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Abstract. This paper studies mathematical models of the heat transfer process of a viscous 

incompressible fluid. Optimal control methods are used to solve the problem of optimal modeling. 

Questions of linearization of the Navier-Stokes equation for a plane fluid flow are considered. The optimal 

modes (optimal functional dependencies) of the pump and heating device are found depending on the fluid 

flow rate.  

Introduction 

In [1], the problems of modeling the process of heat 

transfer of a viscous incompressible fluid and 

linearization of the Navier-Stokes equations were 

considered, and it was proposed to use the solution of the 

problem of optimal control of the heat transfer process to 

linearize the non-stationary nonlinear Navier-Stokes 

equations. In this paper, we demonstrate the method of 

linearization of nonstationary nonlinear Navier-Stokes 

equations indicated in [1] using the example of the first 

boundary value problem for a plane fluid flow. In this 

case, to facilitate the calculation of linearization, the 

selected (maybe averaged) values of the components of 

the fluid velocity vector are used. It is indicated that to 

obtain a closed solution for the optimal simulation of the 

heat transfer process of a viscous incompressible fluid, it 

is convenient to use the Fourier method to solve the 

initial-boundary value problem. 

In the literature [2-5] on the study of mathematical 

models of the heat transfer process, basically, two 

problems are noted: 1) physical issues of the adequacy of 

mathematical models of the heat transfer process; 2) 

mathematical questions of research of nonlinear Navier-

Stokes equations. There is an extensive literature list on 

solutions to these problems. It is impossible to list them. 

A review of works devoted to these problems is beyond 

the scope of this article. Let us note some of them, which 

deal with mathematical questions of problems. In [5], a 

fairly wide list of references on numerical methods for 

solving Navier-Stokes is given. A complete reduced 

mathematical model of the hydrodynamic process, 

depending on the physical parameters, is indicated. For 

the numerical solution of the initial-boundary value 

problem for the Navier-Stokes equations, the Galerkin 

method is applied. In [6], the questions of the influence 

of variability of thermophysical parameters (heat 

capacity, thermal conductivity, and viscosity) of air on 

the result of the accuracy of the numerical solution and 

averaging of the Navier-Stokes equations are considered. 

It is shown that this influence leads to the appearance of 

modeled terms in the averaged and filtered Navier-

Stokes equations. There are numerous scientific works 

devoted to numerical methods for solving boundary 

value problems for the Navier-Stokes equations in 

various settings, see, for example, [2-7]. 

1 Statement of the optimization problem 
for two-dimensional vector differential 
Navier-Stokes equations. 

For a nonstationary and nonlinear two-dimensional (the 

three-dimensional case is considered similarly) vector 

differential Navier-Stokes equation, consider the initial-

boundary conditions (the density is assumed to be ρ = 1) 

[1-5]: 

           

{
 
 
 
 

 
 
 
 
𝜕𝑣1

𝜕𝑡
+ α (𝑣1

𝜕𝑣1

𝜕𝑥
+ 𝑣2

𝜕𝑣1

𝜕𝑦
) =

= −
𝜕𝑝

𝜕𝑥
+ ν𝛥𝑣1 + 𝑓1 + 𝑞1

𝜕𝑣2

𝜕𝑡
+ α (𝑣1

𝜕𝑣2

𝜕𝑥
+ 𝑣2

𝜕𝑣2

𝜕𝑦
) =

−
𝜕𝑝

𝜕𝑦
+ ν𝛥𝑣2 + 𝑓2 + 𝑞2

𝜕𝑣1

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
= 0

                          (1) 

{
 
 

 
 
𝑣1(𝑥, 𝑦, 0) = 𝑎(𝑥, 𝑦), 𝑣2(𝑥, 𝑦, 0) = 𝑏(𝑥, 𝑦);

 
𝜕𝑎

𝜕𝑥
+

𝜕𝑏

𝜕𝑦
= 0; 

𝑣𝑖(0, 𝑦, 𝑡) = 𝑔𝑖1(𝑡), 𝑖 = 1,2,

 𝑣𝑖(ℎ, 𝑦, 𝑡) = 𝑔𝑖2(𝑡), 0 ≤ 𝑦 ≤ 𝑙;

𝑣𝑖(𝑥, 0, 𝑡) = 0, 𝑣𝑖(𝑥, 𝑙, 𝑡) = 0, 0 ≤ 𝑥 ≤ ℎ; 

      (2) 

where α is a non-negative number; 𝑡 ∈ [0, 𝑇]; (𝑥, 𝑦) ∈
𝛺 = {0 ≤ 𝑥 ≤ ℎ, 0 ≤ 𝑦 ≤ 𝑙} -rectangular region with 

border−𝑆 = {𝑥 = 0, 𝑥 = ℎ; 0 ≤ 𝑦 ≤ 𝑙; 0 ≤ 𝑥 ≤ ℎ; 𝑦 =
0, 𝑦 = 𝑙}, 𝑄𝑇 = 𝛺𝑋(0, 𝑇),  𝑆𝑇 = 𝑆𝑋[0, 𝑇]; 𝛥- Δ - Laplace 

operator ν constant coefficient of viscosity; 

𝑤(𝑥, 𝑦, 𝑡) =(𝑣1, 𝑣2), 𝑣𝑖 ≡ 𝑣𝑖(𝑥, 𝑦, 𝑡) − is the vector 

function of the fluid velocity, 𝑝 = 𝑝(𝑥, 𝑦, 𝑡);  
𝑓 = (𝑓1, 𝑓2), 𝑓𝑖 = 𝑓𝑖(𝑥, 𝑦, 𝑡);  𝑞 = (𝑞1, 𝑞2),  

E3S Web of Conferences 216, 01060 (2020)
RSES 2020

https://doi.org/10.1051/e3sconf/202021601060

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/). 

mailto:marytdei@mail.ru


  

𝑞𝑖 = 𝑞𝑖(𝑥, 𝑦, 𝑡),  𝑖 = 1,2.  
It is believed that in equation (1) 𝑝 = 𝑝(𝑥, 𝑦, 𝑡), 

(
𝜕𝑝

𝜕𝑥
= 𝑝1,

𝜕𝑝

𝜕𝑦
= 𝑝2) 2) is the pressure, external forces 

𝑓 = 𝑓(𝑥, 𝑦, 𝑡), 𝑞 = 𝑞(𝑥, 𝑦, 𝑡) and under conditions (2) 

the functions 𝑔𝑖𝑗(𝑡), 𝑎(𝑥, 𝑦), 𝑏(𝑥, 𝑦) possess the 

necessary differential properties. In equation (1) q is a 

constantly acting force. In the following reasoning for 

optimal modeling, boundary conditions of other types, 

for example, nonself-adjoint boundary conditions of the 

Bitsadze-Samarskii type, are considered similarly, with 

the difference that to apply the method of spectral 

decomposition of the solution of a boundary value 

problem, it is necessary to use the apparatus of the 

theory of nonself-adjoint operators [8]. The existence 

and uniqueness of a solution to problem (1), (2) were 

proved in [2-4]. 

In boundary conditions (2), the vector of the function 

𝑔𝑖2(𝑡) describes the actions of the pump in the boundary 

mode, and the vector function 𝑓 characterizes the 

difference between the surface temperature of the 

heating device and the temperature of the liquid (lifting 

force). 

Let us formulate the problem of optimal modeling of the 

heat transfer process as follows.  

Let α = 0, then we obtain the linear nonstationary 

Navier-Stokes equations [2-4] for the components of the 

vector  function 𝑤(𝑥, 𝑦, 𝑡) = (𝑣1(𝑥, 𝑦, 𝑡), 𝑣2(𝑥, 𝑦, 𝑡)) 
(𝑗  𝑖 = −𝑝𝑖 + 𝑞𝑖 , 𝑖 = 1,2): 

{
 
 

 
 
𝜕𝑣1

𝜕𝑡
− 𝜈𝛥𝑣1 = 𝑓1 + 𝑗1

𝜕𝑣2

𝜕𝑡
− 𝜈𝛥𝑣2 = 𝑓2 + 𝑗2
𝜕𝑣1

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
= 0

       .                    (1′) 

Under conditions (1′), (2), the problem of optimal 

modeling of the heat transfer process is formulated as 

follows: find the control functions 𝑔𝑖𝑗(𝑡), 𝑓𝑖(𝑥, 𝑦, 𝑡),

𝑖, 𝑗 = 1,2,  as functions of the fluid velocity, i.e. .e. find 

the synthesizing 𝑓𝑖 = 𝑓𝑖(𝑣𝑖 , 𝑡), 𝑔𝑖𝑗 = 𝑔𝑖𝑗(𝑣𝑖 , 𝑡) control 

functions that depend on the components of the velocity 

vector 𝑤 and ensure that the velocity of the controlled 

fluid flow approaches at points 𝑥 and time 𝑡 to a given 

𝜑(𝑥, 𝑦, 𝑡) = (𝜑1(𝑥, 𝑦, 𝑡), 𝜑2(𝑥, 𝑦, 𝑡)) the normal fluid 

velocity, and at the end of the controlled process also 

approached the specified normal velocity 𝜓(𝑥, 𝑦) =

(𝜓1(𝑥, 𝑦), 𝜓2(𝑥, 𝑦)) and in such a way that the energies 

of forces (pump, heating device) acting on convective 

heat transfer are minimal.Then, for each component of 

the fluid velocity vector, the criterion of the optimal 

modeling problem is written as follows [8] (i = 1,2): 

𝐼𝑖[𝑡0, 𝑔𝑖 , 𝑓𝑖] = 𝛼1 ∫ ∫ ∫ (𝑣𝑖 − 𝜑𝑖)
2𝑙

0

ℎ

0

𝑇

𝑡0
𝑑𝑡𝑑𝑥𝑑𝑦 +

𝛼2 ∫ ∫ (𝑣𝑖(𝑥, 𝑦, 𝑇) − 𝜓𝑖(𝑥, 𝑦))
2𝑙

0

ℎ

0
𝑑𝑥𝑑𝑦 +

𝛼3 ∫ ∫ ∫ 𝑓𝑖
2(𝑥, 𝑦, 𝑡)𝑑𝑡

𝑙

0

ℎ

0

𝑇

𝑡0
𝑑𝑥𝑑𝑦 + ∫ [𝛼4𝑔𝑖1

2 (𝑡) +
𝑇

𝑡0

𝛼5𝑔𝑖2
2 (𝑡)]  𝑑𝑡 ,                                                                    (3)  

𝑡0 = 0; 𝛼𝑖(𝑖 = 1,2,3,4,5) − given positive numbers. The 

end T of the controlled process is fixed. Thus, the 

optimal control problem is formulated as follows: find 

the synthesizing functions 𝑓𝑖 = 𝑓𝑖(𝑣𝑖 , 𝑡), 𝑔𝑖 = 𝑔𝑖(𝑣𝑖 , 𝑡) 
of the control, which depend on the component 𝑣𝑖 of the 

velocity 𝑤 = (𝑣1, 𝑣2) of the flow and together with the 

corresponding solution of the initial-boundary value 

problem 1′, (2), providing the functional (3) with a 

minimum value. 

2 Solving the problem of optimal 
modeling 

By definition, we put 𝑆[𝑡0, 𝑣𝑖(𝑡, . )] = 𝑚𝑖𝑛
𝑔𝑖,𝑓𝑖

𝐼𝑖[𝑡0, 𝑔𝑖 , 𝑓𝑖] . 

In accordance with the dynamic programming method, 

we obtain the nonlinear functional equation of R. 

Bellman [1, 8]: 

−
𝜕𝑆

𝜕𝑡
= 𝑚𝑖𝑛

𝑔𝑖,𝑓𝑖
{𝛼1∫ ∫ (𝑣𝑖 − 𝜑𝑖)

2
𝑙

0

ℎ

0

𝑑Ω +

+ 𝛼3∫ ∫ 𝑓𝑖
2(𝜃, 𝑡)

𝑙

0

ℎ

0

𝑑Ω + 

+∫ ∫  [𝜈𝑣𝑖𝛥𝑢𝑖 + (𝑓𝑖 + 𝑗𝑖)𝑢𝑖] 𝑑Ω +
𝑙

0

ℎ

0

+𝛼4𝑔𝑖1
2 (𝑡) + 𝛼5𝑔𝑖2

2 (𝑡) −                                        (4)    

−∫ [𝜈𝑔𝑖2(𝑡)𝑢𝑖𝑥(ℎ, 𝑦, 𝑡) − −𝜈𝑔𝑖1(𝑡)𝑢𝑖𝑥(0, 𝑦, 𝑡)] 𝑑𝑦
𝑙

0

} 

{
𝑆[𝑇, 𝑣𝑖(𝑇, 𝑥)] == 𝛼2∫ ∫ (𝑣𝑖( 𝜃, 𝑇) − 𝜓𝑖( 𝜃))

2
𝑙

0

ℎ

0

𝑑Ω

𝑢𝑖|𝑆𝑇 = 0,    𝜃 = 𝑥, 𝑦    ,                                           (5)

       

where 𝑢𝑖 = 𝑢𝑖(𝑡, 𝑣𝑖) − is the Frechet functional 

derivative of the Bellman functional 𝑆[𝑡, 𝑣𝑖]. From 

equation (4) we find the control functions: 

                   

{
  
 

  
 𝑓𝑖(𝑥, 𝑡) = −

1

2𝛼3
 𝑢𝑖(𝑡, 𝑣𝑖)

𝑔𝑖1(𝑡) = −
𝜈

2𝛼4
∫ 𝑢𝑖𝑥(0, 𝑦, 𝑡) 𝑑𝑦,
𝑙

0

𝑔𝑖2(𝑡) =
𝜈

2𝛼5
∫ 𝑢𝑖𝑥(𝑙, 𝑦, 𝑡) 𝑑𝑦
𝑙

0

          (6) 

The control functions found by formulas (6) are 

synthesizing control functions, that is, as required in the 

optimal modeling problem formulated above, they are 

functions that depend on the fluid flow rate. Substituting 

them into (1), (2), we obtain equations with initial-

boundary conditions that describe the rate of the optimal 

fluid flow. 

3  Solution of the Bellman equation 

We seek the Bellman functional in the form [8]  

(𝜔 = 𝑥, 𝑦, 𝛽, 𝛾;    𝑑𝜔 = 𝑑𝑥𝑑𝑦𝑑𝛽𝑑𝛾) 

𝑆[𝑡, 𝑣𝑖(𝑡, . )] = ∫
𝛺
∫
𝛺
𝑅(𝜔, 𝑡)𝑣𝑖(𝑥, 𝛽, 𝑡)𝑣𝑖(𝛾, 𝑦, 𝑡)𝑑𝜔 + 

∫
𝛺
𝑘(𝑥, 𝑦, 𝑡)𝑣𝑖(𝑥, 𝑦, 𝑡)𝑑𝛺 + 𝜂(𝑡), 
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where 𝑅(𝜔, 𝑡) , 𝑘(𝑥, 𝑦, 𝑡), 𝜂(𝑡) are continuously 

differentiable functions, moreover, R is a symmetric 

function in its phase coordinates, for example: 

(𝑥, 𝑦, 𝛽, 𝛾, 𝑡) ≡ 𝑅(𝑦, 𝑥, 𝛽, 𝛾, 𝑡) = ⋯ . 

Calculating derivatives of the functional S with the 

Frechet and t, we find: 

  
𝜕𝑆

𝜕𝑡
= ∫

𝛺
∫
𝛺
𝑅′(𝜔, 𝑡)𝑣𝑖(𝑥, 𝛽, 𝑡)𝑣𝑖(𝛾, 𝑦, 𝑡)𝑑𝜔 + 

∫
𝛺
𝑘′(𝑥, 𝑦, 𝑡)𝑣𝑖(𝑥, 𝑦, 𝑡)𝑑𝛺 + 𝜂

′(𝑡), 

𝑢𝑖(𝑡, 𝑣𝑖) = 2∫ ∫ 𝑅(𝜔, 𝑡)
𝑙

0

𝑣𝑖(𝛽, 𝛾, 𝑡)
ℎ

0

𝑑𝛽𝑑𝛾 + 

+𝑘(𝑥, 𝑦, 𝑡).                                          (7)  

Hence,  

 𝛥𝑢𝑖 = 2∫ ∫ 𝛥𝑅(𝜔, 𝑡)
𝑙

0
∙ 𝑣𝑖(𝛽, 𝛾, 𝑡)

ℎ

0
𝑑𝛽𝑑𝛾 + 

+𝛥𝑘(𝑥, 𝑦, 𝑡). 

To determine the function 𝑅(𝜔, 𝑡), 𝑘(𝑥, 𝑦, 𝑡) and 𝜂(𝑡)  
we obtain the following system of equations: 

𝑅′(𝜔, 𝑡) + 2𝜈𝛥𝑅(𝜔, 𝑡) −  

 −
1

𝛼3
∫ ∫ 𝑅(𝑥, 𝜉, 𝜇, 𝑦, 𝑡)𝑅(𝜇, 𝛾, 𝛽, 𝜉, 𝑡)𝑑𝜇𝑑𝜉 −

𝑙

0

ℎ

0

 

−
𝜈2

𝛼4
∫ ∫ 𝑅𝑥(0, 𝜉, 𝑥, 𝑦, 𝑡)𝑅𝑥(0, 𝜇, 𝛽, 𝛾, 𝑡)𝑑𝜇𝑑𝜉 +

𝑙

0

𝑙

0
                                                 

                                                                  (8) 

+
𝜈2

𝛼5
∫ ∫ 𝑅𝑥(𝑙, 𝜉, 𝑥, 𝑦, 𝑡)𝑅𝑥(𝑙, 𝜇, 𝛽, 𝛾, 𝑡)𝑑𝜇𝑑𝜉

𝑙

0

𝑙

0

 

+𝛼1𝛿(𝛽 − 𝑥)𝛿(𝛾 − 𝑦) = 0, 

𝑘′(𝑥, 𝑦, 𝑡) + 𝜈𝛥𝑘(𝑥, 𝑦, 𝑡) − 

−
1

𝛼3
∫ ∫ 𝑅(𝑥, 𝑦, 𝛽, 𝛾, 𝑡)𝑘(𝛽, 𝛾, 𝑡)𝑑𝛽𝑑𝛾 −

𝑙

0

ℎ

0

 

 

−
𝜈2

𝛼4
∫ 𝑅𝑥(0, 𝜉, 𝑥, 𝑦, 𝑡)𝑘𝑥(0, 𝜉, 𝑡)𝑑𝜉
𝑙

0

 

−
𝜈2

𝛼5
∫ 𝑅𝑥(𝑙, 𝜉, 𝑥, 𝑦, 𝑡)𝑘𝑥(𝑙, 𝜉, 𝑡)𝑑𝜉
𝑙

0

− 

−2𝛼1𝜑𝑖 + 2𝑅𝑗𝑖 = 0;      

𝜂′(𝑡) −
1

4𝛼3
∫ ∫ 𝑘2(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦 −

𝑙

0

ℎ

0

 

−
𝜈2

4𝛼4
∫ 𝑘2(0, 𝑦, 𝑡)𝑑𝑦
𝑙

0

−
𝜈2

4𝛼5
∫ 𝑘2(𝑙, 𝑦, 𝑡)𝑑𝑦
𝑙

0

+ 

+∫ ∫ 𝑗𝑖(𝑥, 𝑦, 𝑡)𝑘(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦
𝑙

0

ℎ

0

+ 

+𝛼1 ∫ ∫ 𝜑𝑖
2(𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦

𝑙

0

ℎ

0
= 0               (10) 

with initial-boundary conditions: 

 

{

𝑅(𝑥, 𝑦, 𝛽, 𝛾, 𝑇) = 𝛼2𝛿(𝛽 − 𝑥)𝛿(𝛾 − 𝑦),

𝑘(𝑥, 𝑦, 𝑇) = −2𝛼2𝜓(𝑥, 𝑦),

𝑅𝑆𝑇(𝑥, 𝑦, 𝛽, 𝛾𝑡) = 𝑘𝑆𝑇(𝑥, 𝑦, 𝑡) = 0
𝜂(𝑇)

=   ∫ ∫ 𝜓𝑖
2(𝑥, 𝑦)

𝑙

0

ℎ

0

𝑑𝑥𝑑𝑦;     (11) 

where δ is the Dirac delta function. 

The work [8] is devoted to the solvability of the 

method of spectral expansion similar to system (8) - 

(11). Issues of spectral expansion in eigenfunctions of 

nonself-adjoint operators [8, 9] are studied, and the 

proposed methods of dynamic programming and spectral 

expansion [8] are substantiated. 

4 The solution of the Riccati equation 

To solve equation (8), it is convenient to use its operator 

representation from [1] with respect to the integral 

operator R and put  𝑅(𝑡) = ∑ 𝛽𝑘𝑙
∞
𝑘𝑙=1 𝜑𝑘⊗𝜑𝑙, where 

𝜑𝑘⊗𝜑𝑙  is a positive operator acting from 𝐿2(𝛺) in 

𝐷(𝛥) according to the rule; [𝜑𝑘 ⊗𝜑𝑙]𝑥 =
(𝑥, 𝜑𝑘)𝜑𝑙 ,   ∀𝑥 ∈ 𝐿2(𝛺); 𝜑𝑙 is orthonormal proper 

element of the operator Δ. Then, with respect to 𝑅 =
𝑅(𝑡) = ‖𝛽𝑚𝑛(𝑡)‖ matrix, we obtain a nonlinear matrix 

Riccati equation with the initial condition: 

𝑅′ − 𝑅𝐴 − 2𝑑𝑅 − 𝜈2𝑅𝑀0𝑅 − 𝜈
2𝑅𝑀1𝑅 − 

−
1

𝛼3
𝑅2 + 𝛼1𝐼 = 0,                           (12) 

        𝑅(𝑇) = 𝛼2𝐼,                                                 (13) 

Where I is the identity matrix, 𝐴 is the diagonal matrix 

composed of the eigenvalues of the Laplace 

operator; 𝐴 = (𝜆1
2, 𝜆2

2 , … , 𝜆𝑛
2 , … ); 𝑀0, 𝑀ℎ are symmetric 

matrices composed of the Fourier coefficients of the 

boundary functions: 𝑀0 = 𝛼4
−1‖𝑞0𝑚𝑛‖, 𝑀1 =

𝛼5
−1‖𝑞1𝑚𝑛‖. An explicit analytical solution is obtained to 

problem (12), (13). A detailed analysis of this solution 

will be provided by the authors of this article in other 

scientific works. 

In system (8) - (11), using the found solution of the 

nonlinear Riccati equation (8), (12), (13) with the 

corresponding initial-boundary conditions (11) and 

substituting this solution in the linear equation (9), the 

linear initial -boundary value problem (9), (11). As a 

result, substituting the found function 𝑘(𝑥, 𝑦, 𝑡) from 

relations (10) and (11), we find the function η(t) . As a 

result, optimal controls are found from formulas (6) - 

(11). Substituting the found optimal controls in the initial 

initial-boundary value problem (1′), (2), we obtain the 

optimal regime of the fluid velocity for the case α = 0, 

i.e. for a linear non-stationary heat transfer problem. In 

this case, it is necessary to take into account the 

continuity condition: 
𝜕𝑣1

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
= 0 ,  

𝜕𝑎

𝜕𝑥
+

𝜕𝑏

𝜕𝑦
= 0. 
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5  Linearization of the Novier - Stokes 
equations 

In [1], for the linearization of equation (1), we proposed 

to use the solution of the linear optimal modeling 

problem. Now we will show one of the methods of 

replacing a nonlinear term with a linear one in the 

Navier-Stokes equation by using some (maybe averaged) 

values of the velocity (solving the optimal linear 

problem) and using them as components of the fluid 

velocity vector in the complete Navier-Stokes equation. 

Let 𝜎 and 𝜏 be the selected values of the components 𝑣𝑖, 
𝑖 = 1,2 higher than the found optimal velocity vector in 

the region 𝑄𝑇 = 𝛺𝑋(0, 𝑇).  Then we write problem (1), 

(2) in the following form: 

 𝑝1 =
𝜕𝑝

𝜕𝑥
, 𝑝1 =

𝜕𝑝

𝜕𝑦
 ; 

{
 
 

 
 
𝜕𝑣1

𝜕𝑡
+ 𝛼 (𝜎

𝜕𝑣1

𝜕𝑥
+ 𝜏

𝜕𝑣1

𝜕𝑦
) = −𝑝1 + 𝜈𝛥𝑣1 + 𝑓1 + 𝑞1

𝜕𝑣2

𝜕𝑡
+ 𝛼 (𝜎

𝜕𝑣2

𝜕𝑥
+ 𝜏

𝜕𝑣2

𝜕𝑦
) = −𝑝2 + 𝜈𝛥𝑣2 + 𝑓2 + 𝑞2

𝜕𝑣1

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
= 0                                                        (14)

  ,  

{
 
 

 
 
𝑣1(𝑥, 𝑦, 0) = 𝑎(𝑥, 𝑦), 𝑣2(𝑥, 𝑦, 0) = 𝑏(𝑥, 𝑦);   

  
𝜕𝑎

𝜕𝑥
+

𝜕𝑏

𝜕𝑦
= 0;  0 ≤ 𝑦 ≤ 𝑙;  0 ≤ 𝑥 ≤ ℎ; 

𝑣𝑖(0, 𝑦, 𝑡) = 𝑔𝑖1(𝑡), 𝑣𝑖(ℎ, 𝑦, 𝑡) = 𝑔𝑖2(𝑡),

𝑣𝑖(𝑥, 0, 𝑡) = 0, 𝑣𝑖(𝑥, 𝑙, 𝑡) = 0,    𝑖 = 1,2,

(15)  

Also, the problem of optimal modeling (3), (14), (15) 

can be solved for each component of the velocity vector 

separately. 

Note that each of the first two equations (14) can be 

reduced to self-adjoint equations by replacing unknown 

functions, which is important in solving the problem by 

the method of separation of variables. Indeed, put: 𝑣𝑖 =

𝑒
1

2𝜈
(𝜎𝑥+𝜏𝑦)𝑢𝑖 , 𝑖 = 1,2. Then the basic equations (14) will 

take the form: 

 𝑢𝑖𝑡  − ν𝛥𝑢𝑖  +
1

4ν
 (𝜎2 + 𝜏2)𝑢𝑖 =  𝐹𝑖 + 𝐽𝑖   ,        (16) 

𝐹𝑖 = 𝑒
−
1
2𝜈
(𝜎𝑥+𝜏𝑦)𝑓𝑖,    𝐽𝑖 = 𝑒

−
1
2𝜈
(𝜎𝑥+𝜏𝑦)𝑗𝑖  ;  

𝑗𝑖 = −𝑝𝑖 + 𝑞𝑖  , 𝑖 = 1,2. 

The boundary conditions for the function 𝑢𝑖 take the 

form: 0 ≤ 𝑦 ≤ 𝑙, 

𝑢𝑖(0, 𝑦, 𝑡) =  𝑒
−
1
2𝜈
𝜏𝑦𝑔𝑖1(𝑡) ≡ 𝐺𝑖1(𝑦, 𝑡),  

𝑢𝑖(ℎ, 𝑦, 𝑡) =  𝑒
−
1

2𝜈
(𝜎𝑥+𝜏𝑦)𝑔𝑖2(𝑡) ≡ 𝐺𝑖2(𝑦, 𝑡),        (17)             

𝑢𝑖(𝑥, 0, 𝑡) = 𝑢𝑖(𝑥, 𝑙, 𝑡) = 0, 0 ≤ 𝑥 ≤ ℎ. 

The optimality criterion (3) is replaced by an equivalent 

functional: 

𝐼𝑖[𝑡0, 𝐺𝑖1, 𝐺𝑖2, 𝐹𝑖] = α1 ∫ ∫ ∫ (𝑢𝑖 − 𝜑𝑖)
2𝑙

0

ℎ

0

𝑇

t0
𝑑𝑡𝑑𝑥𝑑𝑦 +  

+α2 ∫ ∫ (𝑢𝑖(𝑥, 𝑦, 𝑇) − −ψi(𝑥, 𝑦))
2𝑙

0

ℎ

0
𝑑𝑥𝑑𝑦   (18) 

+α3∫ ∫ ∫ 𝐹1
2(𝑥, 𝑦, 𝑡)d𝑡

𝑙

0

ℎ

0

𝑇

𝑡0

𝑑𝑥𝑑𝑦 

+ ∫ [α4𝐺𝑖1
2 (𝑡) + α5𝐺𝑖2

2 (𝑡)]
𝑇

𝑡0

 𝑑𝑡.  

Thus, as mathematical models for optimal modeling 

of the heat transfer process, we propose relations (16) - 

(18). The procedure for solving optimal control problem 

(16) - (18) is similar. We only note that in the Bellman 

equation (4) and system (8), (9) new linear terms appear 

corresponding to the terms 𝛼 (𝜎
𝜕𝑣𝑖

𝜕𝑥
+ 𝜏

𝜕𝑣𝑖

𝜕𝑦
) , 𝑖 = 1,2 

from equations (14). These terms will create some 

difficulties in solving the problem by the method of 

separation of variables. On the other hand, for the 

optimal model (14) - (16) in the corresponding equation 

(4) and system (8), (9), these terms will be absent. 

Consequently, in solving the control problem, these 

difficulties will be removed. In this way, the results 

obtained can be compared with experimental data, for 

which it is necessary to find the values of the first two 

integrals from functional (3) or (18). If necessary, this 

procedure of linearization of nonlinear equations (1) of 

the heat transfer process can be continued using the 

solutions of the last optimal control problem. 

The proposed method is convenient in that the 

Fourier method can be used to obtain a closed solution of 

the optimal heat transfer regime, i.e. method of spectral 

expansion in eigenfunctions of the Laplace operator [6-

11]. 

6 Simplified equation of the Navier-
Stokes equation for the boundary layer 

The new mathematical models obtained in this work 

make it possible to take into account the influence of 

external forces depending on the fluid flow rate. To 

apply the Navier-Stokes equations, they are usually 

simplified based on physical considerations. One of such 

simplifications can be given for a plane flow of an 

incompressible fluid. The differential Prandtl equations 

of the boundary layer follows from the Navier-Stokes 

equations and can be obtained as a result of a 

comparative assessment of the terms of these equations 

and the continuity equation for fluid flow at large 

Reynolds numbers [14]: 

{
 
 

 
 𝑣1

𝜕𝑣1

𝜕𝑥
+ 𝑣2

𝜕𝑣1

𝜕𝑦
= −

𝑑𝑝

𝑑𝑥
+ ν

𝜕2𝑣1

𝜕𝑥2

𝜕𝑝

𝜕𝑦
= 0

𝜕𝑣1

𝜕𝑥
+

𝜕𝑣2

𝜕𝑦
= 0

 .             (19)  

It is noted in [14] that, at certain values of Re, the 

boundary layer of the laminar flow goes over to the 

turbulent regime, and certain corrections must be made 

to use the Prandtl equations. One of these possible 

adjustments can be made using the optimal external 

acting forces found above, i.e. clear functional 
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dependences of the heating device and pump on the fluid 

flow rate. Indeed, if the above linearizations are given in 

system (19) and the effects of external forces are taken 

into account, then the following linear model of the heat 

transfer process can be used to calculate the parameters 

of the boundary layer of the fluid flow: 

 

{
 
 
 
 
 
 

 
 
 
 
 
 𝛼 (𝜎

𝜕𝑣1
𝜕𝑥

+ 𝜏
𝜕𝑣1
𝜕𝑦
) = −

𝜕𝑝

𝜕𝑥
+ ν

𝜕2𝑣1
𝜕𝑦2

−

−
1

2𝛼3
∫ ∫ 𝑅(𝑡, 𝜔)𝑣1(𝑡, 𝛽, 𝛾)𝑑𝛼𝑑𝛾

𝑙

0

ℎ

0

−

−
1

2𝛼3
𝑘1(𝑡, 𝑥, 𝑦) + 𝑞1

𝜕𝑝

𝜕𝑦
= −

1

2𝛼3
∫ ∫ 𝑅(𝑡, 𝜔)𝑣2(𝑡, 𝛽, 𝛾)𝑑𝛽𝑑𝛾

𝑙

0

ℎ

0

−

−
1

2𝛼3
𝑘2(𝑡, 𝑥, 𝑦) + 𝑞2                                            (19

′)      

      
𝜕𝑣1
𝜕𝑥

+
𝜕𝑣2
𝜕𝑦

= 0 .

 

In this case, it is necessary to use the optimal model of 

the turbulent flow velocity obtained in this work: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
𝜕𝑣1
𝜕𝑡

+ 𝛼 (𝜎
𝜕𝑣1
𝜕𝑥

+ 𝜏
𝜕𝑣1
𝜕𝑦
) = −𝑝1 + 𝜈𝛥𝑣1 −

−
1

2𝛼3
∫ ∫ 𝑅(𝑡, 𝜔)𝑣1(𝑡, 𝛽, 𝛾)𝑑𝛽𝑑𝛾

𝑙

0

ℎ

0

−

−
1

2𝛼3
𝑘1(𝑡, 𝑥, 𝑦) + 𝑞1                              (20)

𝜕𝑣2
𝜕𝑡

+ 𝛼 (𝜎
𝜕𝑣2
𝜕𝑥

+ 𝜏
𝜕𝑣2
𝜕𝑦
) = −𝑝2 + 𝜈𝛥𝑣2 −

−
1

2𝛼3
∫ ∫ 𝑅(𝑡, 𝜔)𝑣1(𝑡, 𝛽, 𝛾)𝑑𝛽𝑑𝛾 −

𝑙

0

ℎ

0

−
1

2𝛼3
𝑘2(𝑡, 𝑥, 𝑦) + 𝑞2

𝜕𝑣1
𝜕𝑥

+
𝜕𝑣2
𝜕𝑦

= 0  .

  

The system of linear equations (20) with the 

corresponding initial and boundary conditions (15) can 

describe the real process so that the fluid flow rate 

approaches as much as possible, perhaps, experimentally 

obtained for the modes 𝜑 = (𝜑1, 𝜑2),  𝜓 = (𝜓1, 𝜓2). 
Equations (19′)  are further simplified if a process 

without a gradient flow is considered. Note that to obtain 

technical data, it is convenient to solve the first of these 

equations by the method of separation of variables.  

конструирование 

7 Possible applications in problems of 
optimal design of reliable energy 
systems 

In system (20), the integrand function 𝑅(𝑡, 𝑥, 𝑦), i.e. the 

analytically exact positive solution of the nonlinear 

Riccati equation found above is the stabilizing integral 

core of the fluid velocity, which is very important in the 

process of heat transfer in general and the reliability of 

the model power system under consideration; 𝑘(𝑡, 𝑥) the 

solution of the linear equation (9) takes into account the 

influence of a constantly acting force 𝑓1(𝑥, 𝑡), also from 

the experience of the accepted-desired function-velocity 

𝜑(𝑥, 𝑡). A constantly acting force can characterize the 

influence of geometric parameters on the flow rate, for 

example, it can take into account the effect of a non-

circular cross section in bent or rough pipes. It should be 

noted that the optimal practical calculations of the 

operating mode of the heating device and pump should 

be carried out using the formulas of the synthesizing 

functions of the controls from (6-11).  

Thus, the proposed mathematical model of the 

optimal fluid velocity differs significantly from the 

traditionally used mathematical model of the heat 

transfer process [14] and will be useful in practical 

calculations of the reliability of power systems. It (the 

system of equations (20)) will also be useful in 

specifying the values of the optimal heat transfer 

parameters as a whole, which is an important technical 

aspect of the reliability of power systems. 

Note that if the end of the time interval of the heat 

transfer process is not fixed, then in the system of 

equations (20) it is necessary to set 
𝜕𝑣1

𝜕𝑡
= 0,

𝜕𝑣2

𝜕𝑡
= 0 and 

this system of equations in this case is simplified. 

 

Conclusion 

The proposed methods of optimal control for studying 

the heat transfer process, the Riccati equation solving 

system and problems of optimal modeling, as well as the 

indicated methods of linearizing the system of Navier-

Stokes equations and the stabilizing additional terms 

introduced in it, the obtained optimal functional 

dependence of the heating device and pump will be 

useful in research and analysis practically required tasks. 

The simplified mathematical models indicated in the 

work can be widely used in calculating and refining 

physical parameters (for example, the boundary layer of 

the fluid flow), which is an important point in 

technology and the optimal design of reliable energy 

systems in general. 

     In this regard, in theoretical results and apply the 

found optimal model of the heat transferring process (the 

system of Navier-Stokes equations with stabilizing 

additional terms) and the optimal functional dependence 

on the pump and heating device mode’s fluid flow rate.  
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