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Abstract. The article presents one of the possible methods for optimizing the blade shape of a Francis 

radial-axial hydraulic turbine. The method for optimizing the shape of the turbine blade is based on the 

criterion of the maximum mechanical moment developed by the turbine. The blade shape optimization 

operation is conventionally divided into two stages. At the first stage of optimization of the blade shape, the 

analytical expression of the moment developed by the turbine is presented in a Taylor series by variable 

parameters − the coordinates of the vertices of the characteristic polyhedron of the median surface of the 

turbine blade. Adding the boundary conditions in the formulation of the optimization problem in the form of 

equalities − the contact of the median surface of the turbine blade with the turbine hub and rim, as well as 

conditions in the form of inequalities − the concavity of the greater part the median surface allows to reduce 

the problem of optimizing the blade shape to a standard linear programming problem. It is proposed to carry 

out 50−60 similar operations with small steps in the variables − the coordinates of the vertices of the 

characteristic polyhedron. Thus, it is necessary to move into the zone of optimal values of the coordinates of 

the vertices of the characteristic polyhedron of the median surface of the blade. At the second stage, it is 

proposed to continue the search for the optimal values of the coordinates of the vertices of the characteristic 

polyhedron of the median surface of the blade, applying for this purpose one of the most effective 

algorithms of genetic optimization. 

1 Introduction  

The design methodology for hydraulic turbines with high 

technical and economic performance was developed and 

constantly improved by Russian and foreign  developers 

and designers for several decades. The optimal shape of 

the blades of hydraulic turbines (HT) with high 

cavitation properties were determined at that time.  

The use of numerical methods, as well as cluster 

technologies that allow parallelizing solutions that 

require a fairly large counting time, allowed us to 

consider a number of optimization problems that were 

not previously available. 

In the research practice of universities, research 

institutes, it has begun to practice multi-criterial 

optimization of the structures under study, as well as the 

elements of these structures [1 − 14]. 

The following are used as criteria for optimizing HT: 

1. Maximum efficiency of power on the HT shaft. 

2. The minimum of the ratio of the surface of HT, 

subject to cavitation, to the total surface of the HT. 

In fig. 1 shows the elements of the hydraulic turbine 

− a supply pipe, a  spiral case, a  hydraulic  turbine and a 

draft tube. In fig. 2 shows a general view of the 

Francis turbine blade. 

The dominant method in the optimization of 

turbomachines is genetic methods. 

 

Fig. 1. Hydraulic turbine with a spiral case  and  draft  tube. 

2 Problem statement  

Let's consider an algorithm for constructing a HT blade 

using computer graphics. 

The construction of the blade surface begins with the 

construction of its median surface. We define the median 

surface of the blade in the form of a double cubic Bezier 

polynomial in variables ,u v  in the form: 
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where ij −r  are the vertices of the characteristic 

polyhedron, ,u v −  parameters varying from 0 to 1. 

 

Fig. 2. General view of the blade with the applied mesh. 

The inner and outer surfaces of the blade can be 

constructed by means of dependencies: 
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where ( ),d u v −  is the half thickness of the blade at a 

given point, −n
r

internal normal to the median surface. 

As the optimal profile of the turbine blade, we 

consider the blade profile that provides the maximum 

efficiency of the turbine during its operation. 

To determine the optimal blade profile, you need to 

find the coordinates of the vertices of the characteristic 

polyhedron of the median surface of the blade , , ,ij ij ijx y z  

which provides the maximum value of the mechanical 

moment acting from liquid on the blade: 
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Here ( ) ( ) ( ) ( ), , , ,u v x u v y u v z u v=  +  + r i j k ; 

( ),n u v− −P the static pressure of water masses at the 

surface of the hydraulic turbine; 
1 2

dudv −G the area of 

elementary sections of the turbine surface, where  
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Expression of the normal to the surface (Fig.3) has 

the form where the derivative is calculated at the point 

0 0,u u v v= =  

 /
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Fig. 3. Normal to surface. 

Then, taking into account expressions (1 − 5), we 

obtain an integrand of the form 
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The array of static pressure values included in the 

expression (1) is borrowed from the solution of the 

hydrodynamic problem of flow around the turbine blade.  

The integration size free step for variable v  is 0.005, 

for variable  u  −  0.0025.  

There are two ways to optimize the blade geometry. 

3 Basics of optimizing the shape of a 
turbine blade 

The optimization of the blade geometry is supposed to 

be perfomed using a program that implements the linear 

programming method. This program, − fmincon, is 

included in the MATLAB package [15]. 

We believe that the moment created by the turbine 

blade  is  approximately  described  by a linear  model of 

the form  (the first terms of the expansion of the function 

 (3) in the Taylor series): 
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where 0zM −  is the mechanical moment developed by 

the turbine blade (according to the hydrodynamic 

calculation data);  

 1 2 3, ,ij z ij ij z ij ij z ijM M x M M y M M z=   =   =   −  

partial derivatives of the expression of the moment (3) 

taken according to the coordinates of the vertices of the 
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characteristic polyhedron of the median surface of the 

blade; 

 Δ , Δ , Δ ,ij ij ij ij ij ij ij ij ijx x x y y y z z z= − = − = −  

where , ,ij ij ijx y z − the coordinates of the vertices of the 

characteristic polyhedron obtained in the previous 

iteration, , ,ij ij ijx y z − the coordinates of the vertices are 

polyhedron, determined during the period of a new 

iteration. 

The admissible variations of the coordinates of the 

vertices of the characteristic polyhedron are given by the 

relation: 
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We add equations to the model connecting the 

coordinates of four points of the upper boundary of the 

blade lying on the hub and the coordinates of four points 

of the lower boundary of the blade lying on the rim of 

the turbine (Fig. 4, 5, 6): 

 

Fig. 4. The upper side surface – hub,. lower side surface – rim 

 

Fig. 5. The upper side surface – hub, lower side surface – rim 

 

Fig. 6. The upper curve is border  with hub, the lower curve is 

the border with the rim 
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Here maxR −  the distance from axis 0Z to the left 

upper edge of the blade (Fig. 4),   minR −  the distance 

from axis 0Z to the right upper edge of the blade; 

0minR −  the distance from the axis  0Z to the top border 

of the rim (Fig. 4, 5), 0Z − its vertical coordinate in the 

coordinate system 0XYZ, 0maxR −  the distance from the 

axis  0Z to the lower border of the rim,  tgα  is the angle 

of inclination of the rim surface with respect to the axis 

0Z. The diameter of the lower border of the rim is 

greater than the diameter of the upper border of the hub. 

For a curve contacting with the hub (see Fig. 2, 4, 5) 

at points 1, 4, the concavity condition of the curve must 

be satisfied: 
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where values  vx and vy  are taken from the previous 

iteration. 

For a curve lying on the rim, the curve convexity 

condition must be satisfied: 
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where values vx  and vz  are taken from the previous 

iteration. 

The projections  of the leading edge and trailing edge 

on X0Y plane are considered straight lines. 

For the leading edge, the curve convexity condition 

must be satisfied: 
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where values vr  and vr  are taken from the previous 

iteration,  2 2r x y= + . 

For  the  trailing  edge,  the  curve  convexity 

condition must be satisfied: 
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where values vr  and vr  are  taken  from  the  previous 

iteration. 

The system of equations (7) can be easily linearized 

using the property 

 Δ , Δ , Δ .i j i j i j i j i j i jx x y y z z    

We consider the coordinates of both lower corner 

vertices of the median surfaces to be known, given in 

advance. The upper left corner and right corner vertices 

have degrees of freedom – some rotation about the 0Z 

axis (up to 15 degrees in the clockwise direction). 

We also assume that the median surface of the blade 

(Fig. 7) is a concave surface. That is, the product of the 

main curvatures of surface and the sum of the main 

curvatures of the surface (12) are strictly positive [16].  

We check this property at points: 
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Fig. 7. Inner normal to the median surface and main directions 
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Here, the values , ,E F G and first derivatives in 

, ,L M N  are calculated according to the previous 

iteration. The first expression (12) splits into two 

identical expressions (12a) and (12b), in which one of 

the values M  is calculated by the previous iteration. In 

expression (12a) the value ,N  in expression (12b) the 

value L  is calculated according to the previous iteration. 

Expresion (12a) and (12b) are used together in iterations. 

Solving the problem of finding the maximum (3) 

when perfoming the linearization conditions (1−12), we 

determinate the required Δ ,Δ ,Δ .i j i j i jx y z  

The resulting values for one of there increments for 

the hub and rim are refined from the geometry of hub 

and rim. 

The case of local violations of conditions (12), we 

carry out the operation of smoothing curves, and then 

surfaces. 

As result, we obtain the refined values of the 

coordinates of the vertices of the characteristic 

polyhedron, which make it possible to describe the new 

median surface of the blade: 

 Δ .ijnew ij ij= +r r r  

The second way of describing the median surface of 

the blade is the Ferguson bicubic polynomials used to 

construct the Koons surface [17] . 

In this case, the calculations involve the coordinates 

of the corner points of the middle surface, the tangent 

vectors at the ends of the corresponding boundary curves 

and the torsion vector at the corners of the surface: 
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3 42 , ,F t t t е F t t t= − + = −  

where t is either ,u or ,v respectively. 
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4 Algorithm for finding the optimal 
shape of blades 

The algorithm for finding the optimal blade shape is as 

follows. The basic software environment in which it is 

assumed  to carry out the process of optimization the 

blade shape, author adopted the MATLAB package. This 

package organizes an iterative cycle of launching  the 

following packages. 

1.  Launching NUMECA IGG package. Preliminary 

creation in the package of the geometry of the Draft 

Tube (one-time)  and  application of a 3D  mesh  in Draft 

Tube (one-time)  before  the start of the iterative process 

of the turbine blade profile optimization. 

2.  Launching the NX package. Automatic creation of 

a fixed vane – Stay Vane, two adjustable vanes – Guide  

Vanes, a new shape of turbine blade. The graphic 

creation of the turbine blade, which is changed during 

the solution process, is implemented in the form of a 

script created in the Visual Basic language. Converting 

the resulting geometry to Parasolid format and exporting 

them.  

A similar operation, can be perfomed in NUMECA 

AUTOBLADE package. 

3.  Launching the NUMECA FINE/TURBO package. 

Import specified files. Automatic 3D mesh in the 

NUMECA AUTUGRID mesh generator: 

A.  In the cell adjacent to the Stay Vane. 

B.  In the 2 cells adjacent to the Guide Vanes. 

C.  In the cell of the turbine blade.  

Automatic application of the 3D mesh in these cells is 

implemented based on a script created in the PYTHON 

language. 

4. Launching the ANSYS CFX package. Import the 

specified zones of the turbine into ANSYS CFX PRE. 

Statement of boundary conditions. Launching of the 

solution in ANSYS CFX SOLUTION. The sequence of 

these operations implemented in the Java Script 

language has been repeatedly presented in a number of 

articles. Switch to ANSYS CFX POST. Output of an 

array of calculated values of static pressure at given 

points of the blade surface to a file with the extension 

dat.  

A similar operation can be perfomed in the 

EURANUS (NUMECA) package. 

5. We read data from a file with the extension dat. 

Numerical integration of the surface integrals given in 

(3, 6) is carried in the MATLAB package. 

6.  Solving the optimization problem (1−12) is 

carried in MATLAB package using fmincon program. 

We get the corrected values Δ ,ijnew ij ij= +r r r allowing to 

create a new turbine blade. We calculate the value 

mechanical moment developed by the turbine, the 

efficiency of the turbine. Go to the next iteration (go to 

step 2). 

This algorithm is considered by the author as a 

“starting” one, designed for 50 ÷ 60 iterations. Further 

optimization of the blade shape should take place using 

genetic methods.  

A similar operation for optimizing the  blade shape of 

the Francis turbine can be perfomed in the NUMECA 

FINE/ DESIN 3D package.  

The author suggests using the NSGA−III genetic 

algorithm software for these purposes. The number 

iterations required to complete the task is no more than 

200. 

5 Method with using the sliding 
tolerance technique 

This solution method is based on the application of the 

Nelder−Mead  flexible  polyhedron  method in the metod 

of conditional optimization – sliding tolerance [15]. 

The conditions in the form of equalities (inequalities)  

 (7−12) for carrying out the problem optimizing the 

blade shape of Francis turbines remain the same. 

the conditional optimization of the shape of the HT 

blade remain the same. 

Since in [15] there is flexiplex program for 

perfoming conditional optimization using the sliding 

tolerance method with the use of minimizing the target 

function is given, we use the standard transition for the 

target function: 

 ( )max min
f f→ −  

6 Conclusion 

A new algorithm is presented that allows optimize the 

shape of the Francis radial-axial turbine blade in two 

stages, as well as a diagram of the software optimization 

of the turbine blade profile which is different from the 

existing one. To optimize the turbine profile at the first 

stage, the objective function, a system of equations and 

conditions, as well as a method for carrying out the 

operation of optimizing the turbine blade profile are 

presented − the classical method of linear programming. 

At the second stage of optimization of the turbine blade 

profile, it is proposed to use genetic optimization 
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algorithms. The system for checking the geometry of the 

median surface of the blade (8 − 12) for concavity, in a 

transformed form, is suitable for use in the second stage 

of optimization. Based on this system, decisions are 

made on the use of the next blade profile in the 

optimization operation, correction of some zones of the 

median surface of the blade, complete rejection of this 

blade profile. In practice, it is supposed to carry out 

preliminary programmed measurements of coordinates, 

components of tangent vectors, both curvatures at a 

number of control points of the median surface of the 

blade. 
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