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Abstract—In recent years, many scholars have used different methods to predict and select stocks. 
Empirical studies have shown that in multi-factor models, machine learning algorithms perform better on 
stock selection than traditional statistical methods. This article selects six classic machine learning 
algorithms, and takes the CSI 500 component stocks as an example, using 19 factors to select stocks. In 
this article, we introduce four of these algorithms in detail and apply them to select stocks. Finally, we 
back-test six machine learning algorithms, list the data, analyze the performance of each algorithm, and 
put forward some ideas on the direction of machine learning algorithm improvement. 

1 INTRODUCTION 
There are many mature algorithms for stock selection that 
have been widely used by quantitative investment 
companies. At present, strategies such as fundamental 
analysis [1], qualitative analysis [2], and value investing 
[3] have been used by many stock investors, and have 
obtained considerable abnormal return. 

In this article, we first obtain relevant data of the 
CSI500 component stocks and the ETF500 index from 
January 1, 2015 to December 31, 2019 through WIND 
information. We select 19 candidate factors for machine 
learning algorithms and divide these factors into six 
categories. We expect that a quantitative strategy to adjust 
stock portfolios every three months can be given based on 
the multi-factor model. Note that the data may not be 
complete, partly because the data was extracted too early 
so that the stock was not listed at that time. As a result, we 
ignore this part of these stocks within the relevant data 
missing time, and do not consider using these stocks to 
invest in the next time period. 

This article takes the first time adjustment as an 
example, using the yield and factor value on March 31, 
2015, excluding stocks with non-existent yield and 
partially blank factor values, and then evaluates the 
performance of the remaining 382 stocks. We use 
different machine learning algorithms such as linear 
regression, adaboost, support vector machine, random 
forest, gradient boosting and XGBoost for stock selection, 
and then calculate the abnormal returns separately. Finally, 
we use python to simulate different strategies to obtain 
data, evaluating the performance of different strategies 
and propose a quantitative strategy based on machine 

learning multi-factor models for Chinese low and medium 
market capitalization stocks, together with some ideas on 
the direction of machine learning algorithm improvement. 

2 LINEAR REGRESSION MODEL 

2.1 Data Selection and Preprocessing 

Above all, we list 19 factors which would be used in this 
linear regression model and machine learning algorithms 
mentioned later: 

TABLE I.  CANDIDATE FACTORS LIST AND CLASSIFICATION 

Valuation factor pe; pb; ps; pcf_ncf 

Growth factor yoyop; yoyprofit; yoy_or; growth_roe 

Profit factor roe; roa; wgsd_ocftosales; dividendyield2 

Liquidity factor val_lnfloatmv; tech_turnoverrate10 

Momentum factor tech_revs60; tech_revs120 

Leverage factor debttoassets; fa_equityassetradio; 
fa_fixedassettoasset 

Due to the difference in the numerical range of 
different factors and the unit of measurement, we 
normalize the same factor for different stocks on March 
31, 2015: 

S
XXZ i

i


  , where X  denotes sample mean and 

S  denotes sample standard deviation. For writing 
convenience, we still take the normalized factor value 
as

iX . At the same time, let ),( ii yx be the vector of 
factors’ value and the corresponding return of the next 
period. 
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2.2 Linear Regression Model 

Above all, perform a linear regression between each 
factor and next period's yield to obtain the correlation 
coefficient, then test the level of each coefficient. We use 
SPSS to get the t values and p values, and remove the 
irrelevant factors. As a result, there are ten factors 
remaining. Next, we test the correlation between the ten 
remaining factors and find that some of them are 
significantly correlated. In order to eliminate the problem 
that the mean square error (MSE) of the linear regression 
model caused by multicollinearity is too large which will 
cause a poor performance of this model, we choose to use 
Stepwise Regression Method to filter the remaining 
factors to obtain a better model. 

The basic idea of stepwise regression [4] is to 
introduce variables one by one. The condition for 
introducing variables is that the sum of partial regression 
square is significant by the F test. Meanwhile, after 
introducing new variables, the selected variables must be 
tested again, and those underperforming factors will be 
removed. 

Here, we set the significant level at 0.15 and results 
are as follows: 

TABLE II.  SUMMARY OF STEPWISE SELECTION 

St
ep 

Variabl
e 

Entered 

Partial 
R-

Square 

Model  
R-

Square 

C(p) F Value Pr > F 

1 X7 0.7379 0.7379 62.7105 1066.88 <.0001 
2 X10 0.0159 0.7538 38.0665 24.38 <.0001 
3 X6 0.0143 0.7680 16.1036 23.22 <.0001 
4 X9 0.0073 0.7754 5.7798 12.30 0.0005 
5 X3 0.0016 0.7770 5.0516 2.74 0.0990 
6 X8 0.0015 0.7785 4.4944 2.57 0.1095 

 
As a result, six ultimate factors are selected by 

stepwise regression. It can be seen that the R-square value 
is 0.7785 > 0.75, which indicates the model performs well. 
Finally, through SAS the coefficients of the multiple 
regression model are determined: 

57707.007059.000137.003471.0
84189.064751.100002301.0

1098

763




XXX
XXXY  

where Y is the rate of returns, X3 is yoyop, X6 is 
tech_turnoverrate10, X7 is tech_revs60, X8 is 
tech_revs120, X9 is fa_fixedassettoasset, and X10 is 
dividendyield2. 

2.3 Validation Testing 

Model fitting effect and residual plot are shown below. 
 

 
Figure 1.  Multivariate linear regression model fitting effect 

 
Figure 2.  Multivariate linear regression model residual plot 

From Fig. 1, it can be seen that the predicted value and 
the actual rate of returns have a clearly linear relationship 
with a slope of 1. Besides, from Fig. 2, except for some 
extreme values, the majority of values are distributed in a 
horizontal band-shaped region centered on the origin. We 
can consider that the model estimates the rate of returns 
well.  

3 ADAPTIVE BOOSTING ALGORITHM 
Adaboost algorithm was proposed by Freund and 
Schapire in 1995 [5]. As an improvement of the boosting 
algorithm, Adaboost's principle is to use iteration to train 
and filter the weak classifiers by adjusting the sample 
weight coefficients, and finally form a strong classifier. 

For stock selection, we use the following adaboost 
algorithm: 

3.1 Data Preprocessing 

Due to the sensitivity of the machine learning algorithm to 
the data and to prevent overfitting, we first sort all the 
stocks in the training set for each factor according to the 
value of the corresponding factor from large to small, and 
divide the ranking by the total number of shares. This can 
control the corresponding factor value to  1,0 . 

Then sort the stock returns for the next period, taking 
the top 40% of the stocks as strong buy stocks and 
recording them as ＋1. Correspondingly, taking the last 
40% of stocks as strong sell stocks and recording as －1. 
The middle 20% of stocks are served as noise data and no 
longer considered in the next discussion. 
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3.2 Training Algorithm 

In the initial state of first-round training, we give equal 
weights to all stocks marked as ＋1 or －1. Then, the 
factor values of N stocks corresponding to each factor are 
sorted by quantity. For all factors, N stocks are divided 
into K categories, which are recorded as 1, 2, 3,…, K. 
Then calculate the sum of the corresponding weights of 
the stocks with ＋1 or －1 in each category (denoted by k) 
of factor (denoted by i) in particular, and record it as k

iW
. 

Next, we construct the statistic: 

.
1



 
K

k

k
i

k
ii WWZ  

We use the value of 
iZ  to distinguish the weak 

classifier. Intuitively, since the sum of weights in each 
classification is always 1, the larger difference between 

k
iW

and k
iW

, the smaller the value of statistic iZ , which 
implies the effect of the corresponding weak classifier is 
more significant. 

For the statistic 
iZ calculated by each factor, we 

choose the factor 1i with the smallest iZ  to build the first 
weak classifier: 
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It is worth noting that every time we generate a new 
weak classifier, as a result we need to adjust the weight 
of the data. 

For the data that has been classified correctly, we 
reduce its weight; on the contrary, for the data that has 
not been classified correctly, we increase its weight 
appropriately. We update the weights by the following 
recursive formula: 

)()()(
1

imiii xhyx
m

x
m eww

 
   

where m represents the weak classifier of the m-th tier. 

Then, we readjust the weights in a proportional 
manner, in order to make the sum of the weights be 1. 
We repeat the above process, and can get a weak 
classifier )(2 xh  relevant to the second factor denoted by 

2i , which is different from 1i . 
Finally, we add these weak classifiers to get a strong 

classifier: 
.)()( 

i
i xhxH  

4 RANDOM FOREST ALGORITHM 
In the 1980s, the decision tree algorithm was first 
proposed, using repeated bifurcation strategies for 
classification or regression. However, the time complexity 
of this algorithm is too high, instead, Breiman first 
proposed the random forest algorithm in 2001 [6] based 
on decision tree algorithm. We will briefly describe the 

principle of the random forest algorithm, and apply this 
algorithm to stock selection strategy. 

4.1 Decision Tree Algorithm, CART  

In the random forest algorithm, we use CART algorithm 
to classify attributes. First, we introduce the Gini index to 
express the information gain ratio. For sample set  , 
assuming that there are K categories, and the probability 
that a random sample point in   belongs to the k-th 
category is denoted as kP , then the Gini index of sample 
set   is defined as 

.1)1()(
1

2

1




K

k
k

K

k
kk PPPGini

 
Obviously, the smaller the Gini index, the higher the 

purity of  . Then for each factor A, sorting from large to 
small, we divide stocks into two categories: 

1 ,
2 .Then 

after splitting according to this factor, the Gini index is 
defined as: 

).(
||
||)(

||
||),( 2
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


 GiniGiniAGini  

Starting from the root node, we try different factors to 
calculate the split Gini index and choose the factor that 
minimizes the Gini index to construct the decision tree. 
Not until the Gini index after a node split is less than the 
given threshold, we stop recursion to get a complete 
decision tree that can be used for classification prediction. 

It is worth noting that if the importance of factors to 
the algorithm needs to be considered, we should use the 
following method: 


i

iiii ADASAGiniGiniAD )()(),,()()(
 

where )(ADi
 represents the decreasing value of the Gini 

index after the node i splits into two sub-nodes according 
to the factor A , and )(AS  represents the total decreasing 
value of the Gini index caused by the factor A at all nodes, 
reflecting the contribution of the factor to the construction 
of the classifier . 

Finally, we use pruning to reduce the complexity of 
the decision tree, thereby reducing the risk of overfitting. 

4.2 Random Forest Algorithm 

 
Figure 3.  Flow Chart of Random Forest Algorithm 

As shown in Fig. 3, we generate M Bootstrap datasets 
from the original data, train a weak classifier for each 
Booster dataset, and finally use voting and averaging 
methods for classification and regression. 
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4.3 Application in Stock Selection 

1) Data Preprocessing: First, we find the median of 
all stocks corresponding to each factor, and remove 
extreme data (extremely large or extremely small) based 
on the median. Then normalize all data to obtain a 
uniformly distributed sequence on (0,1]. 

2) Algorithm Application: By section data at the end 
of each quarter, we select the top 10% stocks with the 
best performance in the next quarter as strong buy stocks, 
which are recorded as ＋ 1. Similarly, the worst 
performing 10% stocks are selected as the strong sell 
stock, which is recorded as －1. 

Using the interactive verification method, 90% of the 
samples are randomly selected as the training set each 
time, and the other 10% of the samples are used as the 
validation set. 

Then use the random forest algorithm to train the 
training set, and repeat the training for different training 
sets in each time interval. After the training is completed, 
the obtained model is used to predict the cross-validation 
set. In this stage, we use linear regression model for 
comparison. 

3) Algorithm Evaluation: On the one hand, we test 
the validity of the model, that is, the accuracy rate of the 
test set, AUC and other indicators; on the other hand, we 
construct a long position portfolio strategy and compare 
it with the performance of ETF500, the specific results 
will be shown in Part Ⅵ. 

5 SUPPORT VECTOR MACHINE ALGORITHM 
As one of the most widely used machine learning 
algorithms, support vector machine was first proposed in 
the 1990s. Support vector machine have a good 
performance on linear and nonlinear classification 
problems [7], which can be divided into linear support 
vector machines and kernel support vector machines. 
Since multiple linear regression model has an outstanding 
performance in stock selection, we will only introduce 
linear support vector machine below. 

Assuming that n candidate factors are considered for 
each stock, we want to use an n － 1 dimensional 
hyperplane to separate outstanding stocks from poor 
stocks. As in the past, we select the top 10% of stocks 
with cross-sectional returns as ＋1, and the worst 10% of 
stocks as －1. 

Based on the principle of maximum distance 
separation, we try to find the maximum margin 
hyperplane.  

In fact, unfortunately, we cannot find a hyperplane 
that can completely separate the two parts mentioned 
above. Instead, we can construct a hyperplane that almost 
completely separates the two and is denoted as: 

0 bxwT  

where RbRw n   ,1 . 

Next, we introduce the concept of slack variable to 
punish misclassified or fuzzy classified stocks. 

 
Figure 4.  A simple example of linear support vector machine 

algorithm 

As shown in Fig. 4, for those correctly classified 
points, we assign a value of 0 to the slack variable; for the 
sample points that are completely misclassified, we assign 
the value of the slack variable to 1. For the sample points 
of fuzzy classification, that is, between the solid line and 
dotted line in the figure, we assign a certain number 
between 0 and 1 to the slack variable based on the 
distance between the sample point and the hyperplane. 
According to the slack variable defined above, we can 
transform the problem of solving the linear support vector 
machine into the following extreme value problem: 

0,1)(.,.

)(min
1,, i


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where pw is reciprocal of a measure of the distance 
between the sample point and the n－ 1 dimensional 
hyperplane in the sense of p-norm, and N is the total 
number of sample points, C is the punishment coefficient, 
and i  is the value of the slack variable corresponding to 
each sample point. 

It is worth noting that we should give the punishment 
coefficient C in advance. In general, we need to find the 
appropriate C through multiple numerical simulations to 
achieve the balance of bias and variance. Once the 
punishment coefficient C is given, we can use Lagrange 
multiplier method and duality principle to solve the 
optimization problem above. 

6 DATA ANALYSIS 
In addition to using the multivariable linear regression, 
adaboost, random forest and support vector machine 
algorithms described above, we also use XGBoost and 
gradient boosting algorithms to select stocks. We buy 
stocks with a predicted return of the top 10% with equal 
weight every three months, and calculate the abnormal 
return and cumulative function of each time. In this 
process, ETF500 index will be used to reflect market 
performance. Cumulative functions corresponding to the 
strategies obtained by different machine learning 
algorithms are shown in the following figures:  
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Figure 5.  Back-testing result of Linear Regression Model 

 
Figure6. Back-testing result of Adaptive Boosting Algorithm 

  
Figure7.Back-testing result of Random Forest Algorithm 

 
Figure8. Back-testing result of SVM Algorithm 

  
Figure9.Back-testing result of Gradient Boosting Algorithm 

  
Figure10.Back-testing result of XGBoost Algorithm 

TABLE III.  ABNORMAL RETURNS OF THE FIRST SIX STOCK 
SELECTIONS WITH DIFFERENT ALGORITHMS 

 LR SVM ABR GBR RFR XGBR 

2015/9/30 6.705% 6.163% 0.507% 1.268% 2.510% 4.132% 

2015/12/31 11.966% -12.547% 4.920% 17.550% 15.909% 9.294% 
2016/3/31 4.619% 8.395% 7.712% 8.470% 6.307% 11.901% 
2016/6/30 4.314% 6.061% 2.273% -2.816% 10.986% 6.865% 
2016/9/30 1.289% -2.427% -0.818% 2.567% 4.918% 1.696% 

2016/12/30 6.954% 8.315% 6.999% 4.471% 1.956% 0.755% 

 
We select the first six stock selections of different 

algorithms and calculate abnormal returns. Compared 
with the ETF500, from TABLE Ⅲ, there are much more 
positive terms than negative terms, which implies 
machine learning algorithms do have a better performance 
in stock selection. 

From Fig. 5, 7, 9 and 10, the linear regression model, 
random forest, gradient boosting and XGBoost algorithm 
has stable and significant returns compared to ETF500, 
while from Fig. 6, the back-testing result of the adaboost 
algorithm is generally the same as ETF500. From Fig. 8, 
SVM obtains a certain return with a slight advantage, but 
still lacks stability. 

The reason for linear regression model performs well 
is that we only use a small number of factors. If we 
increase the number of factors, other machine learning 
algorithms will perform better. Adaboost performs 
mediocrely because each time we only use one single 
factor to develop a weak classifier. As the algorithm with 
the highest complexity, random forest performs best. The 
lack of stability of SVM is because, when we assign 
values to the slack variables, those misclassified sample 
points are all assigned as 1. The distance of the sample 
points from the hyperplane is not considered, that is, the 
degree of misclassification. This will increase the 
probability of extreme values, as shown in TABLE Ⅲ for 
the second selection, the return of selected stocks is 12% 
lower than that of ETF500. As an improved algorithm of 
ababoost, gradient boosting [8] and XGBoost [9] perform 
better and more stable. 

7 CONCLUSIONS 
This article uses six traditional machine learning 
algorithms for stock selection, taking CSI 500 as an 
example, and back-tests each selection strategy. We 
introduce linear regression, adaboost, random forest and 
SVM in detail. Most algorithms have good performances. 
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These algorithms could be further extended by using 
multiple factors to develop weak classifiers of adaboost, 
or giving a more realistic loss function to SVM to reduce 
uncertainty. 
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