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Abstract. This paper discusses mathematical models of the heat transfer process of a viscous
incompressible fluid. Optimal control methods are used to solve the problem of optimal modeling.
Questions of linearization of the Navier - Stokes equation are considered. The optimal modes (optimal
functional dependencies) of the pump and heating device are found depending on the fluid flow rate.

Introduction

The development of technological solutions for the use
of heat pipes and heat pumps in heat supply systems is
one of the most important scientific and practical
problems of our time. As can be seen from the literature
[1-6], there is an increasing interest in the development
of technological solutions for the use of pipelines in heat
supply  systems, modeling the corresponding
technological processes and determining the main
physical parameters. Therefore, at present, the study of
them both from the theoretical and practical sides is one
of the urgent tasks. As is known, in the study of
technological processes of heat transfer, gas transmission
and power transmission, the established fundamental
laws of physics and their basic equations written
according to the similarity condition are used. In
scientific and practical research, studying some
individual ~ processes,  either  theoretically  or
experimentally, results are obtained in relation to certain
physical parameters. In similar engineering-physical
objects-processes (for example, thermal, gas and
electrical) based on the laws of physics, the differential
equations of Navier-Stokes or Maxwell are used. By
simplifying these equations, a relationship is established
between the parameters; come to a conclusion about
physical processes. Of course, the results obtained from
these simplifications are very practical and valuable.
However, guidelines that are given without taking into
account the most important physical parameters are local
in nature, lead to large discrepancies between theoretical
results and actual processes, and, rather, the results refer
to the functional relationship of the process, which does
not fully describe its actual steady state. Since the second
half of the last century, in the scientific research and
experiments cited, they have evaded the option of adding
additional terms for the Navier-Stokes equations in
accordance with the state of real technological processes.
For example, in the scientific monograph [4] it is shown
that the Navier-Stokes equations can have solutions that
do not correspond to the Reynolds number in infinitely
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distant regions (pipes), and differential equations are
studied with the addition of an additional linear term,
although, as noted, it is not experimentally reasonable.

Optimization of engineering and physical processes
using nonlinear Navier-Stokes equations is one of the
poorly studied problems. The study of inhomogeneous or
non-self-adjoint boundary conditions, or the effect of
pumps in heat transfer networks, or the addition of an
additional term to the Navier-Stokes equations, more
suitable for technological processes of heat conduction,
is one of the urgent problems. In modern installations,
pumps are widely used in the heat transfer process,
which affect the rate of heat flow, which leads to
convective heat transfer in a turbulent heat flow. As a
result, automation and finding the optimal pump
operation mode depending on the speed, temperature and
time of the heat flow during the heat transfer process is
one of the most modern technological problems.

In this work, for a complete study of engineering and
technological processes, i.e. for real processes of optimal
control synthesis, we propose a systematic approach - an
optimal model for adding the functional dependence of
control functions on the fluid flow rate as an additional
term to the Navier-Stokes equations.

1 Statement of the optimization problem
for the differential Navier-Stokes
equations

For a nonstationary and nonlinear vector differential
Navier-Stokes equation, consider the initial boundary
conditions (the density is assumed to be p=1) [3-6]:

Lw = w; — vAw + avw,, = —gradp + f + f1,
divw =0 (D)
WlST = g(t)l (2)

where a is positive number, t € [0,T],Q is a region (or
body) of three-dimensional Cartesian space with a

W|i=o = a(x), diva =0,
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sufficiently smooth surface S, Qr = QX(0,T), S =
SX[0,T]; 4 is a Laplace operator and v is a constant
coefficient of viscosity. Let's denote by L»(Qr) (and
Ly(Q)) as the set (space) of three-dimensional vector
functions consisting of component-functions that are
square-integrable in the domain Qr (or Q). We introduce
in this space the usual scalar product and the norm of
elements. It is assumed that in the equation (1), p =
p(x,t) is a pressure of exterior forces f = f(x,t), f; =
fi(x,t), and in the conditions of (2), the functions g =
g(t), a(x) possess the necessary differential properties,
whereas w(x,t) = v;(x, ) v, (x, t), v3(x,t)) (x =
(x4, X4, %x3)) is vector-rate of the fluid, in which w,(x, t)
characterizes the (local) rate of change by time at points
of x. In the equation (1), nonlinear vector v,wy,
characterizes the change of rate (or velocity) from one
point to another point. If @ = 0, then we will get the
linear nan-stationary Navier-Stokes equation [4-6]. In
the equation (1), f; is constant force. In the following
optimal modeling issue, boundary conditions of other
types (for example, non-self-adjoint boundary conditions
of the Bitsadze-Samarskii type [7]) are considered
similarly, with the difference that in order to apply the
method of spectral decomposition of the solution of a
boundary value problem, it is necessary to use the
apparatus of the theory of non-self-adjoint operators [7].
The existence and uniqueness of the solution to the
problems (1), (2) have been proven in [4-6].

In boundary conditions (2), the vector function g (t)
describes the action of the pump in the boundary mode,
and the vector function f characterizes the difference
between the surface temperature of the heating device
and the temperature of the liquid (lift force).

Under conditions (1), (2), the problem of optimal
modeling of the heat transfer process is formulated as
follows. Find the control functions g(?), f(x, t) as
functions of the fluid velocity, i.e. find the synthesizing f'
=f, t), g =g (w t) control functions that depend on
the velocity vector w and ensure that the velocity of the
controlled fluid flow approaches the specified normal
velocity ¢ (x , ¢) of the liquid, and at the end of the
controlled process also approached the specified normal
speed v (x) and, so that the energies of forces (pump,
heating device) acting on convective heat transfer were
minimal.

Then, the criteria of optimal modeling problem can
be written as follows:

It 9. f1 = s [ Iw — @lI? dt + +ayllwy —
YI2 f (sl fliPdt+a] g (©)1)dt, 3)

where t, =0, wy =w(x,T), ;(i =1,2,3,4) are the
given positive numbers. The end (at pointT) of
controlling process is fixed. In this way, from the task of
optimal modeling it can be concluded up that in order to
find the synthesizing functions f = f(w,t) and g =
g(w,t) of control, which depend on flow rate and,
together with the corresponding solution w to the initial-
boundary value problems (1), (2), the functional (3)
minimum value would be assigned.

2 Solving the problem of optimal
modeling

To find a solution to the synthesis problems (1), (2),
(3), the dynamic programming method was used [7].
According to this method, the minimum function is
denoted by S[t,w]. As a result, S[ty,w(t,.)] =
rgnifn] [to,g,f]. In accordance with the dynamic

programming method, a nonlinear functional equation
of R. Bellman [7] is obtained as follows:

a .
— a—f = rgllfn{v(w,du) + OC(W, Vkuxk) +

t(=gradp + f + fi,u) — 4)
—vg(Ouys,+arllw — ol + aslI 112 + aulg(©12},
S[T,w(T,x)] = a,llwy — PII%, ug, = uls, =0, (5)

where u = u(t,w) is the Fréchet functional derivative
of the Bellman function S[t,w]. From the equation (4)
we find the control functions

flx, ) = —i u(t,w); g(t) = i Vi, (t,w).  (6)

The control functions found by formulas (6) are
synthesizing control functions, that is, as required in the
optimal modeling problem formulated above, they are
functions that depend on the fluid flow rate. Substituting
them in (1), (2), we obtain equations with initial
boundary conditions describing the rate of the optimal
fluid flow.

3 Solution of the Bellman equation

If the fluid flow is described by a linear equation,
then in equations (1), (4) and (6) it is necessary to
formally set @« = 0. In this case, the Bellman function,
which is determined by using equations (4) - (6), is
should be the sum of square and linear forms and,
therefore, the functional derivative u(t,w) is expressed
by the linear form of R(t)w, moreover, matrix operator
R(t) is determined through the nonlinear matrix of
Riccati equations [7-11]. Indeed, if the solution to
problem (4), (5) is sought in the form:

Sle,w(, 0] = R@®Ow,w) + (k(©),w) +n(0),

where k(t) is a three-dimensional vector function, 7(t)
is a scalar function, the operator matrix R(t) is
symmetric and is defined as follows: R(t) =
R(t,x,y) = R(t,y, x), then calculating the Frechet and t
derivatives of the functional S we find:

as/ot = (R'(t)w,w) + (k'(t),w) +1/(t),
u(t,w) = 2R(t)w + k(t).

Accordingly,Au = AQR(t)w + k(t)) = 2AR(Dw +
Ak(t). To determine the matrix operator R(t), the
vector k(t), and the scalar function n(t), such system of
operator equations are obtained:
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R'(t) + 2vAR(t) — aiRZ(t) -
3

2
— i Risy () + 8 =0, (7

2

k'(t) + vAk(t) — O(%R(t)k(t) - ;_4RxST(t)kaT(t) -

—20,0(t) + 2R(t)f, = 0;

1O = L eI =~ ks, O + Fuk(E)) +
4“3 4“4 xS Y

+oyllp@®I* =0

with the following initial-boundary conditions:
R(T) = a;8,k(T) = —2a,0, 1(T) = e [lY|I%,

RST(t) = kST(t) = 0'

where 6 is a Dirac delta function. The work [7] is
devoted to the solvability of the obtained system of
equations.

And in the case when a # 0, the Bellman functional
can be sought (as in the linear case) as a sum of square
and linear forms. But in the latter case, a nonlinear term
with the coefficient a is added to the matrix Riccati
equation. In the general case, to find the value of the
functional S, and hence the value of the control functions
from relations (6), one can use the approximate method
shown in [7]. According to this method, the time interval
of the control process is divided into elementary parts
and the initial condition (5) is used; first, a solution is
found for an elementary section containing the initial
condition (5), then a solution is found step by step for the
entire control interval.

Remark. If the viscosity coefficient v — 0, then
the effect of the pump tends to be zero. In this case,
g(t) = 0 and the optimal state of the liquid is described
by the equation (1) without the second term with v,

provided that f(x,t) = —% u(t,w) and the boundary
3

conditions are considered to be as follows:

Wli=o = a(x), diva =0, W|ST =0.

4 Linearization of the Novier-Stokes
equations

Note that equations (1) and (7) are nonlinear, i.e.
quasilinear equations. Since synthesizing optimal
controls are expressed in terms of linear forms u(t, w)
i.e. is expressed by the linear form R(t)w,, i.e. using the
solution R(?) of the matrix Riccati equation, and this
nonlinear equation is further complicated by the fact that
for a # 0 it contains a nonlinear term with v, then an
important modeling problem is the problem of
linearization of the control process. In the literature [4],
to linearize equation (1), it is proposed to replace v, with
another given b (x) (as noted there, by unconfirmed

experience) vector. In this paper, we propose to replace
v, for a # 0, either with the corresponding components
of the solution (state vector) w(x,t), obtained by the
optimal control for a = 0, or replace the solution to the
initial-boundary value problem (1) - (3 ) for f = g = 0,
or its approximate solution.

5 Other problems of optimal modeling

The optimal model through equations (1) - (6) is written
for a fixed state of the last moment of the control
process. If the end T of the control process is not fixed,
then in the Bellman equation the S[t, w] does not depend
on the t time parameter, in other words, S[t,w] = S[w].
As a result, in the equation (4), setting dS/dt = 0, for
S[w] we will obtain the functional equation. Therefore,
to determine the matrix operator R, corresponding
algebraic matrix equation of Riccati [7] will be obtained.
In this case, solving the problem is simplified compared
to a dynamic situation. The optimal modeling problem is
also solved for the cases when T = co. In this case, by
similarity, the optimal fluid flow regime is proposed. In
order to write an optimal stationary external model for
stationary Navier-Stokes equations, it is necessary to add
an additional condition which is W|jy5e = w> and
determine the minimum of the corresponding energy
function. Similarly, it is proposed to use the maximum
principle [8-11] in order to solve the problem of optimal
modeling of a stationary heat transfer process in
cylindrical coordinates, when the axis of a circular
straight pipe is directed symmetrically along the x
coordinate axis.

If the heat transfer regime is based on non-uniform
and non-self-adjoint boundary conditions, for example,
of the Bitsadze-Samarskii type, in which the one-
dimensional case can be written as w(0,t) = 0;
w,(0,t) —w, (L, t) = g(t), then in order to solve the
boundary value problems, it is proposed to apply the
method of spectral expansion in the Riesz basis of root
vectors [7, 12].

6 Simplified Navier-Stokes

equations

The literature contains numerous examples of the
application of the Navier-Stokes equations (see bibl.).
The new mathematical models obtained in this work
make it possible to take into account the influence of
external forces depending on the fluid flow rate.
Naturally, in order to apply the results obtained, the
proposed optimal mathematical models must be
appropriately simplified. One of these simplifications
can be given for the cases of two-dimensional and one-
dimensional fluid flow. For example, in a one-
dimensional flow, the linear Navier-Stokes equation with
an additional found optimal term has the form (a = 0)

oy, 0%y, dp

1 l
2tV oxz ——a—Z—%LR(t,xJ)W(t,}O—
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— 5 k(6,5 + +f(t%). (8)

This equation should be solved with the initial and
boundary conditions corresponding to (2):

1
vilsy = 5= (25 Resy (66,9001 (6 0)dy + ks, (6,0 )

v;(x,0) = a = const.

Equation (8) is a linear integro-differential equation
in partial derivatives with respect to v; = v;(x, t). The
integrand function R(t,X,y) is a positive solution of
the Riccati equation and it is the stabilizing integral
kernel of the fluid velocity, which is very important in
the process of heat transfer in general and the reliability
of the model power system under consideration; k(t, x)-
the solution of the linear equation (7) takes into account
the influence of a constantly acting force f;(x,t), also
from the experience of the accepted-desired function-
velocity ¢@(x,t). A constantly acting force can
characterize the influence of geometric parameters on the
flow rate, for example, it can take into account the effect
of a non-circular cross section in bent or rough pipes. It
should be noted that the optimal practical calculations of
the operating mode of the heating device and pump
should be carried out from the optimal law of
synthesizing functions of controls:

flx,t;v,) = —ﬁ u(t,vy) =
1 l
——<2f R(t,x, y)v, (¢, y)dy + k(t,x)>;
204 0
1
g(t! vl) = 2—054 vuXST(t! W) =

v l
2_<2f RxST(tﬁx'Y)lﬁ(t'Y)dy + kXST(t! x))
0(4 0

Thus, the proposed mathematical model of the
optimal fluid velocity differs significantly from the
traditionally used mathematical model of the heat
transfer process [13] and will be useful in practical
calculations of the reliability of power systems. In this
case, we note that if the end of the time interval of the
heat transfer process is not fixed, then in equation (8) it

. ov . . .
is necessary to set 6_t1= 0 and this equation is

simplified in this case.

In two-dimensional or three-dimensional problems
with respect to the components of the optimal velocity
vector, a system of two or three nonlinear integro-
differential equations in partial derivatives is obtained,
respectively. These equations will be useful in refining
the values of the optimal heat transfer parameters, for
example, the boundary layer of a fluid flow, which is an
important technical aspect of the reliability of power
systems.

Conclusion

The proposed optimal control methods for studying the
heat transfer process, solving problems of optimal
modeling, as well as the introduced stabilizing additional
terms in the system of Navier-Stokes equations, the
obtained optimal functional dependences of the heating
device and pump will be useful in the study and analysis
of practically required problems. The simplified
mathematical models indicated in the work can be
widely used in calculations and refinement of physical
parameters, which is an important point in technology
and the optimal design of reliable energy systems in
general.

In this regard, in theoretical and practical studies, it is
advisable to proceed from the proposed theoretical
results and apply the found optimal model of the heat
transfer process (the system of Navier-Stokes equations
with stabilizing additional terms) and the optimal
functional dependences of the pump and heating device
mode on the fluid flow rate.
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