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Abstract. This paper discusses mathematical models of the heat transfer process of a viscous 

incompressible fluid. Optimal control methods are used to solve the problem of optimal modeling. 

Questions of linearization of the Navier - Stokes equation are considered. The optimal modes (optimal 

functional dependencies) of the pump and heating device are found depending on the fluid flow rate. 

Introduction 

The development of technological solutions for the use 

of heat pipes and heat pumps in heat supply systems is 

one of the most important scientific and practical 

problems of our time. As can be seen from the literature 

[1-6], there is an increasing interest in the development 

of technological solutions for the use of pipelines in heat 

supply systems, modeling the corresponding 

technological processes and determining the main 

physical parameters. Therefore, at present, the study of 

them both from the theoretical and practical sides is one 

of the urgent tasks. As is known, in the study of 

technological processes of heat transfer, gas transmission 

and power transmission, the established fundamental 

laws of physics and their basic equations written 

according to the similarity condition are used. In 

scientific and practical research, studying some 

individual processes, either theoretically or 

experimentally, results are obtained in relation to certain 

physical parameters. In similar engineering-physical 

objects-processes (for example, thermal, gas and 

electrical) based on the laws of physics, the differential 

equations of Navier-Stokes or Maxwell are used. By 

simplifying these equations, a relationship is established 

between the parameters; come to a conclusion about 

physical processes. Of course, the results obtained from 

these simplifications are very practical and valuable. 

However, guidelines that are given without taking into 

account the most important physical parameters are local 

in nature, lead to large discrepancies between theoretical 

results and actual processes, and, rather, the results refer 

to the functional relationship of the process, which does 

not fully describe its actual steady state. Since the second 

half of the last century, in the scientific research and 

experiments cited, they have evaded the option of adding 

additional terms for the Navier-Stokes equations in 

accordance with the state of real technological processes. 

For example, in the scientific monograph [4] it is shown 

that the Navier-Stokes equations can have solutions that 

do not correspond to the Reynolds number in infinitely 

distant regions (pipes), and differential equations are 

studied with the addition of an additional linear term, 

although, as noted, it is not experimentally reasonable. 

Optimization of engineering and physical processes 

using nonlinear Navier-Stokes equations is one of the 

poorly studied problems. The study of inhomogeneous or 

non-self-adjoint boundary conditions, or the effect of 

pumps in heat transfer networks, or the addition of an 

additional term to the Navier-Stokes equations, more 

suitable for technological processes of heat conduction, 

is one of the urgent problems. In modern installations, 

pumps are widely used in the heat transfer process, 

which affect the rate of heat flow, which leads to 

convective heat transfer in a turbulent heat flow. As a 

result, automation and finding the optimal pump 

operation mode depending on the speed, temperature and 

time of the heat flow during the heat transfer process is 

one of the most modern technological problems. 

In this work, for a complete study of engineering and 

technological processes, i.e. for real processes of optimal 

control synthesis, we propose a systematic approach - an 

optimal model for adding the functional dependence of 

control functions on the fluid flow rate as an additional 

term to the Navier-Stokes equations. 

1 Statement of the optimization problem 
for the differential Navier-Stokes 
equations 

For a nonstationary and nonlinear vector differential 

Navier-Stokes equation, consider the initial boundary 

conditions (the density is assumed to be ρ = 1) [3-6]: 

ℒ𝑤 ≡ 𝑤𝑡 − 𝜈𝛥𝑤 + 𝛼𝑣𝑘𝑤𝑥𝑘
= −𝑔𝑟𝑎𝑑𝑝 + 𝑓 + 𝑓1,  

                            𝑑𝑖𝑣𝑤 = 0                                        (1) 

𝑤|𝑡=0 = 𝑎(𝑥),       𝑑𝑖𝑣𝑎 = 0,       𝑤|𝑆𝑇
= 𝑔(𝑡),           (2) 

where 𝛼 is positive number, 𝑡 ∈ [0, 𝑇], Ω is a region (or 

body) of three-dimensional Cartesian space with a 
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sufficiently smooth surface 𝑆, 𝑄𝑇 = Ω𝑋(0, 𝑇),   𝑆𝑇 =
𝑆𝑋[0, 𝑇];  𝛥 is a Laplace operator and 𝜈 is a constant 

coefficient of viscosity. Let`s denote by L2(QT) (and 

L2(Ω)) as the set (space) of three-dimensional vector 

functions consisting of component-functions that are 

square-integrable in the domain QT (or Ω). We introduce 

in this space the usual scalar product and the norm of 

elements. It is assumed that in the equation (1), 𝑝 =
𝑝(𝑥, 𝑡) is a pressure of exterior forces 𝑓 = 𝑓(𝑥, 𝑡), 𝑓1 =
𝑓1(𝑥, 𝑡), and in the conditions of (2), the functions 𝑔 =
𝑔(𝑡), 𝑎(𝑥) possess the necessary differential properties, 

whereas 𝑤(𝑥, 𝑡) = 𝑣1(𝑥, 𝑡)(, 𝑣2(𝑥, 𝑡),  𝑣3(𝑥, 𝑡)) (𝑥 =
(𝑥1, 𝑥2, 𝑥3)) is vector-rate of the fluid, in which 𝑤𝑡(𝑥, 𝑡) 

characterizes the (local) rate of change by time at points 

of 𝑥. In the equation (1), nonlinear vector 𝑣𝑘𝑤𝑥𝑘
 

characterizes the change of rate (or velocity) from one 

point to another point. If  𝛼 = 0, then we will get the 

linear nan-stationary Navier-Stokes equation [4-6]. In 

the equation (1), 𝑓1 is constant force. In the following 

optimal modeling issue, boundary conditions of other 

types (for example, non-self-adjoint boundary conditions 

of the Bitsadze-Samarskii type [7]) are considered 

similarly, with the difference that in order to apply the 

method of spectral decomposition of the solution of a 

boundary value problem, it is necessary to use the 

apparatus of the theory of non-self-adjoint operators [7]. 

The existence and uniqueness of the solution to the 

problems (1), (2) have been proven in [4-6].  

In boundary conditions (2), the vector function g (t) 

describes the action of the pump in the boundary mode, 

and the vector function f characterizes the difference 

between the surface temperature of the heating device 

and the temperature of the liquid (lift force). 

Under conditions (1), (2), the problem of optimal 

modeling of the heat transfer process is formulated as 

follows. Find the control functions g(t), f(x, t) as 

functions of the fluid velocity, i.e. find the synthesizing f 

= f (w, t), g = g (w, t) control functions that depend on 

the velocity vector w and ensure that the velocity of the 

controlled fluid flow approaches the specified normal 

velocity φ (x , t) of the liquid, and at the end of the 

controlled process also approached the specified normal 

speed ψ (x) and, so that the energies of forces (pump, 

heating device) acting on convective heat transfer were 

minimal. 

Then, the criteria of optimal modeling problem can 

be written as follows: 

𝐼[𝑡0, 𝑔, 𝑓] = 𝛼1 ∫ ‖𝑤 − 𝜑‖2𝑇

𝑡0
𝑑𝑡 + +𝛼2‖𝑤𝑇 −

𝜓‖2 ∫ (𝛼3‖𝑓‖2𝑑𝑡+𝛼4|𝑔(𝑡)|2)𝑑𝑡,
𝑇

𝑡0
   (3) 

where 𝑡0 = 0, 𝑤𝑇 = 𝑤(𝑥, 𝑇), 𝛼𝑖(𝑖 = 1,2,3,4) are the 

given positive numbers. The end (at point 𝑇) of 

controlling process is fixed. In this way, from the task of 

optimal modeling it can be concluded up that in order to 

find the synthesizing functions 𝑓 = 𝑓(𝑤, 𝑡) and 𝑔 =
𝑔(𝑤, 𝑡) of control, which depend on flow rate and, 

together with the corresponding solution 𝑤 to the initial-

boundary value problems (1), (2), the functional (3) 

minimum value would be assigned.  

2 Solving the problem of optimal 
modeling 

To find a solution to the synthesis problems (1), (2), 

(3), the dynamic programming method was used [7]. 

According to this method, the minimum function is 

denoted by 𝑆[𝑡, 𝑤]. As a result, 𝑆[𝑡0, 𝑤(𝑡, . )] =
min
𝑔,𝑓

𝐼[𝑡0, 𝑔, 𝑓]. In accordance with the dynamic 

programming method, a nonlinear functional equation 

of R. Bellman [7] is obtained as follows:    

            −
𝜕𝑆

𝜕𝑡
= 𝑚𝑖𝑛

𝑝,𝑓
{𝜈(𝑤, 𝛥𝑢) + 𝛼(𝑤, 𝑣𝑘𝑢𝑥𝑘

) +  

                      +(−𝑔𝑟𝑎𝑑𝑝 + 𝑓 + 𝑓1, 𝑢) −                  (4) 

−𝜈𝑔(𝑡)𝑢𝑥𝑆𝑇
+𝛼1‖𝑤 − 𝜑‖2 + 𝛼3‖𝑓‖2 + 𝛼4|𝑔(𝑡)|2}, 

𝑆[𝑇, 𝑤(𝑇, 𝑥)] = 𝛼2‖𝑤𝑇 − 𝜓‖2,  𝑢𝑆𝑇
= 𝑢|𝑆𝑇

= 0,   (5) 

where  𝑢 = 𝑢(𝑡, 𝑤) is the Fréchet functional derivative 

of the Bellman function 𝑆[𝑡, 𝑤]. From the equation (4) 

we find the control functions 

𝑓(𝑥, 𝑡) = −
1

2𝛼3
 𝑢(𝑡, 𝑤);  𝑔(𝑡) =

1

2𝛼4
 𝜈𝑢𝑥𝑆𝑇

(𝑡, 𝑤).    (6) 

The control functions found by formulas (6) are 

synthesizing control functions, that is, as required in the 

optimal modeling problem formulated above, they are 

functions that depend on the fluid flow rate. Substituting 

them in (1), (2), we obtain equations with initial 

boundary conditions describing the rate of the optimal 

fluid flow. 

3  Solution of the Bellman equation 

If the fluid flow is described by a linear equation, 

then in equations (1), (4) and (6) it is necessary to 

formally set 𝛼 = 0. In this case, the Bellman function, 

which is determined by using equations (4) - (6), is 

should be the sum of square and linear forms and, 

therefore, the functional derivative 𝑢(𝑡, 𝑤) is expressed 

by the linear form of 𝑅(𝑡)𝑤, moreover, matrix operator 

𝑅(𝑡) is determined through the nonlinear matrix of 

Riccati equations [7-11]. Indeed, if the solution to 

problem (4), (5) is sought in the form: 

𝑆[𝑡, 𝑤(∙, 𝑡)] = (𝑅(𝑡)𝑤, 𝑤) + (𝑘(𝑡), 𝑤) + 𝜂(𝑡), 

where 𝑘(𝑡) is a three-dimensional vector function, 𝜂(𝑡) 

is a scalar function, the operator matrix 𝑅(𝑡) is 

symmetric and is defined as follows: 𝑅(𝑡) =
𝑅(𝑡, 𝑥, 𝑦) ≡ 𝑅(𝑡, 𝑦, 𝑥), then calculating the Frechet and t 

derivatives of the functional S we find: 

𝜕𝑆/𝜕𝑡 = (𝑅′(𝑡)𝑤, 𝑤) + (𝑘′(𝑡), 𝑤) + η′(𝑡), 

𝑢(𝑡, 𝑤) = 2𝑅(𝑡)𝑤 + 𝑘(𝑡). 

Accordingly,Δ𝑢 = Δ(2𝑅(𝑡)𝑤 + 𝑘(𝑡)) = 2ΔR(t)𝑤 +
Δ𝑘(𝑡). To determine the matrix operator 𝑅(𝑡), the 

vector 𝑘(𝑡), and the scalar function 𝜂(𝑡), such system of 

operator equations are obtained: 
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𝑅′(𝑡) + 2νΔ𝑅(𝑡) −
1

α3

𝑅2(𝑡) − 

−
ν2

α4
𝑅𝑥𝑆𝑇

2 (𝑡) + α1δ = 0,  (7) 

𝑘′(𝑡) + νΔ𝑘(𝑡) −
1

α3

𝑅(𝑡)𝑘(𝑡) −
ν2

α4

𝑅𝑥𝑆𝑇
(𝑡)𝑘𝑥𝑆𝑇

(𝑡) − 

−2α1𝜑(𝑡) + 2𝑅(𝑡)𝑓1 = 0; 

η′(t) −
1

4α3

‖𝑘(𝑡)‖2 −
ν2

4α4

‖𝑘𝑥𝑆𝑇
(𝑡)‖

2
+ (𝑓1, 𝑘(𝑡)) + 

+α1‖𝜑(𝑡)‖2 = 0   

with the following initial-boundary conditions: 

𝑅(𝑇) = α2δ, 𝑘(𝑇) = −2α2ψ,    𝜂(𝑇) = α2‖ψ‖2, 

𝑅𝑆𝑇
(𝑡) = 𝑘𝑆𝑇

(𝑡) = 0, 

where δ is a Dirac delta function. The work [7] is 

devoted to the solvability of the obtained system of 

equations. 

And in the case when α ≠ 0, the Bellman functional 

can be sought (as in the linear case) as a sum of square 

and linear forms. But in the latter case, a nonlinear term 

with the coefficient α is added to the matrix Riccati 

equation. In the general case, to find the value of the 

functional S, and hence the value of the control functions 

from relations (6), one can use the approximate method 

shown in [7]. According to this method, the time interval 

of the control process is divided into elementary parts 

and the initial condition (5) is used; first, a solution is 

found for an elementary section containing the initial 

condition (5), then a solution is found step by step for the 

entire control interval. 

     Remark. If the viscosity coefficient 𝜈 → 0, then 

the effect of the pump tends to be zero. In this case, 

𝑔(𝑡) = 0 and the optimal state of the liquid is described 

by the equation (1) without the second term with ν, 

provided that 𝑓(𝑥, 𝑡) = −
1

2α3
 𝑢(𝑡, 𝑤) and the boundary 

conditions are considered to be as follows: 

𝑤|t =0 = 𝑎(𝑥), 𝑑𝑖𝑣𝑎 = 0,    w|ST
= 0. 

4 Linearization of the Novier-Stokes 
equations 

Note that equations (1) and (7) are nonlinear, i.e. 

quasilinear equations. Since synthesizing optimal 

controls are expressed in terms of linear forms 𝑢(𝑡, 𝑤)  
i.e. is expressed by the linear form 𝑅(𝑡)𝑤,, i.e. using the 

solution R(t) of the matrix Riccati equation, and this 

nonlinear equation is further complicated by the fact that 

for α ≠ 0 it contains a nonlinear term with 𝑣𝑘 then an 

important modeling problem is the problem of 

linearization of the control process. In the literature [4], 

to linearize equation (1), it is proposed to replace 𝑣𝑘 with 

another given b (x) (as noted there, by unconfirmed 

experience) vector. In this paper, we propose to replace 

𝑣𝑘 for α ≠ 0, either with the corresponding components 

of the solution (state vector) 𝑤(𝑥, 𝑡),  obtained by the 

optimal control for α = 0, or replace the solution to the 

initial-boundary value problem (1) - (3 ) for 𝑓 = 𝑔 = 0, 

or its approximate solution. 

5 Other problems of optimal modeling 

The optimal model through equations (1) - (6) is written 

for a fixed state of the last moment of the control 

process. If the end T of the control process is not fixed, 

then in the Bellman equation the 𝑆[𝑡, 𝑤] does not depend 

on the 𝑡 time parameter, in other words, 𝑆[𝑡, 𝑤] ≡  𝑆[𝑤]. 
As a result, in the equation (4), setting 𝜕𝑆/𝜕𝑡 = 0, for 

𝑆[𝑤] we will obtain the functional equation. Therefore, 

to determine the matrix operator 𝑅, corresponding 

algebraic matrix equation of Riccati [7] will be obtained. 

In this case, solving the problem is simplified compared 

to a dynamic situation. The optimal modeling problem is 

also solved for the cases when 𝑇 = ∞. In this case, by 

similarity, the optimal fluid flow regime is proposed. In 

order to write an optimal stationary external model for 

stationary Navier-Stokes equations, it is necessary to add 

an additional condition which is  𝑤||𝑥|→∞ = 𝑤∞ and 

determine the minimum of the corresponding energy 

function. Similarly, it is proposed to use the maximum 

principle [8-11] in order to solve the problem of optimal 

modeling of a stationary heat transfer process in 

cylindrical coordinates, when the axis of a circular 

straight pipe is directed symmetrically along the 𝑥 

coordinate axis. 

If the heat transfer regime is based on non-uniform 

and non-self-adjoint boundary conditions, for example, 

of the Bitsadze-Samarskii type, in which the one-

dimensional case can be written as       𝑤(0, 𝑡) = 0;  
𝑤𝑥(0, 𝑡) − 𝑤𝑥(𝑙, 𝑡) = 𝑔(𝑡), then in order to solve the 

boundary value problems, it is proposed to apply the 

method of spectral expansion in the Riesz basis of root 

vectors [7, 12]. 

6 Simplified Navier-Stokes 
equations 

The literature contains numerous examples of the 

application of the Navier-Stokes equations (see bibl.). 

The new mathematical models obtained in this work 

make it possible to take into account the influence of 

external forces depending on the fluid flow rate. 

Naturally, in order to apply the results obtained, the 

proposed optimal mathematical models must be 

appropriately simplified. One of these simplifications 

can be given for the cases of two-dimensional and one-

dimensional fluid flow. For example, in a one-

dimensional flow, the linear Navier-Stokes equation with 

an additional found optimal term has the form (𝛼 = 0) 

𝜕𝑣1

𝜕𝑡
− 𝜈

𝜕2𝑣1

𝜕𝑥2
= −

𝑑𝑝

𝑑𝑥
−

1

2𝛼3

∫ 𝑅(𝑡, 𝑥, 𝑦)𝑣1(𝑡, 𝑦) −
𝑙

0
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−
1

2𝛼3
𝑘(𝑡, 𝑥) + +𝑓1(𝑡, 𝑥).           (8) 

This equation should be solved with the initial and 

boundary conditions corresponding to (2): 

𝑣1|𝑆𝑇
=

𝜈

2𝛼4
(2 ∫ 𝑅𝑥𝑆𝑇

(𝑡, 𝑥, 𝑦)𝑣1(𝑡, 𝑦)𝑑𝑦 + 𝑘𝑥𝑆𝑇
(𝑡, 𝑥)

𝑙

0
) ; 

𝑣1(𝑥, 0) = 𝑎 = 𝑐𝑜𝑛𝑠𝑡. 

Equation (8) is a linear integro-differential equation 

in partial derivatives with respect to 𝑣1 = 𝑣1(𝑥, 𝑡). The 

integrand function  𝑅(𝑡, 𝑥, 𝑦) is a positive solution of 

the Riccati equation and it is the stabilizing integral 

kernel of the fluid velocity, which is very important in 

the process of heat transfer in general and the reliability 

of the model power system under consideration; 𝑘(𝑡, 𝑥)- 

the solution of the linear equation (7) takes into account 

the influence of a constantly acting force 𝑓1(𝑥, 𝑡), also 

from the experience of the accepted-desired function-

velocity 𝜑(𝑥, 𝑡). A constantly acting force can 

characterize the influence of geometric parameters on the 

flow rate, for example, it can take into account the effect 

of a non-circular cross section in bent or rough pipes. It 

should be noted that the optimal practical calculations of 

the operating mode of the heating device and pump 

should be carried out from the optimal law of 

synthesizing functions of controls: 

                   𝑓(𝑥, 𝑡; 𝑣1) = −
1

2𝛼3
 𝑢(𝑡, 𝑣1) =   

−
1

2𝛼3

(2 ∫ 𝑅(𝑡, 𝑥, 𝑦)𝑣1(𝑡, 𝑦)𝑑𝑦 + 𝑘(𝑡, 𝑥)
𝑙

0

) ; 

𝑔(𝑡; 𝑣1) =
1

2𝛼4

 𝜈𝑢𝑥𝑆𝑇
(𝑡, 𝑤) = 

𝜈

2𝛼4

(2 ∫ 𝑅𝑥𝑆𝑇
(𝑡, 𝑥, 𝑦)𝑣1(𝑡, 𝑦)𝑑𝑦 + 𝑘𝑥𝑆𝑇

(𝑡, 𝑥)
𝑙

0

). 

Thus, the proposed mathematical model of the 

optimal fluid velocity differs significantly from the 

traditionally used mathematical model of the heat 

transfer process [13] and will be useful in practical 

calculations of the reliability of power systems. In this 

case, we note that if the end of the time interval of the 

heat transfer process is not fixed, then in equation (8) it 

is necessary to set 
𝜕𝑣1

𝜕𝑡
= 0 and this equation is 

simplified in this case. 

In two-dimensional or three-dimensional problems 

with respect to the components of the optimal velocity 

vector, a system of two or three nonlinear integro-

differential equations in partial derivatives is obtained, 

respectively. These equations will be useful in refining 

the values of the optimal heat transfer parameters, for 

example, the boundary layer of a fluid flow, which is an 

important technical aspect of the reliability of power 

systems. 

 

Conclusion 

The proposed optimal control methods for studying the 

heat transfer process, solving problems of optimal 

modeling, as well as the introduced stabilizing additional 

terms in the system of Navier-Stokes equations, the 

obtained optimal functional dependences of the heating 

device and pump will be useful in the study and analysis 

of practically required problems. The simplified 

mathematical models indicated in the work can be 

widely used in calculations and refinement of physical 

parameters, which is an important point in technology 

and the optimal design of reliable energy systems in 

general. 

In this regard, in theoretical and practical studies, it is 

advisable to proceed from the proposed theoretical 

results and apply the found optimal model of the heat 

transfer process (the system of Navier-Stokes equations 

with stabilizing additional terms) and the optimal 

functional dependences of the pump and heating device 

mode on the fluid flow rate. 
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