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Abstract. This paper is based on the equation obtained earlier by V.G. 
Sokolov to find the frequencies of natural vibrations of straight sections of 
large-diameter pipelines. In this work, to take into account the effect of 
hydrostatic pressure on the pipeline wall from oil flowing at different 
speeds, the solution obtained by M.A. Ilgamov and A.S. Volmyr is used. 
At the same time, the effect of a stationary fluid flow on the pipeline wall 
is taken into account in the equation written in forces for the last term of 
the normal component of inertia forces. The resulting modified equation 
allows determining the frequency characteristics of the pipeline both 
according to the rod theory (without taking into account the deformation of 
the cross section) and according to the theory of shells (taking into account 
the deformation of the cross section). 

1 Introduction 

In the face of increased demand for products from oil refineries, the need for raw materials 
is increasing. In this regard, during the construction or reconstruction of a pipeline to ensure 
uninterrupted supply of the product, it becomes necessary to increase the pipe diameter 
over 1000 mm with a wall thinness parameter (h/R = 1/20 ─ 1/50). During the operation of 
these thin-walled oil and gas pipelines, the pipes are subjected to various kinds of dynamic 
impacts. Such an impact can be caused by vibrations from pumping equipment, seismic 
vibrations, as well as periodic vibrations caused, for example, by a train passing near the 
main oil and gas pipeline, as a result of wheel impacts on the rail joints. 

The task of ensuring the reliability of the pipeline in conditions of dynamic impacts is to 
eliminate resonance phenomena, i.e. to determine the frequencies of natural and forced 
vibrations, depending on the physical, mechanical and geometric characteristics of the 
pipes. Thus, the natural frequency becomes one of the most important parameters when 
calculating the pipeline, along with the fluid flow rate, the geometric characteristics of the 
section, the internal working pressure, the rigidity of the subgrade, and the magnitude of the 
longitudinal compressive force. The analysis of pipelines for dynamic impact is currently 
an urgent problem. Studies to determine the frequency characteristics are reflected in the 
works [1 ─ 12], which consider straight pipe sections. 
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During the construction of pipelines in the period from the 20s to the 80s of the last 
century, pipes with a diameter of less than 1000 mm with a wall thinness parameter (h/R = 
1/5 ─ 1/15) were used. These pipelines are calculated according to the methods based on 
the rod theory [1 ─ 10], which does not take into account the deformation of the pipe cross-
section. This approach is not applicable in the conditions of using pipes with a diameter of 
more than 1000 mm, as, for example, during the construction of the Power of Siberia gas 
pipeline, in sections of which pipes with a cross section of 1720×16 mm are used, which 
are difficult to characterize as a rod, therefore, it is not advisable to calculate these pipelines 
using methods based on the rod theory. 

The fundamental concepts of the linear theory of small vibrations of thin-walled shells 
were laid down by A. Lyav. However, due to the cumbersomeness of the obtained 
equations, this solution did not find practical application. Therefore, to simplify the 
solution, a number of assumptions were subsequently used to obtain a practically applicable 
method for the dynamic calculation of cylindrical shells. 

The most acceptable for practice is the theory of closed cylindrical shells. Among its 
variants, one can single out the most complete Flyuge theory, in which the forces of inertia 
of rotation are neglected for the equations proposed by Lyav. For a closed cylindrical shell 
with hinged ends, a solution is proposed in the form of a system consisting of three 
differential equations of motion in displacements. Solving these equations using Fourier 
series leads to a cubic equation for the square of the circular frequency of free flexural 
vibrations: 

                         (1) 

This solution also turned out to be unsuitable for practical use due to its complexity. 
Therefore, the Flyuge equations of motion were subject to further simplification, in which 
the terms containing small factors with the squares of the ratio of the shell thickness h to the 
radius of the median surface R were discarded. On the basis of such simplifications, a 
practically applicable and widely used Donnel-Mushtari-Vlasov equation was obtained, 
which is named by their authors (Donnel [13], Mushtari [14], Vlasov [15]). However, as 
was proved in the work of Ivanyuty and Finkil'shtejn [16], neglecting the tangential 
components of inertial forces, the values of the natural vibration frequencies of the shell are 
overestimated by 25%. 

For the first time, taking into account the influence of internal working pressure on the 
wall of a cylindrical shell when determining the frequencies of free vibrations can be traced 
in the works of Breslavski [17], Kukudzhanov [18, 19]. 

This work raises the question of a new approach to the dynamic calculation of thin-
walled underground oil pipelines of large diameter, which is based on the application of the 
semi-momentless theory of shells of the average bend by Vlasov ─ Novozhilov [20, 21], in 
which the moments М1, which bend the cylindrical shell in the longitudinal direction, are 
neglected, since they are much less than the moments М2, which bend it in the transverse 
direction. The resolving equation of this approach is a homogeneous differential equation of 
the 4th order, for the solution of which two boundary conditions are used at each end. 

2 Problem statement 

A cylindrical shell of finite length L, radius of the middle surface R and wall thickness h, 
which is subject to the influence of constant internal working pressure p0, longitudinal 
compressive force F, reaction of elastic soil resistance q0, soil pressure qsl = Hγ, as well as 
the action of the velocity of the flowing liquid V, was taken as a design scheme (figure 1). 
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Fig.1. Design scheme of a pipeline. 

To take into account the hydrostatic pressure qld created by the flow of oil flowing at a 
velocity V, the solution obtained by M.A. Il'gamov [23] and A.S. Vol'mir [24] is used: 
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where ρ0 — fluid density;           
         

— a parameter depending on the wave 
numbers in the circumferential and longitudinal directions (m, n) and is determined by the 
ratio of the Bessel function to its derivative depending on    

   
 , V— fluid flow rate, 

product       — added fluid mass [23, 24]. 

3 Building a solution 

To solve the problem on the frequency characteristics of an underground thin-walled oil 
pipeline of large diameter, the equation in forces obtained in [11] is used: 
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in this case, the effect of a stationary fluid flow on the pipeline wall is taken into 
account in the normal component of inertia forces X3: 
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Solving equation (3) using the assumptions of the semi-momentless theory of 
cylindrical shells [11, 20, 21], after transformation, we obtain the differential equation of 
the pipeline motion in displacements: 
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where u, v, w — components of displacements of the middle surface of the shell, related 
to the radius R, ϑ2— angle of rotation, p0 — internal pressure in the pipe, ρ — soil lateral 
pressure coefficient, H — squeezed layer thickness, γ — volumetric weight of soil, E — 
elastic modulus of pipe material, R — median surface radius,    

 
 √         — relative 

shell thickness parameter, μbj — added soil mass per unit of pipeline length, κ — 
coefficient of elastic soil resistance for a pipeline exposed to the action of internal working 
pressure [14], presented in the form: 

    
       

        (6) 

The resulting system of equations (4) contains four unknown functions of coordinates 
and time t: u, v, w, and ϑ2. Based on the Fourier method (method of separation of 
variables), we represent the function w(ξ, θ, t), satisfying the condition of hinged support of 
the ends of the oil pipeline and periodicity along the circumferential coordinate θ, in the 
form: 

  ∑   ∑                             (7) 

where    
   
               — wave numbers in the circumferential and 

longitudinal directions. 
The rest of the displacement components and the angle of rotation ϑ2 are determined 

from the relations of the semi-momentless theory of shells given in [20, 21]: 
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Taking into account that free vibrations of the shell move according to the harmonic 
law, we have: 

                                    (9) 

where  mn — first frequency of free bending vibrations in shape, m, n = 1, 2, 3… 
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Substituting (7) - (9) into equation (5) and equating the coefficients at the same 
trigonometric functions cos(mθ) for m, n = 1, 2, 3..., we obtain an infinite system of 
homogeneous linear algebraic equations with respect to the unknown amplitude values bmn 
of the radial component of the displacement w. The coefficients of the unknowns in these 
equations will be denoted by aij: 

at m = 1                                    

at m = 2                                           (10) 

at m = 3                                             

We write the resulting system of linear homogeneous algebraic equations in the form: 

                                    

                                  (11) 

where m = 1, 2, 3…; m ± 1> 0; m ± 2 > 0, and coefficients aij are defined by the 
expression: 

                           
       

                
            

           

                                                  

                                            (12) 

where      
 

      
      

 
      

       
      

      
   
      

    
   
 √  

  

   
  
  where F — longitudinal force;    

    
   — Euler's force;        — moment 

of inertia. 
The coefficients of this system of equations (10) are dimensionless at the internal 

working pressure p0 in mPa, the coefficient of elastic resistance κ in kN/m3, and the 
density of the shell material ρ0 in (kN ∙ s2)/m4. 

The resulting system of homogeneous linear equations (11) is presented in matrix form: 
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Since the solution of this homogeneous system of linear algebraic equations is nonzero, 
because the magnitudes of the amplitude values of the radial displacement of the middle 
surface of the shell bmn ≠ 0, the determinant of the coefficients of the homogeneous system 
(13) should be equal to zero: 
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After transformations, determinant (13) takes the form of the characteristic equation of 
matrix A: 

|

|
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|
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where      
    
    

       
      
    

       
      
    

      ( mn — frequency of free 
vibrations (Hz)). 

Coefficients Amn, Bmn, am,m+1, am, m+2 are determined by formulas (12). 
Solving determinant (15), we find the full spectrum of frequencies of free vibrations 

depending on the wave numbers m and n, as well as the influence of the longitudinal force 
parameter, the value of the internal pressure, the coefficient of elastic resistance of the soil, 
the parameter of thinness, the added mass of the soil, the depth of the pipeline and the 
hydrostatic pressure oil. 

4 Results 

Let us analyze the influence of the internal working pressure, as well as the coefficient of 
elastic soil resistance (κ) on the frequencies of free vibrations at fixed values of the 
parameter of the longitudinal force P, the speed of movement of the oil product through the 
pipeline V, the parameter of the length of the pipeline L/R and the depth of the pipeline. 

The obtained results shown in Table 1 and Fig. 2 allow drawing the following 
conclusions: 

firstly, the minimum frequencies are realized for shell modes of vibration (taking into 
account the deformation of the cross section), i.e. for m = 2, n = 1; 

secondly, with an increase in internal pressure, the frequency of free vibrations 
increases, which indicates an increase in the rigidity of the pipeline cross-section. Analysis 
of the results listed in Table 1 shows that the smaller the ratio h/R, the more sharply the 
frequency of free oscillations increases. For example, for the thinness parameter h/R = 1/30 
at an internal working pressure equal to zero and the coefficient of elastic soil resistance κ = 
0.04∙107 N/m3, the frequency of free vibrations is  21=29.48 Hz, and at p0=5.0 mPa, 
frequency  21=45.93 Hz, the growth rate was 36%. For the thinness parameter h/R=1/50, 
other things being equal, the frequency  21 increases from 14.66 to 31.94 Hz, which 
corresponds to an increase of 45.9 %. The data on the increase in frequency characteristics 
are confirmed by the experiment described by the group of Brazilian scientists André Luiz 
Lupinacci Massa et al. [6], and the statement of Olav Fyrileiv [5] about the decrease in 
natural frequencies with increasing internal pressure is refuted. 

thirdly, with an increase in the coefficient of elastic soil resistance, the frequencies of 
free vibrations increase, which also indicates an increase in the stiffness of the pipeline due 
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to the fact that the soil prevents the movement of the walls of the thin-walled cross-section 
of the pipe. From the data given in Table 1 it can be seen that for a thin-walled pipe 
h/R=1/50 at zero internal working pressure and a longitudinal force parameter equal to 
zero, for κ=0.04∙107 N/m3,  21=14.66 Hz, and at κ = 1.5∙107 N/m3,  21=29.82 Hz. 
Table 1.  Dependence of the frequency of free vibrations on the coefficient of elastic resistance of the 

soil and the internal working pressure. 

Frequency
, Hz 

p0=0 mPa; P=0; V=3.0 m/s; L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
0.04 0.7 1.5 0.04 0.7 1.5 0.04 0.7 1.5 

ω11 55.05 56.73 58.71 44.65 46.68 49.02 34.13 36.45 39.08 
ω21 29.48 34.83 40.37 20.74 27.78 34.44 14.66 22.80 29.82 
ω31 66.89 69.90 73.38 41.27 45.99 51.13 25.44 31.87 38.25 

Frequency
, Hz 

p0=3.0 mPa; P=0; V=3.0 m/s; L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
 0.04 0.7 1.5 0.04 0.7 1.5 0.04 0.7 1.5 

ω11 55.05 56.73 58.71 44.65 46.68 49.02 34.13 36.45 39.08 
ω21 40.17 44.24 48.72 32.97 37.80 42.93 26.42 31.67 37.05 
ω31 82.75 85.20 88.08 61.74 64.99 68.72 46.98 50.76 54.99 

Frequency
, Hz 

p0=5.0 mPa; P=0; V=3.0 m/s; L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
 0.04 0.7 1.5 0.04 0.7 1.5 0.04 0.7 1.5 

ω11 55.05 56.73 58.71 44.65 46.68 49.02 34.13 36.45 39.08 
ω21 45.93 49.54 53.58 39.05 43.20 47.76 31.94 36.40 41.17 
ω31 91.82 94.03 96.64 72.23 75.03 78.28 56.99 60.14 63.75 

 
Fig. 2. Graphs of the dependence of the frequencies of free vibrations on the internal working 
pressure and the value of the coefficient of elastic soil resistance (). 
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Further, using (14), an analysis of the influence of the longitudinal force parameter on 
the frequencies of free vibrations of an underground oil pipeline at zero internal working 
pressure is carried out using different values of the coefficient of elastic soil resistance (κ 
N/m3) and different values of the thinness parameter (h/R). The results are shown in Table 
2. 
Table 2.  Dependence of the frequency of free vibrations on the coefficient of elastic resistance of the 

soil, the internal working pressure and the parameter of the longitudinal force. 

Frequency
, Hz

p0=0 mPa; P=0.08; V=3.0 m/s, L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
0.05 0.6 1.2 0.05 0.6 1.2 0.05 0.6 1.2 

ω11 52.84 54.30 55.85 42.87 44.63 46.48 32.79 34.81 36.88 
ω21 20.80 26.82 32.12 11.92 20.67 27.16 6.89 17.36 24.05 
ω31 62.87 65.54 68.33 36.83 41.23 45.54 21.08 27.42 32.97 

Frequency
, Hz 

p0=0 mPa; P=0.13; V=3.0 m/s, L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
0.05 0.6 1.2 0.05 0.6 1.2 0.05 0.6 1.2 

ω11 51.39 52.89 54.49 41.70 43.51 45.40 31.89 33.97 36.09 
ω21 12.51 21.05 27.49 - 15.62 23.55 - 13.92 21.70 
ω31 60.19 62.97 65.87 33.70 38.46 43.05 17.72 24.93 30.94 

Frequency
, Hz 

p0=0 mPa; P=0.2; V=3.0 m/s, L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
0.05 0.6 1.2 0.05 0.6 1.2 0.05 0.6 1.2 

ω11 49.29 50.86 52.51 39.99 41.88 43.85 30.60 32.75 34.95 
ω21 - 7.53 19.22 - 7.02 18.14 - 6.58 17.90 
ω31 56.22 59.19 62.27 28.76 34.21 39.30 11.48 20.96 27.84 

 
Fig. 3. Graphs of the dependence of the frequencies of free vibrations on the parameter of the 
longitudinal force and the value of the coefficient of elastic soil resistance (). 
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Further, using (14), an analysis of the influence of the longitudinal force parameter on 
the frequencies of free vibrations of an underground oil pipeline at zero internal working 
pressure is carried out using different values of the coefficient of elastic soil resistance (κ 
N/m3) and different values of the thinness parameter (h/R). The results are shown in Table 
2. 
Table 2.  Dependence of the frequency of free vibrations on the coefficient of elastic resistance of the 

soil, the internal working pressure and the parameter of the longitudinal force. 

Frequency
, Hz

p0=0 mPa; P=0.08; V=3.0 m/s, L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
0.05 0.6 1.2 0.05 0.6 1.2 0.05 0.6 1.2 

ω11 52.84 54.30 55.85 42.87 44.63 46.48 32.79 34.81 36.88 
ω21 20.80 26.82 32.12 11.92 20.67 27.16 6.89 17.36 24.05 
ω31 62.87 65.54 68.33 36.83 41.23 45.54 21.08 27.42 32.97 

Frequency
, Hz 

p0=0 mPa; P=0.13; V=3.0 m/s, L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
0.05 0.6 1.2 0.05 0.6 1.2 0.05 0.6 1.2 

ω11 51.39 52.89 54.49 41.70 43.51 45.40 31.89 33.97 36.09 
ω21 12.51 21.05 27.49 - 15.62 23.55 - 13.92 21.70 
ω31 60.19 62.97 65.87 33.70 38.46 43.05 17.72 24.93 30.94 

Frequency
, Hz 

p0=0 mPa; P=0.2; V=3.0 m/s, L/R=10; H=2m 
h/R=1/30 h/R=1/40 h/R=1/50 

Coefficient of elastic soil resistance k·107 N/m3 
0.05 0.6 1.2 0.05 0.6 1.2 0.05 0.6 1.2 

ω11 49.29 50.86 52.51 39.99 41.88 43.85 30.60 32.75 34.95 
ω21 - 7.53 19.22 - 7.02 18.14 - 6.58 17.90 
ω31 56.22 59.19 62.27 28.76 34.21 39.30 11.48 20.96 27.84 

 
Fig. 3. Graphs of the dependence of the frequencies of free vibrations on the parameter of the 
longitudinal force and the value of the coefficient of elastic soil resistance (). 

The data given in Table 2 and Figure 3 show: 
a) the minimum frequencies are realized for shell modes of vibration (taking into 

account the deformation of the cross section), i.e. for m = 2, n = 1; 
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b) for oil pipelines with a thin-walled parameter h/R=1/50, κ=0.6∙107 N/m3, with zero 
internal pressure, with an increase in the longitudinal force parameter P from 0.08 to 0.2, 
the frequency decreases by 37.9 % from 17.36 Hz to 6.58 Hz, and for the thinness 
parameter h/R=1/30 - by 28.1% from 26.82 Hz to 7.53 Hz (see Table 2, Figure 3). 

c) for free-flow oil pipelines with the value of the thin-walled parameter h/R=1/50, laid 
in the ground with a small value of the coefficient of elastic soil resistance κ = 0.05∙107 
N/m3, with an increase in the longitudinal force parameter P from 0.08 to 0.13, the 
frequency (at m=2, n=1) sharply decreases from 6.89 Hz and can turn to 0, i.e. a local loss 
of stability (flattening of the cross section) occurs. 

5 Conclusion 

The calculated data showed that the minimum frequency is realized for shell vibration 
modes (m=2, n=1), taking into account the deformation of the cross section. 

 The internal working pressure significantly affects the natural frequency of a thin-
walled pipeline, and the higher the pressure, the higher the frequency. 

As the longitudinal compressive force increases, the frequency response decreases. At 
zero internal pressure for P ≥ 0.15 in soils with a coefficient of elastic resistance less than 
0.05∙107 N/m3, the frequency decreases and can turn to zero, which indicates the loss of 
stability of the cross section (flattening). 
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