X2,2
*k2,2)

(1
) 

P1,1=max(X’1,1,1;X’1,1,2;X’1,2,1,X’1,2,2) (2
) 

The convolution moves by a number of steps 
called strides, from left to right and from top to 
bottom on the input to generate the feature map. To 
preserve a maximum of features, several distinct 
kernels are applied to the input to obtain 
corresponding feature maps. The ReLU function is 
for adding nonlinearity into the model. Max-pooling 
scans each feature map, and selects the maximum 
value according to filter size, and creates a pooled 
feature map. 

2.2 CNNs Shortcomings 

Convolutional Neural Networks were introduced 
two decades ago. Through all these years, CNNs 
were widely developed and adjusted. However, they 
still have some shortcomings: 
- Inability to understand data structure(Hosseini et
al., 2017): CNNsare not interested in position
properties and hierarchical structures i.e. relations
between objects’ parts. Max-pooling reduces the
dimension of images and causes a loss of some
useful features.
- Inabilityto be spatially invariant:CNNs are only
invariant to translation, but if the input images have
been reversed, rotated or tilted the performance
decreases drastically. They are unable to detect
deformation, pose and texture of an image (Sabour
et al., 2017).
- Viewpoint variance: different viewpoints of an
object lead to changes in neural activities. Hence, to 
recognize objects,the network should learn different 
variations of the images.That requires a lot of 
training data and a long training time. 
- Overfitting: when the cameraor the illumination of
the image is changed, CNNs cannot perform well
(Ahmadvand et al., 2016).
- Sensitive to adversarial attacks(Su et al., 2019):
CNNs can easily be fooled by adding some carefully
constructed noise to the input image.

3 CAPSULESNETWORK 
PROGRESS 

The idea of Capsule Network was introduced in 
2011 to overcome the shortcomings of CNNs 
regarding robustness. It has been tested on highly 
complex data and showed a high performance. The 
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following sub-chapters describe the main milestones 
in the progress of CapsNets. 

3.1 Transforming Auto-encoders 

Transforming Auto-encoders (TAEs)(Hinton et al., 
2011) were the first seed of capsule networks. TAEs 
are Auto-encoders that apply a transformationmatrix 
to the extracted features’ pose, so the network can be 
trained to predicttransformations like rotation, 
scaling and translation. 

Unlike CNNs thatare only invariant to 
translation, TAEs are equivariant. This property 
makes them understand proportion change and 
adjust themselves accordingly to keep the features’ 
pose information. Equivariance is achieved in these 
Auto-encoders by using vectors to represent objects, 
where each vector contains scalar values that 
represent the instantiation parameters of the object. 

TAEsconsist of several capsules, where each 
capsule is a group of neurons that represent an object 
or a part of an object in a specific location using 
inverse rendering.They extract instantiation 
parameters from the image to draw it again. 

ATAE’s capsule is composed of recognition 
units and generative units. The output of each 
capsule represents the contribution to reconstruct the 
output image. Figure 2 details the structure of 
the TAEs. 

Recognition units (blue circles in Figure 2) 
detect pose parameters represented by matrix A and 
computeP, the probability that the capsule’s feature 
is present in the image. Then, the capsule will 
transfer these values to the generative units layer.  

Generative units (red circles in Figure 2) are fed 
with TA, where T is the transformation 
matrix.These units compute the capsule’s 

contribution to the transformed image and multiply 
it by the probability P. Finally, all capsules’ 

contributions are combined to reconstruct the output 
image.However, this architecture could not work 
properly in 2011, because of computer hardware 
limitations and the absence of efficient algorithms. 

3.2 Dynamic routing between capsules 

In 2017,(Sabour et al., 2017) succeeded to 
implement an efficient algorithm to relate capsules, 
that showed better performance than CNN on the 
MNIST dataset. It is called Dynamic Routing 
Between Capsules or Routing by Agreement 
between capsules (RBA). This paper (Sabour et al., 
2017) was the official definition of CapsNets as a 
network of capsules.The output of a capsule is called 
activation or instantiation vector. The length of this 
vector represents the probability that the feature 
actually exists. The orientation of the vector encodes 
the feature’s instantiation parameters, i.e. 
thickness,localization, width and so on. The 
CapsNets Encoder consists of three main parts: 

Figure 2: Transforming Auto-encoders’ capsule structure. 

Figure 1: CNNs structure with one Convolution+ReLU layer. 
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Convolutional layer, PrimaryCaps layer and 
ClassCapslayer (also called as DigitCaps) (Figure 3). 
The Convolutional layer extracts image features 
through convolution kernelsto result in a feature 
map. Then, a ReLU function is applied to provide 
non-linearity and to activate the feature map values. 
The output feature map is scanned another time 
bykernels and generates a new feature map. 
PrimaryCaps group the generated features to vectors 
to create primary capsules. Finally, the PrimaryCaps 
are routed to the ClassCaps layer by Dynamic 
Routing Between Capsules (Algorithm 1). The 
contribution of each capsulei in PrimaryCaps to each 
capsule j in ClassCaps is computed as follows: 

û�� �  W��u� (3)

Where u�  is the output of capsule i, and ûjiis a 
prediction vector.Wij is a weight matrix. 

Each capsule j in ClassCaps computes the total 
prediction vector sj(equation 4). To ensure that the 
vector length is between 0 and 1, a squashing 
function is applied (equation 5), which does not 
affect the instantiation parameters. 

�� �  � ���û��

�

���

 (4) 

Vj=
||��||� ��

��||��||� ||��||
(5) 

��� is the coupling coefficient determined by a 
SoftMax function (equation 6). This coefficient is 

used by Dynamic Routing to determine the relation 
between low-level and high-level capsules through 
repetitive routing. The agreement between capsules 
is reflected by the product of the prediction vector 
and a coupling coefficient. If the agreement is high, 
the low-level capsule and the high-level capsule are 
related to each other and the coupling coefficient 
will increase otherwise, it will decrease. Notice that 
���is updated in this step by updating ���(equation 7), 
unlike Wij that are updated by backpropagation. 

��� �
����

∑ ����
�

 (6) 

��� � ��� � �Û (7) 

The Decoder part (Figure4) aims to reconstruct the 
input image, it is made up of three Fully connected 
(FC) layers that generate output which is reshaped 
toa grayscale image. 

 

Figure 3: CapsNetsDecoder. 

Figure 4: CapsNets Encoder, Decoder, Routing by Agreement. 
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As long as the CapsNets consist of classification 
and reconstruction part, the total lossTL will be 
calculated on two halves: (i) The first one punishes 
incorrect classifications ��  (encoder-part), (ii) and 
the second punishes reconstruction errorD (decoder-
part) by mean square loss. The following equation 
represents the margin loss of classification:  

�� � ��max�0, �� � ������ �  λ�1
� ��� max�0, ���� � ���� 

(8)

Where ��max �0, �� � ������is calculated if an 
object of class k is present withEk is set to 1 , and 
λ�1 � ��� max �0, ���� � ���� is calculated for the 
opposite case with �� � 0 . �� � 0.9 and �� � 0.1 
are set to prevent the length to max out or collapse 
the loss function unreasonably, λ  is set to 0.5 to 
control the down weighting of initial weights from 
influencingmodeldecisions. This entity loss ( ��� is 
then summed withthe reconstruction loss (equation 
9) tocompute the total loss (equation 10), which is 
used to evaluate the performance of the capsule 
model.  

D � MSELoss�y,y’� �9�

y is the input image and y’ is the reconstructed 
image 

TL � Lk � αD �10�

α is the down-scaling factor(taken as 0.0005) used to 
prevent the D loss from dominating over the Lk loss. 

3.3 Matrix Capsules with EM Routing 

In (Hinton et al., 2018),another algorithm was 
proposed for routing between capsules called 
Expectation Maximization Routing (EMR). Unlike 
RBA’s capsules that use elements’ vectors to 
represent the pose of an object and the vectors’ 
lengths to represent the probability of existence, 
EMR capsules use pose matrix and activation 
probability separately.Expectation Maximization is a 
clustering algorithm that clusters datapoints into 
Gaussian distribution, with each cluster defined by 
(μ:mean,σ: standard deviation).In capsule network, 
EMR groups capsules into a parent capsule.The 
high-level capsule is activated if there is an 
agreement among votes from low-level capsules. 
The low-level capsule makes votes (predictions) on 
the pose matrices of its potentialparent capsule. The 

Table 1: Difference between RBA and EMR. 

RBA EM for RBA 

A
lgorithm

 �� �  � ���û�|�

�

���

 

��� � ��� � �Û 

i: capsule in layer l 
j: capsule in layer l+1 
Algorithm 1 Dynamic Routing(Sabour et al., 

2017) 
procedure ROUTING(ûji, r, l) 

����  , ���← 0 
        For k iterations do 

cij ← SoftMax(bij)    equation 4 

 Vi=squash(��)        equation 3 

 Return Vj 

ΩL capsules of the layer l 
Algorithm 2  EM Routing(Hinton et al., 2018) 

Procedure EM  ROUTING(a,V) 
�i  � ΩL,  j  � ΩL+1 :  Rij ← 1/| ΩL+1 | 
        For t iterations do 
�j  � ΩL+1 : M-Step(a,R,V,j) 
�i� ΩL : E-Step(μ,σ,a,V,i)   
 Return a,M 

M-Step: updates (μ,σ,a) based on R the
assignment probability
E-Step: recalculates R based on new μ,σ and a

Properties 

- The representation of a capsule’s input and
output is a vector.

- The probability of existence is represented
by the length of a vector.

- Squashing function for probability.
- Prediction vector: Ûji = Wij Ui.
- Returns: Probability (V).
- Coupling coefficient: C.
- Margin loss + MSELoss.

- New parameter: capsule’s pose matrix: M.
- The representation of a capsule’s input and output

is a matrix.
- The probability of the presence of an entity is

represented by a parametera(activation
probability).

- Gaussian probability.
- Vote:Vij = MiWij
- Returns: Activation probability (a)+ Pose matrix

(M).
- Assignment probability: R quantifies the runtime

connection between child capsule and its parent
capsule.

- Spread loss: maximizes directly the divide
between the wrong class’s activation and target
one.
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vote ( � ) is calculated by multiplying the pose 
matrix(�) ofthe low-level capsulewith aviewpoint 
invariant transformation(�). 

� � �� (11) 

In EMR, the representation of a capsule’s input 
and output are matrices instead of vectors. 
Moreover, the likeliness of the existence of an entity 
is presented by the activation probability ainstead of 
a length vector. The probability is computed without 
usinga squashing function, which is considered “not 
objective and sensible”(Hinton et al., 2018).Table 1 
clarifies the difference between Dynamic Routing 
algorithm 1 and EMR algorithm 2. 

3.4 Stacked Capsule Auto-encoders 

In 2019,(Kosiorek et al., 2019) introduced an 
unsupervised capsule Auto-encoder called Stacked 
Capsule Auto-encoders (SCAEs). This capsule 
network uses objects to predict parts, in contrast to 
EM Routing and Routing by Agreement that use a 
part-whole relationship to predict the presence of the 
object. The inference routing used in both previous 
works is inefficient and it is discussed in further 
research (Li et al., 2018; S. Zhang et al., 2018),while 
SCAEs amortized this inference. 

The SCAEs consist of two stages. In the first 
stage called Part Capsule Auto-encoder (PCAE), the 
model predicts presences and poses of part templates 
directly from the image and tries to reconstruct the 
image by appropriately arranging the templates. In 
the second stage called Object Capsule Auto-
encoder (OCAE), the model organizes discovered 
parts and their poses into a smaller set of objects. 
These objects reconstruct the part poses using a 
separate mixture of predictions for each part. 

SCAEsare the only method that achieves 
competitive results in unsupervised object 
classification without relying on mutual information 
(MI). 

4 IMPLEMENTATIONS 

CapsNets showed their performance in various fields 
such as medical or chemical image recognition, 
audio recognition, sentiment analysis and many 
others. 

These kinds of networks have the best 
performance in detecting spoof attacks. (Nguyen et 
al., 2019) applied capsule network to the forensics 
task. It is used to detect various kinds ofspoofs from 
replay attacksusingprinted images or recorded 
videos to computer-generated videos. Furthermore, 

the RBA algorithm used improves detection 
performance on complex and almostperfectly forged 
images and videos. Itshowed agreat performance and 
had perfect accuracy at frame level and video level 
dataset. 

Capsule networks havealso proven their 
efficiency in the 3D domain. In (Yongheng Zhao et 
al., 2019), they are used to treat sparse 3D point 
clouds.They preserve spatial arrangements of the 
input data with good learning ability and 
generalization properties. The model performs well 
under rotation, part-segmentation and 3D 
reconstructionand it has a low reconstruction error. 

(Duarte et al., 2018) introduce a 3D capsule 
network for action detection in videos, by 
introducing capsule-pooling with skip connections in 
the convolutional layer to decrease capsule 
routingcomputation. 

In the medical domain(Mobiny & Nguyen, 
2018),capsules have also been developed to handle 
characteristics of 3D lung nodule classification, and 
speed up CapsNets by factor three by a consistent 
RBA mechanism. The proposed dynamic routing 
mechanism consists of enforcing all capsules in the 
Primary Capsule layer referring to the same pixels to 
have the same coupling coefficient, which reduces 
the number of routing coefficients and speeds up the 
model while keeping the accuracy of the original 
CapsNets. 

1D-CapsNet (Butun et al., 2020)has been 
introducedfor automated detection of coronary artery 
disease (CAD) from ECG signals 
(electrocardiography-signal).Even though the model 
achieved a high accuracy it needs to overcome the 
long of training time. Furthermore, the model needs 
a large dataset for training. This issue could be 
addressed by few-shot learning (Ren et al., 2020). 

CapsCarcino is another implementation of 
capsules in medicine (Y.-W. Wang et al., 2020). It 
has been introducedto distinguish between 
carcinogens and noncarcinogens.This capsule 
network is very helpful for carcinogen risk 
assessment in drugs.CapsCarcinois very robust for 
small-sized sparse datasets: with just 20% of the 
dataset, it performs comparably to the other methods 
using the full training dataset.

WB-Caps (Baydilli & Atila, 2020) is a capsule 
network architecture that classifieswhite blood cells 
into five categories. WB-Caps can help to interpret 
the patient’s condition by performing blood tests 
with little cost, based on some characteristics of 
WBCs like ratio or shape.The model obtained a high 
accuracy without over-fitting. 

CapsNet-static-routing (Kim et al., 2020) is a 
CapsNets model used for text classification.It shows 
a high performance and stable results even after 
adding random noise to the dataset, the result does 
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not change, and sentences keeptheir meaning. The 
experimental results of the classification indicate 
that the accuracy of the staticrouting is higher than 
the dynamic one. Moreover, the model has a shorter 
trainingtime than the original CapsNets. On the 
other hand, due to the high variability in text, 
CapsNet-static-routing is not robust enough for 
document classification as opposed to image 
classification. It needs to be flexible for text 
modifications, like word order shuffling. 

(Lei et al., 2020) introduced Attention-Based 
Capsule Network (ACN) for Tag Recommendation. 
The model is based on the capsule network with 
Dynamic Routing plus an attention mechanism.The 
model is flexible to be applied for image and video 
tagging, too. Moreover, ANC could be improved by 
using Expectation Maximization routing, where pose 
matrix might extract more information and give 
better tag results. 

Forintelligent faultdiagnosis, Capsule Auto-
encoder (Ren et al., 2020) (CaAE) has been 
proposed to resolve theproblems of traditional and 
modern intelligent fault diagnosis:the need of a large 
set of samples of faults and the need of diagnosis 
models to possess the ability of quick updating. The 
ability of CaAE to extract and fuse featuresreduces 
the dependence on the number of samples and 
training time, whichmakesCaAE suitable for few-
shot learning without overfitting. The modelis very 
robust under noisy datasets and it shows higher 
accuracy, less training time and a smaller number of 
epochs compared to methods in(J. Wang et al., 
2019) and (Jia et al., 2016). 

5 CAPSNETSUPDATES& 
IMPROVEMENTS 

(Nguyen et al., 2019)proposed CAPSULE-
FORENSICS toimprove the algorithm of (Sabour et 
al., 2017).A Gaussian random noise has been added 
to the weight tensor to reduce over-fitting, andan 
additional squash has been applied before routing by 
iterating to keep the network more stable. 

(Kim et al., 2020) suggest a static routing method 
instead of dynamic routing and ELU-gate(Dauphin 
et al., 2017) instead of pooling. Static routing 
reduces the computational complexity of dynamic 
routing. ELU-gate method selects which neurons to 
activate without losing spatial information. 

(Rajasegaran et al., 2019)havegone deep with 
capsule network (Deepcaps) using the concept of 
skip connections and 3D convolutions to build a 3D 
convolution system based on the dynamic routing 
algorithm. Skip connections within a capsule cell 
allow good gradient flow in backpropagation, and 

3D convolution reduces the number of 
parameters.The original CapsNetsdecoder(Sabour et 
al., 2017) has been replacedbya Deconvolutional 
decoder, which strengthens the use of reconstruction 
loss as a regularization term. This decoder is better 
at reconstructing spatial relationships and at 
regularizing capsules. 

(Phong & Ribeiro, 2019) introduced two 
advanced models (Capsule 32 V1 for images 32*32 
pixels and Capsule 32 V2 for images of 
64*64pixels) to improve CapsNets by expanding 
more pooling layers to filter image backgrounds and 
more reconstruction layers to allow better image 
restoration.Both modelsshowed a good performance 
but theyare more sensitive to changes. 

To reduce epistemic and the homoscedastic 
uncertainty, (Ramírez et al., 2020)present a Bayesian 
formulation of Capsule networks (BCN). They 
hybridized Deep Bayesian Neural Networks 
(DBNN)(Zhu & Zabaras, 2018)with Capsule 
Networks.The model attainedgood results with less 
uncertainty and less error due to performing dropout 
and including the homoscedastic uncertainty in the 
loss function and usinga regularization term over the 
linear transformations in the inverse graphics.  

As it has been introduced in the RBA algorithm, 
the SoftMax activation function is used to compute 
the coupling coefficient ��� .(Z. Zhao et al., 2019) 
demonstrated that SoftMax prevents CapsNets to 
find the optimal coupling to route between low-level 
and high-level capsules. After multiple routing 
iterations, it often leads to uniform probabilities. For 
that, SoftMax has been replaced by the Max-Min 
normalization.This normalization reduces the test 
error to 0.17% on MNIST and allows to increase the 
number of routing iterations without overfitting. 

To reduce CapsNets parameters(Yi et al., 2019) 
designed the CapsNetPr network that uses a pooling 
method, decomposition and sharing of the 
transformation matrix to address this issue. As 
aresult,the CapsNets parameters have been reduced 
significantlyacross different datasets while keeping 
the performance of CapsNets. 

6 CAPSULE NETWORKS 
SERIES, ADVANTAGES AND 
SHORTCOMINGS 

Capsule Networks are used for treating various kinds 
of data such as images, text, videos. The variety of 
data requires some modifications on the original 
network structure. Table 2 summarizes the CapsNets 
series. 
The  majority of CapsNets  research papers
worked on the RBA algorithm, eitherin the original. 
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Paper 
Propo

sed 
model 

Task Characteristics Additions Dataset 
Accuracy on 

proposed model 
(%)/ Metric 

Baseline 
model 

Accuracy on 
baseline model 

(%)/Metric 
Capsule-
forensics: Using 
Capsule 
Networks to 
Detect Forged 
Images and 
Videos (Nguyen 
et al., 2019) 

CA
PSU

LE-FO
REN

SICS 

Spoofs detection 

Has the best 
performance and 
accuracy at frame 
level and video level 
dataset. 

VGG-19 layer before 
the primary layer. 
Addition of Gaussian 
noise to the weight 
matrix.  
Application one 
additional squash 
before RBA. 

Deepfake 
dataset 

99.23% MesoInce
ption-4 
Meso-4  

98,4% 

96.90% 

DeepCaps: Going 
Deeper with 
Capsule 
Networks 
(Rajasegaran et 
al., 2019) 

D
eepCaps 

Im
age 

classification 

Surpasses the 
CapsNets’ results on 
CIFAR10, SVHN and 
Fashion MNIST. 
Reduces the number 
of parameters. 

Skip connections within 
capsule cells.  
3D convolution 
CapsCells. 
Class-independent 
decoder. 

CIFAR10 
SVHN 
F-MNIST
MNIST 

CIFAR10: 92.74% 
SVHM: 97.56% 
F-MNIST: 94.73% 
MNIST: 99.75% 

RBA CIFAR10: 89.40%  
SVHM: 95.70% 
F-MNIST: 93.60% 
MNIST: 99.75% 

3D Point Capsule 
Networks 
(Yongheng Zhao 
et al., 2019) 

3D
-

PointCapsN
et 

3D
 points 

clouds process 

A higher accuracy 
compared with 
AltasNetand and 
smaller training-set. 

3D Capsule-Encoder.  
3D Capsule-Decoder. 

ShapeNet
55 

89.3% Latent-
GAN 
FoldingNe
t 

85.7% 

88.4%  

1D-CADCapsNet: 
One dimensional 
deep capsule 
networks for 
coronary artery 
disease detection 
using ECG signals 
(Butun et al., 
2020) 

1D
-CA

D
CapsN

et 

D
etection of CAD

 ECG
 

signals  

High performance 
using raw ECG signals 
without any feature 
extraction/selection 
or QRS detection. 

Redefinition of layers’ 
parameters.  
Addition of some sub-
layers to detect CAD 
ECG signal segments: 
tow 1D-Conv before 
primary caps then ECG 
caps. 

ECG 
dataset 

2 second ECG 
segments: 99.4% 
5 second ECG 
segments: 98.6% 

CNN 

CNN-
LSTM 

2 second ECG 
segments 94.95%  
5s second ECG 
segments 95.11% 

5s second ECG 
segments: 99.85% 

Text 
Classification 
using Capsules 
(Kim et al., 2020) 

CapsN
et-static-

routing 

Text 
 Classification 

Higher performance 
and noise-robustness 
compared to the 
state-of-the-art 
methods of text 
classification. 

Static routing. 
ELU-gate instead of 
pooling. 
Removal of the 
coupling coefficient 
used in RBA. 

Sentences 
from 
TREC-QA 
test data 

74% Dynamic 
Routing 

65% 
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A model with the 
ability of few-
shot learning and 
quick updating 
for intelligent 
fault diagnosis 
(Ren et al., 2020) 

CaAE 

Intelligent fault 
diagnosis 

The ability of few-
shot learning. 
Rapid updating and 
the ability to resist 
noise. 

Combination of AE and 
CapsNets, which is 
composed of three 
parts: feature 
extraction, feature 
fusion and fault 
diagnosis. 

motor 
bearings 
provided 
data 

99.85% SEFAM 
BNSAEs 
BNAE 

99.07% 
97.65% 
98.53% 

CapsCarcino: A 
novel sparse data 
deep learning 
tool for 
predicting 
carcinogens (Y.-
W. Wang et al., 
2020) 

CapsCarcino 

M
olecules classification 

Higher accuracy 
compared with SVM, 
RF, KNN, XGBoost, 
CNN. 
Robust for small size 
sparse dataset. 

Two convolutional 
layers, one fully 
connected layer, one 
PrimaryCaps layer and 
one ToxCaps layer. 

Carcinoge
nic 
Potency 
Database 
(CPDB) 

81.8% SVM 
 RF 
kNN 
XGBoost 
 CNN 

70.0%  
64.2% 
65.7% 
59.6% 
66.8% 

Classification of 
white blood cells 
using capsule 
networks 
(Baydilli & Atila, 
2020) 

W
BCaps 

W
hite blood cells 
classification 

High performance 
compared with Deep 
Learning methods 
and medical analysis 
techniques. 

Optimization of hyper-
parameters usingthe 
”babysitting” method. 
PReLU function for 
convolutional and for 
FC layer. 

LISC 
dataset 

96.86% Inception-
ResNETv2  
Inceptionv
3 
ResNET50  
VGG19 

82.50% 
 
80.00% 
 
80.00% 
77.50% 

Bayesian capsule 
networks for 3D 
human pose 
estimation from 
single 2D images 
(Ramírez et al., 
2020) 

Bayesian CapsN
et 

3D
 pose estim

ation 
from

 a single 2D
 im

age 

Reduces the 
homoscedastic 
uncertainty. 
 

Bayesian Capsules. 
Bayesian FC neurons. 
Dropout of initial 
capsules. 
Regularization term 
over the linear 
transformations in the 
inverse graphics. 

Human3.6
M dataset 

Error (mm.):71.7  
Tome 
(Tome et 
al., 2017) 
Rogez(Ro
gez et al., 
2019) 

Error (mm.)  
79.6 
 
 
56.5 

Tag 
Recommendation 
by Text 
Classification 
with Attention-
Based Capsule 
Network (Lei et 
al., 2020) 

A
ttention-based 

CapsN
ets (A

CN
) 

Tag Recom
m

endation 
 

Outperforms the 
standard capsule 
networks. 
Flexibility to be 
applied for image and 
video tagging 

Architecture: 
Embedding layer, 
attention layer,  
convolutional layer, 
primary capsule layer,  
Fully connected layer, 
dropout layer. 

TPA from 
AMiner 
AG from 
ComeToM
yHead 

TPA: 
macro-P 0.829 
macro-R 0.825 
macro-F1 0.824 
AG: 
macro-P 0.926 
macro-R 0.922 
macro-F1 0.923 

CapsNets TPA: 
macro-P 0.820 
macro-R 0.815 
macro-F1 0.814 
AG: 
macro-P 0.921  
macro-R 0.918 
macro-F1 0.920 

Table 2: CapsNet series.
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implementation or in improvement, while EMR and 
SCAE did not get the same attention from 
researchers. Just like with the use of CapsNets in the 
3D domain, only a few works have been focused on 
this field(Yongheng Zhao et al., 2019),(Duarte et al., 
2018), (Weiler et al., 2018), (Jiménez-Sánchez et al., 
2018; Mobiny & Nguyen, 2018). 

6.1 Advantages 

CapsNetsarea very promising Deep Learning model, 
whichhas the capacity of learning relationships 
among image objects. This architecture has so many 
positive aspects: 
- Viewpoint invariance (Hinton et al., 2011). 
- The dynamic routing algorithm extracts more 

meaningful features compared to CNNs 
(Sabour et al., 2017). 

- They are equivariant, they are unaffected by 
positional changes. 

- They efficiently classify small data sets without 
data augmentation (Su et al., 2019),(Y.-W. Wang 
et al., 2020). 

- They are more robust than traditional CNNs to 
white box adversarial attacks (Hinton et al., 
2018) 

- EMR achieved higher accuracy than the state-of-
the-art CNN on the smallNORB dataset (Hinton 
et al., 2018). 

- They are robust to an imbalanced class 
distribution (Jiménez-Sánchez et al., 2018). 

- They increase the certainty to recognize the 
pose of an object since RBA and EMR activate 
a capsule after comparing several incoming 
pose vectors. 
These characteristics make CapsNets more 

powerful compared to other DL approaches in terms 
of generalization capability, accuracy, required 
training time and robustness to viewpoint changes. 

6.2 Shortcomings 

From RBA to Stacked Capsule Auto-encoder, 
CapsNetshave showngood performance in different 
domains likein image classification,signal treatment, 
pose extraction, text classification and many other 
tasks. They are applicable to various kinds of 
datasets by adapting the architecture or the learning 
algorithmto the specificity of the data. Nevertheless, 
Capsule Networks suffer some drawbacks. Routing 
by agreement is not optimal for document 
classification, unlike for image classification, due to 
the high variability in a text(Kim et al., 2020). 

Although the CapsNets showed an impressive 
result in the MNIST dataset and did well on SVHM, 
they still perform poorly on CIFAR10, even when 

going deep in the Capsule network by 
DeepCaps(Rajasegaran et al., 2019), achieving an 
error of 8,99%, which is higher than the error rate of 
the current state-of-the-art 3,47%. The higher error 
rate can be explained with the complexity of the 
background and the intra-class variation of 
CIFAR10. 

Adownsideofthe treated network is the high 
number of parameters to be trained(School of 
Computing, Northwestern Polytechnical University, 
Xi’an 710072, Shaanxi, P.R. China et al., 2019). 
With a small inputimageof28x28, the original 
CapsNets architecture needs 8,2 M training 
parameters. More than half of these parameters 
come from the PrimaryCaps layer that executes 
reshaping and dynamic routing operations. The 
larger the images to be processed become, the 
greater becomes the number of parameters to be 
trained. Deepcaps(Rajasegaran et al., 2019)managed 
to reduce the number of parameters by 68%, while 
(Xiong et al., 2019; Yi et al., 2019) used a pooling 
method which loses meaningful information. 

The learning process in CapsNets is slow due to 
the routing process that requires a loop to refine the 
coupling coefficient. Moreover, CapsNets require 
more computational resources since the outputs of 
primary capsules are activity vectors rather than 
scalars, which requires more memory. 

7 CONCLUSION AND 
DIRECTIONS FOR FUTURE 
WORK 

In this paper, Capsule networks have been 
introducedwith their main progress steps: 
Transforming Auto-encoders, Routing by 
Agreement Between Capsules,Matrix capsules with 
EM routing and Stacked Capsule Auto-encoders. 
The advantages of grouping extracted features into 
capsules to keep all input information have been 
explained as well as learning algorithms, 
architecture and CapsNets series. Capsule networks 
guarantee equivariant properties which make the 
network robust when undergoing a transformation. 
Furthermore, CapsNets achieved a very promising 
result with a small training dataset and without 
overfitting. However, they need to be improved to 
perform well with multi-class data and complex data 
such as CIFAR10. This Deep Learning Networks 
need more experiments, searches and tests to explore 
their maximum capacity. Besides, more attention for 
the EM Routing and SCAE are necessary to make 
them more powerful and applicable in different 
datasets and to realizethe full potential of CapsNets. 
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New insights could be provided from going deep 
with Matrix capsules with EM routing and Stacked 
Capsule Auto-encoders as advanced CapsNets, also 
from working on reducing the complexity of these 
models and combining Capsule networks with other 
Deep Learning methods. Furthermore, self-driving 
cars can take advantage of the CapsNets’ accuracy 
and robustness against transformations made on 
inputs to trick the network. Moreover, the 
unsupervised learning used in Stacked Capsule 
Auto-encoders will be useful to solve complex 
reinforcement learning tasks. 
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