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Linearization of the Navier-Stokes equations
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Abstract. This paper studies mathematical models of the heat transfer process of a viscous
incompressible fluid. Optimal control methods are used to solve the problem of optimal modeling.
Questions of linearization of the Navier-Stokes equation for a plane fluid flow are considered. The optimal
modes (optimal functional dependencies) of the pump and heating device are found depending on the fluid

flow rate.

Introduction

In [1], the problems of modeling the process of heat
transfer of a viscous incompressible fluid and
linearization of the Navier-Stokes equations were
considered, and it was proposed to use the solution of the
problem of optimal control of the heat transfer process to
linearize the non-stationary nonlinear Navier-Stokes
equations. In this paper, we demonstrate the method of
linearization of nonstationary nonlinear Navier-Stokes
equations indicated in [1] using the example of the first
boundary value problem for a plane fluid flow. In this
case, to facilitate the calculation of linearization, the
selected (maybe averaged) values of the components of
the fluid velocity vector are used. It is indicated that to
obtain a closed solution for the optimal simulation of the
heat transfer process of a viscous incompressible fluid, it
is convenient to use the Fourier method to solve the
initial-boundary value problem.

In the literature [2-5] on the study of mathematical
models of the heat transfer process, basically, two
problems are noted: 1) physical issues of the adequacy of
mathematical models of the heat transfer process; 2)
mathematical questions of research of nonlinear Navier-
Stokes equations. There is an extensive literature list on
solutions to these problems. It is impossible to list them.
A review of works devoted to these problems is beyond
the scope of this article. Let us note some of them, which
deal with mathematical questions of problems. In [5], a
fairly wide list of references on numerical methods for
solving Navier-Stokes is given. A complete reduced
mathematical model of the hydrodynamic process,
depending on the physical parameters, is indicated. For
the numerical solution of the initial-boundary value
problem for the Navier-Stokes equations, the Galerkin
method is applied. In [6], the questions of the influence
of wvariability of thermophysical parameters (heat
capacity, thermal conductivity, and viscosity) of air on
the result of the accuracy of the numerical solution and
averaging of the Navier-Stokes equations are considered.
It is shown that this influence leads to the appearance of
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modeled terms in the averaged and filtered Navier-
Stokes equations. There are numerous scientific works
devoted to numerical methods for solving boundary
value problems for the Navier-Stokes equations in
various settings, see, for example, [2-7].

1 Statement of the optimization problem
for two-dimensional vector differential
Navier-Stokes equations.

For a nonstationary and nonlinear two-dimensional (the
three-dimensional case is considered similarly) vector
differential Navier-Stokes equation, consider the initial-
boundary conditions (the density is assumed to be p = 1)
[1-5]:
6171 aUl 6171
¥+a(v1¥ UZE) =

dp
= _a‘i'vﬂvl +f1 +q1

6172 avz 6172 _
<¥+“(V1E+VZE)— (D

dp
—£+VA1J2 +f+q,

=0

dx ay
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where o is a non-negative number; t € [0,T]; (x,y) €
N={0<x<h0<y<I} -rectangular region with
border—S ={x=0,x=h;0<y<L0<x<hy=
0,y=13}, Qr =02X(0,T), Sy = SX[0,T]; 4- A - Laplace
operator v  constant coefficient of viscosity;
w(x, y,t) =(v,v,),v; = v;(x,y,t) —is the vector
function of the fluid velocity, p = p(x, y, t);

f=00h) fi=fitey,t); = (q1,92),
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It is believed that in equation (1)p =p(x,y,t),

(z—z = pl,z—z = pz) 2) is the pressure, external forces
f=f(xyt), g=q(x,y,t) and under conditions (2)
the functions g;;(t), a(x,y), b(x,y) possess the
necessary differential properties. In equation (1) q is a
constantly acting force. In the following reasoning for
optimal modeling, boundary conditions of other types,
for example, nonself-adjoint boundary conditions of the
Bitsadze-Samarskii type, are considered similarly, with
the difference that to apply the method of spectral
decomposition of the solution of a boundary value
problem, it is necessary to use the apparatus of the
theory of nonself-adjoint operators [8]. The existence
and uniqueness of a solution to problem (1), (2) were
proved in [2-4].

In boundary conditions (2), the vector of the function
Ji>(t) describes the actions of the pump in the boundary
mode, and the vector function f characterizes the
difference between the surface temperature of the
heating device and the temperature of the liquid (lifting
force).

Let us formulate the problem of optimal modeling of the
heat transfer process as follows.

Let a = 0, then we obtain the linear nonstationary
Navier-Stokes equations [2-4] for the components of the
vector  function w(x,y,t) = (vl(x, y,t),v,(x,y, t))
Gi=-p+q, i=12):

(v
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Under conditions (1'), (2), the problem of optimal
modeling of the heat transfer process is formulated as
follows: find the control functions g;;(t), fi(x,y,t),
i,j = 1,2, as functions of the fluid velocity, i.e. .e. find
the synthesizing f; = fi(v;,t), g;; = gij(v;,t) control
functions that depend on the components of the velocity
vector w and ensure that the velocity of the controlled
fluid flow approaches at points x and time t to a given
o, y,t) = ((p1 oy, t), 0,(x,y, t)) the normal fluid
velocity, and at the end of the controlled process also
approached the specified normal velocity Y (x,y) =
(wl (x,y), ¥, (x, y)) and in such a way that the energies
of forces (pump, heating device) acting on convective
heat transfer are minimal. Then, for each component of
the fluid velocity vector, the criterion of the optimal
modeling problem is written as follows [8] (i = 1,2):

Llto, 9u fi]l = a4 ftz foh fol(vi — @)% dtdxdy +

ay f 3 W Cey, T) = (6, ¥))? dxdy +

a3 ftTO foh folfiz(x' y,t)dt dxdy + f;[a4951 ®+

asgh ()] dt, (3)

to = 0; a;(i = 1,2,3,4,5) — given positive numbers. The
end T of the controlled process is fixed. Thus, the

optimal control problem is formulated as follows: find
the synthesizing functions f; = f;(v;, t), g; = g;(v;, t)
of the control, which depend on the component v; of the
velocity w = (v;, v,) of the flow and together with the
corresponding solution of the initial-boundary value
problem 1’, (2), providing the functional (3) with a
minimum value.

2 Solving the problem of optimal
modeling

By definition, we put S[to, v;(t,.)] = ml}n Li[to, 9i fi] -
giJi

In accordance with the dynamic programming method,
we obtain the nonlinear functional equation of R.
Bellman [1, 8]:
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where u; = u;(t,v;) — 1is the Frechet functional
derivative of the Bellman functional S[t,v;]. From
equation (4) we find the control functions:
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The control functions found by formulas (6) are
synthesizing control functions, that is, as required in the
optimal modeling problem formulated above, they are
functions that depend on the fluid flow rate. Substituting
them into (1), (2), we obtain equations with initial-
boundary conditions that describe the rate of the optimal
fluid flow.

3 Solution of the Bellman equation

We seek the Bellman functional in the form [8]
(w=xypBy, dw=dxdydBdy)

S[t, vi(t, )] = [, f oR(w, Vi (x, B, )i (v, y, t)dw +

J ok ey, v (x, y,)d2 + (D),
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where  R(w,t),k(x,y,t), n(t) are continuously
differentiable functions, moreover, R is a symmetric
function in its phase coordinates, for example:

(x.y.[)’,)/. t) = R(y,X,ﬁ,]/, t) =
Calculating derivatives of the functional S with the
Frechet and t, we find:

= [ oR (@, Ov:(x, B, )0 (. y, ) dew +
Jok' Gy, O)vi(x, y, £)d2 + 1/ (8),
h l
wev) =2 [ R@,0wy.0dpay +
0 0

+k(x,y,t). 7

Hence,

Au; =2 [ [ AR(w,0) - v (B, Y, t) dBdy +
+Ak(x,y,t).

To determine the function R(w,t), k(x,y,t) and n(t)
we obtain the following system of equations:
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with initial-boundary conditions:

R(X, y!ﬁ!y! T) = a26(ﬁ - x)5()/ - }’).
k(x,y,T) = —2a,(x,y), n(T)
RST(x!y!ﬁ!yt) = kST(x:y! t) = 0

- f ' f Yy dudy; (11)

where 6 is the Dirac delta function.

The work [8] is devoted to the solvability of the
method of spectral expansion similar to system (8) -
(11). Issues of spectral expansion in eigenfunctions of
nonself-adjoint operators [8, 9] are studied, and the
proposed methods of dynamic programming and spectral
expansion [8] are substantiated.

4 The solution of the Riccati equation

To solve equation (8), it is convenient to use its operator
representation from [1] with respect to the integral
operator R and put R(t) = Xij=1 81 Px & ¢;, where
¢, Q @ is a positive operator acting from L,(2) in
D(4) according to the rule; [@r ® @lx =
(e, o), Vx € L,(2); ¢, is orthonormal proper
element of the operator A. Then, with respect to R =
R(t) = ||Bmn(t)|| matrix, we obtain a nonlinear matrix
Riccati equation with the initial condition:

R’ —RA — 2dR — v*RMyR — v?RM;R —

— 1R 4 ql=0, (12)
asz

R(T) = a,l, (13)

Where 1 is the identity matrix, A is the diagonal matrix
composed of the eigenvalues of the Laplace
operator; A = (42,13, ..., 13, ...); My, M, are symmetric
matrices composed of the Fourier coefficients of the
boundary  functions: My = a;qomnll, M =
@5 || qiman |l An explicit analytical solution is obtained to
problem (12), (13). A detailed analysis of this solution
will be provided by the authors of this article in other
scientific works.

In system (8) - (11), using the found solution of the
nonlinear Riccati equation (8), (12), (13) with the
corresponding initial-boundary conditions (11) and
substituting this solution in the linear equation (9), the
linear initial -boundary value problem (9), (11). As a
result, substituting the found function k(x,y,t) from
relations (10) and (11), we find the function n(t) . As a
result, optimal controls are found from formulas (6) -
(11). Substituting the found optimal controls in the initial
initial-boundary value problem (1), (2), we obtain the
optimal regime of the fluid velocity for the case a = 0,
i.e. for a linear non-stationary heat transfer problem. In
this case, it is necessary to take into account the

v, da ab
—= —+—=0.
9y

.. .. v,
ntinuit ndition: — =0,
continuity conditio P 3y ™
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5 Linearization of the Novier - Stokes
equations

In [1], for the linearization of equation (1), we proposed
to use the solution of the linear optimal modeling
problem. Now we will show one of the methods of
replacing a nonlinear term with a linear one in the
Navier-Stokes equation by using some (maybe averaged)
values of the wvelocity (solving the optimal linear
problem) and using them as components of the fluid
velocity vector in the complete Navier-Stokes equation.
Let o and 7 be the selected values of the components v;,
i = 1,2 higher than the found optimal velocity vector in
the region Qr = 2X(0,T). Then we write problem (1),
(2) in the following form:

_or 9.
PL=5pP1= 50

v v v
a—;+a(aa—;+16—;) =-—p +vav, +fi+q
v v v

<a—:+a(aa—;+ra—;) =—p,+vav, +fo+q; ,
vy Ov2 _
ox oy =0 (14)

Ul(x’yvo)za(xly)!UZ(x'y’O) :b(x'y):
da b _ . .
£+5_0' 0<y<L0<x<h

vi(o'y' t) = gil(t);vi(h,y; t) = giZ(t)'
v;(x,0,t) =0,v;(x,,t) =0, i=12,

(15)

Also, the problem of optimal modeling (3), (14), (15)
can be solved for each component of the velocity vector
separately.

Note that each of the first two equations (14) can be
reduced to self-adjoint equations by replacing unknown
functions, which is important in solving the problem by

the method of separation of variables. Indeed, put: v; =
1
e2v@** ™)y i = 1,2. Then the basic equations (14) will

take the form:

w; — vAy; +$ (*+1)u; = F;+J;,  (16)

1 1
Fi — e—ﬁ(axﬂ'y)fi, ]i — e—ﬁ(ax+ry)ji_

Ji=-pitq, i=12

The boundary conditions for the function u; take the
form: 0 <y </,

1
u;(0,y,t) = e_ﬂrygu(f) =G, b),

1
w(h,y,t) = e g, () = G, 0),  (17)
u;i(x,0,t) =u;(x,,t) =0,0<x < h.

The optimality criterion (3) is replaced by an equivalent
functional:

T rh 1l
Li[to, Gy, Gig, Fi] = o4 fto Jo L@ — @)? dtdxdy +

top ) [y, T) = —Wi(x,y))? dxdy  (18)

T b ol
+a3f J. fFlz(x,y,t)dtdxdy
top YO YO
T

+ | [a,GA () + asGE(D)] dt.
to

Thus, as mathematical models for optimal modeling
of the heat transfer process, we propose relations (16) -
(18). The procedure for solving optimal control problem
(16) - (18) is similar. We only note that in the Bellman
equation (4) and system (8), (9) new linear terms appear

. ov; v; .
corresponding to the terms a(a£+ '[6—1;), i=1,2

from equations (14). These terms will create some
difficulties in solving the problem by the method of
separation of variables. On the other hand, for the
optimal model (14) - (16) in the corresponding equation
(4) and system (8), (9), these terms will be absent.
Consequently, in solving the control problem, these
difficulties will be removed. In this way, the results
obtained can be compared with experimental data, for
which it is necessary to find the values of the first two
integrals from functional (3) or (18). If necessary, this
procedure of linearization of nonlinear equations (1) of
the heat transfer process can be continued using the
solutions of the last optimal control problem.

The proposed method is convenient in that the
Fourier method can be used to obtain a closed solution of
the optimal heat transfer regime, i.e. method of spectral
expansion in eigenfunctions of the Laplace operator [6-
11].

6 Simplified equation of the Navier-
Stokes equation for the boundary layer

The new mathematical models obtained in this work
make it possible to take into account the influence of
external forces depending on the fluid flow rate. To
apply the Navier-Stokes equations, they are usually
simplified based on physical considerations. One of such
simplifications can be given for a plane flow of an
incompressible fluid. The differential Prandtl equations
of the boundary layer follows from the Navier-Stokes
equations and can be obtained as a result of a
comparative assessment of the terms of these equations
and the continuity equation for fluid flow at large
Reynolds numbers [14]:

2
( v, 0vy _ dp 0°vq
VitV = ——
1 ax T, ay dx dx2
a
£ =0 . (19)
I o, ovy 0
k ox dy -

It is noted in [14] that, at certain values of Re, the
boundary layer of the laminar flow goes over to the
turbulent regime, and certain corrections must be made
to use the Prandtl equations. One of these possible
adjustments can be made using the optimal external
acting forces found above, i.e. clear functional
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dependences of the heating device and pump on the fluid
flow rate. Indeed, if the above linearizations are given in
system (19) and the effects of external forces are taken
into account, then the following linear model of the heat
transfer process can be used to calculate the parameters
of the boundary layer of the fluid flow:

( N )_ 6p+ 0%v,
“\%ox Tay T ox "ayz

1 h l
—— f f R(t, )1 (6, B, y)daxdy —
20, o Jo

1
—27[3’{1@35'3/) +aq

w1 fhflR(t Yoa(t, B, Y)dBd
=0 , W)V (L, p,Y Y —
dy 2a3 )y Jo 2
1
_Z—%kz(t,x,Y)‘l'QZ (19)
v v, _
Jx  dy

In this case, it is necessary to use the optimal model of
the turbulent flow velocity obtained in this work:

v v d
L P
at

1 h ,l
o f f R(t, ), (t, B,y)dBdy —
0 0

1
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0 YO0

1
__kz(t'x'J’) + q:

2a;

dv, Ov
—L+—2=0.
dx  dy

The system of linear equations (20) with the
corresponding initial and boundary conditions (15) can
describe the real process so that the fluid flow rate
approaches as much as possible, perhaps, experimentally
obtained for the modes @ = (@1, 9;), Y = W, P,).
Equations (19") are further simplified if a process
without a gradient flow is considered. Note that to obtain
technical data, it is convenient to solve the first of these
equations by the method of separation of variables.
KOHCTPYHUPOBaHHUE

7 Possible applications in problems of
optimal design of reliable energy
systems

In system (20), the integrand function R(t,x,y), i.e. the
analytically exact positive solution of the nonlinear
Riccati equation found above is the stabilizing integral
core of the fluid velocity, which is very important in the

process of heat transfer in general and the reliability of
the model power system under consideration; k(t, x) the
solution of the linear equation (9) takes into account the
influence of a constantly acting force f;(x,t), also from
the experience of the accepted-desired function-velocity
@(x,t). A constantly acting force can characterize the
influence of geometric parameters on the flow rate, for
example, it can take into account the effect of a non-
circular cross section in bent or rough pipes. It should be
noted that the optimal practical calculations of the
operating mode of the heating device and pump should
be carried out using the formulas of the synthesizing
functions of the controls from (6-11).

Thus, the proposed mathematical model of the
optimal fluid velocity differs significantly from the
traditionally used mathematical model of the heat
transfer process [14] and will be useful in practical
calculations of the reliability of power systems. It (the
system of equations (20)) will also be useful in
specifying the values of the optimal heat transfer
parameters as a whole, which is an important technical
aspect of the reliability of power systems.

Note that if the end of the time interval of the heat
transfer process is not fixed, then in the system of

v,
—2 =0 and
at

this system of equations in this case is simplified.

. .. a
equations (20) it is necessary to set % =0,

Conclusion

The proposed methods of optimal control for studying
the heat transfer process, the Riccati equation solving
system and problems of optimal modeling, as well as the
indicated methods of linearizing the system of Navier-
Stokes equations and the stabilizing additional terms
introduced in it, the obtained optimal functional
dependence of the heating device and pump will be
useful in research and analysis practically required tasks.
The simplified mathematical models indicated in the
work can be widely used in calculating and refining
physical parameters (for example, the boundary layer of
the fluid flow), which is an important point in
technology and the optimal design of reliable energy
systems in general.

In this regard, in theoretical results and apply the
found optimal model of the heat transferring process (the
system of Navier-Stokes equations with stabilizing
additional terms) and the optimal functional dependence
on the pump and heating device mode’s fluid flow rate.
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