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Abstract. Data-driven approaches are gaining popularity in structural health monitoring (SHM) due to 

recent technological advances in sensors, high-speed Internet and cloud computing. Since Machine learning 

(ML), particularly in SHM, was introduced in civil engineering, this modern and promising method has 

drawn significant research attention. SHM's main goal is to develop different data processing methodologies 

and generate results related to the different levels of damage recognition process. SHM implements a 

technique for damage detection and classification, including data from a system collected under different 

structural states using a piezoelectric sensor network using guided waves, hierarchical non-linear primary 

component analysis and machine learning. The primary objective of this paper is to analyse the current 

SHM literature using evolving ML-based methods and to provide readers with an overview of various SHM 

applications. The technique and implementation of vibration-based, vision-based surveillance, along with 

some recent SHM developments are discussed. 

1 Introduction  

Civil structures, including large bridges, dams, and high-

rise buildings, are becoming vulnerable to loss of 

serviceability as they fall apart from use. This 

inescapable loop needs severe maintenance [1-3]. On-

site studies, despite all, include the closing of bridges or 

the construction of buildings to examine them, due to 

humane constraints. Many researchers have suggested 

systemic health monitoring (SHM) procedures along 

these lines. SHM is an incredibly new technology that 

has grown over the last decades. Structural Health 

Monitoring (SHM) is one of the main applications for 

new sensor growth. The ability to discern damage at the 

start stage can reduce the costs and time associated with 

the fixing of basic damages. Predicting or detecting the 

onset of hazardous structural actions by observing long-

term deterioration Is the main function of SHM. 

Infrastructures, due to the structural failure and loads 

caused by earthquakes, waves, automobiles or ambient 

vibrations, are vulnerable to significant physical damage. 

In the last few decades of practising engineers and 

scholars, safety and the need to lower cost of inspection 

have been ensured of high priority. Consequently, 

several forums stress the value of economic systemic 

health surveillance (ESM) to ensure long term structural 

stability and safety [5–7]. Different forms of modern 

SHM technologies can simplify frequent inspections and 

decreasing the direct and indirect costs associated with 

unnecessary ageing fails (use-echo impact, ultrasound 

surface waves, soil penetrating radar, electric resistance) 

[8-10] in addition to traditional inspections and non-

destructive tests. Any SHM method and framework is 

based on sensors and sensor data (observable responses). 

2 Structural Health Monitoring and 
machine Learning  

Recent advancements in sensor technologies and 

networking (contact, cellular, etc.) have provided an 

unparalleled speed and ability for acquiring data. 

Furthermore, innovations have been utilised in diverse 

ways in other hardware and software support also. For 

example, the advancement of emerging infrastructure 

repair technology and the application of possible 

solutions, such as the Unmanned aerial systems (UAS), 

was a major focus. The latest UAS technology focuses 

on fully autonomous, long-distance multi-rotor systems 

with a large variety of SHM sensors. The sensors may 

include visible-spectrum light cameras, infrared and 

infrared cameras, radar systems and sonar systems with 

high-resolution applications. At least, a drone team 

inspect on the ground a bridge for human defects [8-10]. 

The power and data transmission requirements have 

traditionally prohibited the implementation of large 

sensor arrays on public networks, with the capacities and 

complexities relevant to the implementation of captive 

systems. In general, SHM methods focused on tested 

multi-physical models cannot be adapted to active 

models.  

The calculated data need the least noise for 

simulations, which is not viable for functional conditions 

and systems. Therefore, models powered by data is 

demonstrated by flexibility. Machine learning (ML) is a 
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subcategory of artificial intelligence (AI). The ML 

techniques are focused to create workable algorithms 

that can benefit from the available estimated or 

simulated algorithms to make potential predictions [11 

15]. ML methods are much broader as compared to other 

fields of computer engineering, whereas its applications 

in SHM are discussed in this study. The ML-based SHM 

models are specifically designed to learn on its own. 

ML-based SHM models can be categorised as 

supervised, unsupervised or enhanced learning. In 

supervised learning, an ML model can be trained while 

using a set of training data. If the effects of the algorithm 

are independent or categorical variables, the model is 

categorised as classification (i.e. vector support, 

neighbour k-near, Bayesian, decision-making, deep 

learning) or regression (e.g. neural networks, decision-

making process, linear, non-linear regression) [16-20]. In 

unsupervised learning, there is no provision of training 

of dataset. Examples of unsupervised learning are 

Hierarchical clustering, partitional clustering, k-means, 

spectral clustering, etc. In reinforcement learning, the 

ideal performance is determined through agents, by try 

and error. It is interesting that the use of standard models 

requires expertise and functionality design skills for 

complex SHM applications, which are often not possible 

as tracked devices get more sophisticated due to their 

highly non-linear behaviour. 

3 Techniques for Structural Health 
Monitoring  

Structural health monitoring using vibration are based on 

the detection, location, classification, assessment, and 

prediction known as five levels of (SHM). The two 

major structural damage classifications are linear and 

non-linear. A linear-elastic structure will exist as the 

same, where modal characteristics and variations can be 

seen in a linear equation due to geometric or 

materialistic changes. 

On the other hand, non-linear damage occurs if, after 

damage, a linear-elastic pattern or structure becomes 

non-linear at first. For example, developing a wear and 

tear crack can open and close under vibration under 

normal operating conditions, is an appropriate example 

of nonlinear damage. In general, a successful damage 

detection technique applies to both types of damage [21-

23]. As previously discussed, the SHM method involves 

several steps. First and foremost, the system is monitored 

over time using a variety of sensors and results are 

obtained from standard dynamic response measurement 

samples from the same sensors. The extraction of the 

characteristics is the next step in which these 

measurements derive the characteristics which can cause 

damage. Further statistical analysis is carried out on 

these receptive characteristics in order to assess the 

present circumstances and the health of the structure. In 

the case of long-term systematic monitoring situations, 

the statistical process output is regularly revised. 

Acquiring information to validate the structural 

potential smoothly as it is subjected to ageing and 

deterioration due to various environmental conditions is 

possible through SHM. Furthermore, SHM is an 

emergency aid to track the functional integrity of the 

structure if the device has adverse effects due to events 

such as earthquakes and heavy loadings. The advances in 

Wireless Sensor Networks (WSNs) have influenced the 

SHM technology, enabling wireless, particularly through 

remote access, transmission of monitoring parameters. 

Figure 1 shows the structural dynamic responses through 

(WSNs). 

In the case of aircraft structure and buildings SHM is 

widely used for detecting damage in real time in the 

whole structural system [24-25]. Damage detection 

method also consists of  Condition Monitoring [CM] 

which is similar to SHM, but it is used in the calculation 

of damage to SHM but it addresses damage 

identification in rotating mechanical systems and the 

shared machinery used in power plant production. Non-

Destructive Evaluation (NDE) is an offline process 

localised to observe the damage. Moreover, a variety of 

pre-fabricated structures are monitored by the NDE, 

including rails and pressure containers.  

In order to research the characteristics of a defined 

damage, NDE shall be applied and implemented within 

the framework identifying potential damage sites, 

including only the preliminary details on a damaged site. 

In comparison to the structure system, Statistical Process 

Control (SPC) is seen as a process-driven technology, 

where a broad range of sensors are used to detect process 

variations that can provide structural damage-related 

information. 

 

Fig. 1. Structural Dynamic responses [25]. 

3.1 Deep convolutional neural network with 
transfer learning on SHM 

Water flow causes concrete surfaces to break down,  

resulting in spalling and rebar exposure. In order to 

protect the infrastructure, it is important that such 

damage should be detected. An extremely accurate 

damage detection strategy using a deep convolution 

neural network with transfer learning network is being 

introduced by this purpose. Secondly, photos using a 

high-definition camera with image expansion tool is also 
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processed [26-27]. To identify damage Deep neural 

convolution network with hydro-connection learning 

transmission was introduced. Figure 2 explains the 

convolution process. The dataset comprises five distinct 

types of labels: crack, drain, spall, intact exposure and 

rebar. The Inception-v3 network is the core network, and 

the Inception-v3 network enhances the picture 

functionality [28-29]. Transfer learning is especially 

suitable for small datasets simultaneously. As a result, 

Inception-v3 and transfer learning have been introduced 

to detect damage to the water retaining infrastructure. 

The detection accuracy of model is higher than the 

SVM; the accuracy with process is about 96%. 

 

Fig. 2. Convolution process [29]. 

3.2 Deep learning–based data anomaly 
detection method for structural health 
monitoring 

A large number of data is generated with the wider use 

of advanced SHM systems for civil infrastructure. 

Therefore, the analysis and mining of SHM data have 

become hot topics in the field of civil engineering [30-

31]. The dynamic environment of civil infrastructure 

systems, however, leads to several anomalies that 

contaminate the data. It severely affect the performance 

of the data analysis. This is one of the main obstacles to 

automatic real-time alerts because it is difficult to 

differentiate structural damage from the normalities 

associated with false results. Current data cleaning 

methods rely mainly on noise cleaning, although the 

incorrect detection of information takes a lot of expertise 

and time. Inspired by a real-world manual inspection 

procedure, SHM provides a machine vision and an 

anomaly system for profound knowledge with Deep 

neural visualisation networks, construction and anomaly 

recognition training [32-34]. This approach imitates the 

biological and ethical reasoning of human beings. 

During visualisation, time series signals are converted 

into image vectors that are partly tracked in grey images. 

In the second level, a training data set consisting of 

randomly selected vectors is manually integrated into a 

deep neural network or a deep-neural network cluster, 

which is trained by techniques called automatically 

stacked encoders and greedy layer specific training. 

Deep neural networks can be used to detect potential 

anomalies in large quantities of non-regulated structural 

health monitoring data [35-37]. In order to illustrate the 

training procedure and to monitor the performance of the 

solution proposed, acceleration data are used using a 

genuinely long-term structural health monitoring system. 

The results show that data multi-pattern abnormalities 

can be detected automatically with high precision with 

computer vision and a comprehensive approach to the 

detection of anomalies in SHM systems. The time-series 

data in SHM are initially converted to a recognisable 

image in a machine and grey image vectors are used as a 

Deep Neural Network (DNN) training collection by 

imitating the human expert. The DNN is developed and 

trained by the technique of greedy layer training. 

In order to confirm the viability and accuracy of the 

planned and trained DNN, acceleration data of the long-

distance SHM can be measured. Training process of 

datatset is explained in Figure no. 3. Data abnormality 

and sensor counting results are distributed which are 

useful for the detailed cleaning and maintenance of the 

SHM system [38-40]. In comparison to the manual 

inspection system, computer vision and approach based 

on deep learning are significantly better. In the 

processing of SHM data, the method is new and critical 

both for the automatic real-time monitoring and alertness 

of SHM systems and for off-line data analysis. This 

article concentrates only on acceleration data, but it can 

also be used for other sensor types. The unattended 

analysis of anomalous photographs should be given 

greater attention in future work to eliminate manual 

interference. The multi-label method of classification is 

also applicable in the data measured in the SHM systems 

for competitor anomalies [41-43]. 
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Fig. 3. Training process of dataset [35]. 

4 Results and Discussion 

This paper provides an overview of R&D in the field of 

civil infrastructure structural monitoring. Following a 

thorough analysis of the hypotheses, methods, 

innovations and implementations for sensors, the 

following inference was drawn: Sensors were commonly 

used due to their special merits. Monitoring of civil 

structures such as bridges, dams, pipelines, wind 

turbines, railway projects and life-cycle structures 

requires, measuring a broad variety of data including 

pressures, levels, accelerations etc. The implementation 

guidelines for sensor safety is of prime importance due 

to cracking and corrosion of concrete. In the area of 

early age strength control, impact identification and 

assessment as well as structural health monitoring for 

concrete structures, an advanced multifunctional 

intelligent unit is required at large scale. The early age 

tracking leads to damage index matrices in order to 

extract information on damage time and location. 

Structural health monitoring evaluations demonstrate 

that vital damages may be observed faster than 

conventional monitoring techniques. It is also possible to 

accurately assess the severity of cracks and the location 

of the damages. 
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