
* Corresponding author: alihaoxuan_2002@126.com
bzhxy_1998@163.com, cliziyan99@163.com, dchunyuanzheng1999@163.com

Overview of Machine Learning for Stock Selection Based on
Multi-Factor Models

Haoxuan Li 1st,1,a*, Xueyan Zhang 2nd,2,b, Ziyan Li 3rd,3,c, Chunyuan Zheng 4th,4,d

1College of Mathematics, Sichuan University, Chengdu, China
2College of Mathematics, Sichuan University, Chengdu, China
3College of Mathematics, Sichuan University, Chengdu, China
4College of Mathematics, Sichuan University, Chengdu, China

Abstract—In recent years, many scholars have used different methods to predict and select stocks.
Empirical studies have shown that in multi-factor models, machine learning algorithms perform better on
stock selection than traditional statistical methods. This article selects six classic machine learning
algorithms, and takes the CSI 500 component stocks as an example, using 19 factors to select stocks. In
this article, we introduce four of these algorithms in detail and apply them to select stocks. Finally, we
back-test six machine learning algorithms, list the data, analyze the performance of each algorithm, and
put forward some ideas on the direction of machine learning algorithm improvement.

1 INTRODUCTION
There are many mature algorithms for stock selection that
have been widely used by quantitative investment
companies. At present, strategies such as fundamental
analysis [1], qualitative analysis [2], and value investing
[3] have been used by many stock investors, and have
obtained considerable abnormal return.

In this article, we first obtain relevant data of the
CSI500 component stocks and the ETF500 index from
January 1, 2015 to December 31, 2019 through WIND
information. We select 19 candidate factors for machine
learning algorithms and divide these factors into six
categories. We expect that a quantitative strategy to adjust
stock portfolios every three months can be given based on
the multi-factor model. Note that the data may not be
complete, partly because the data was extracted too early
so that the stock was not listed at that time. As a result, we
ignore this part of these stocks within the relevant data
missing time, and do not consider using these stocks to
invest in the next time period.

This article takes the first time adjustment as an
example, using the yield and factor value on March 31,
2015, excluding stocks with non-existent yield and
partially blank factor values, and then evaluates the
performance of the remaining 382 stocks. We use
different machine learning algorithms such as linear
regression, adaboost, support vector machine, random
forest, gradient boosting and XGBoost for stock selection,
and then calculate the abnormal returns separately. Finally,
we use python to simulate different strategies to obtain
data, evaluating the performance of different strategies
and propose a quantitative strategy based on machine

learning multi-factor models for Chinese low and medium
market capitalization stocks, together with some ideas on
the direction of machine learning algorithm improvement.

2 LINEAR REGRESSION MODEL

2.1 Data Selection and Preprocessing

Above all, we list 19 factors which would be used in this
linear regression model and machine learning algorithms
mentioned later:

TABLE I. CANDIDATE FACTORS LIST AND CLASSIFICATION

Valuation factor pe; pb; ps; pcf_ncf

Growth factor yoyop; yoyprofit; yoy_or; growth_roe

Profit factor roe; roa; wgsd_ocftosales; dividendyield2

Liquidity factor val_lnfloatmv; tech_turnoverrate10

Momentum factor tech_revs60; tech_revs120

Leverage factor debttoassets; fa_equityassetradio;
fa_fixedassettoasset

Due to the difference in the numerical range of
different factors and the unit of measurement, we
normalize the same factor for different stocks on March
31, 2015:

S
XXZ i

i


 , where X denotes sample mean and

S denotes sample standard deviation. For writing
convenience, we still take the normalized factor value
as

iX . At the same time, let),(ii yx be the vector of
factors’ value and the corresponding return of the next
period.

E3S Web of Conferences 214, 02047 (2020)	 https://doi.org/10.1051/e3sconf/202021402047
EBLDM 2020

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution
License 4.0 (http://creativecommons.org/licenses/by/4.0/).

2.2 Linear Regression Model

Above all, perform a linear regression between each
factor and next period's yield to obtain the correlation
coefficient, then test the level of each coefficient. We use
SPSS to get the t values and p values, and remove the
irrelevant factors. As a result, there are ten factors
remaining. Next, we test the correlation between the ten
remaining factors and find that some of them are
significantly correlated. In order to eliminate the problem
that the mean square error (MSE) of the linear regression
model caused by multicollinearity is too large which will
cause a poor performance of this model, we choose to use
Stepwise Regression Method to filter the remaining
factors to obtain a better model.

The basic idea of stepwise regression [4] is to
introduce variables one by one. The condition for
introducing variables is that the sum of partial regression
square is significant by the F test. Meanwhile, after
introducing new variables, the selected variables must be
tested again, and those underperforming factors will be
removed.

Here, we set the significant level at 0.15 and results
are as follows:

TABLE II. SUMMARY OF STEPWISE SELECTION

St
ep

Variabl
e

Entered

Partial
R-

Square

Model
R-

Square

C(p) F Value Pr > F

1 X7 0.7379 0.7379 62.7105 1066.88 <.0001
2 X10 0.0159 0.7538 38.0665 24.38 <.0001
3 X6 0.0143 0.7680 16.1036 23.22 <.0001
4 X9 0.0073 0.7754 5.7798 12.30 0.0005
5 X3 0.0016 0.7770 5.0516 2.74 0.0990
6 X8 0.0015 0.7785 4.4944 2.57 0.1095

As a result, six ultimate factors are selected by

stepwise regression. It can be seen that the R-square value
is 0.7785 > 0.75, which indicates the model performs well.
Finally, through SAS the coefficients of the multiple
regression model are determined:

57707.007059.000137.003471.0
84189.064751.100002301.0

1098

763




XXX
XXXY

where Y is the rate of returns, X3 is yoyop, X6 is
tech_turnoverrate10, X7 is tech_revs60, X8 is
tech_revs120, X9 is fa_fixedassettoasset, and X10 is
dividendyield2.

2.3 Validation Testing

Model fitting effect and residual plot are shown below.

Figure 1. Multivariate linear regression model fitting effect

Figure 2. Multivariate linear regression model residual plot

From Fig. 1, it can be seen that the predicted value and
the actual rate of returns have a clearly linear relationship
with a slope of 1. Besides, from Fig. 2, except for some
extreme values, the majority of values are distributed in a
horizontal band-shaped region centered on the origin. We
can consider that the model estimates the rate of returns
well.

3 ADAPTIVE BOOSTING ALGORITHM
Adaboost algorithm was proposed by Freund and
Schapire in 1995 [5]. As an improvement of the boosting
algorithm, Adaboost's principle is to use iteration to train
and filter the weak classifiers by adjusting the sample
weight coefficients, and finally form a strong classifier.

For stock selection, we use the following adaboost
algorithm:

3.1 Data Preprocessing

Due to the sensitivity of the machine learning algorithm to
the data and to prevent overfitting, we first sort all the
stocks in the training set for each factor according to the
value of the corresponding factor from large to small, and
divide the ranking by the total number of shares. This can
control the corresponding factor value to  1,0 .

Then sort the stock returns for the next period, taking
the top 40% of the stocks as strong buy stocks and
recording them as ＋1. Correspondingly, taking the last
40% of stocks as strong sell stocks and recording as －1.
The middle 20% of stocks are served as noise data and no
longer considered in the next discussion.

2

E3S Web of Conferences 214, 02047 (2020)	 https://doi.org/10.1051/e3sconf/202021402047
EBLDM 2020

3.2 Training Algorithm

In the initial state of first-round training, we give equal
weights to all stocks marked as ＋1 or －1. Then, the
factor values of N stocks corresponding to each factor are
sorted by quantity. For all factors, N stocks are divided
into K categories, which are recorded as 1, 2, 3,…, K.
Then calculate the sum of the corresponding weights of
the stocks with ＋1 or －1 in each category (denoted by k)
of factor (denoted by i) in particular, and record it as k

iW
.

Next, we construct the statistic:

.
1



 
K

k

k
i

k
ii WWZ

We use the value of
iZ to distinguish the weak

classifier. Intuitively, since the sum of weights in each
classification is always 1, the larger difference between

k
iW

and k
iW

, the smaller the value of statistic iZ , which
implies the effect of the corresponding weak classifier is
more significant.

For the statistic
iZ calculated by each factor, we

choose the factor 1i with the smallest iZ to build the first
weak classifier:

)ln(
2
1)(

1

1
1 










k

i

k
i

W
W

xh

where
N

Zi i
i

1,minarg
},...,2,1{

1 


 .

It is worth noting that every time we generate a new
weak classifier, as a result we need to adjust the weight
of the data.

For the data that has been classified correctly, we
reduce its weight; on the contrary, for the data that has
not been classified correctly, we increase its weight
appropriately. We update the weights by the following
recursive formula:

)()()(
1

imiii xhyx
m

x
m eww

 
 

where m represents the weak classifier of the m-th tier.

Then, we readjust the weights in a proportional
manner, in order to make the sum of the weights be 1.
We repeat the above process, and can get a weak
classifier)(2 xh relevant to the second factor denoted by

2i , which is different from 1i .
Finally, we add these weak classifiers to get a strong

classifier:
.)()(

i
i xhxH

4 RANDOM FOREST ALGORITHM
In the 1980s, the decision tree algorithm was first
proposed, using repeated bifurcation strategies for
classification or regression. However, the time complexity
of this algorithm is too high, instead, Breiman first
proposed the random forest algorithm in 2001 [6] based
on decision tree algorithm. We will briefly describe the

principle of the random forest algorithm, and apply this
algorithm to stock selection strategy.

4.1 Decision Tree Algorithm, CART

In the random forest algorithm, we use CART algorithm
to classify attributes. First, we introduce the Gini index to
express the information gain ratio. For sample set  ,
assuming that there are K categories, and the probability
that a random sample point in  belongs to the k-th
category is denoted as kP , then the Gini index of sample
set  is defined as

.1)1()(
1

2

1




K

k
k

K

k
kk PPPGini

Obviously, the smaller the Gini index, the higher the

purity of  . Then for each factor A, sorting from large to
small, we divide stocks into two categories:

1 ,
2 .Then

after splitting according to this factor, the Gini index is
defined as:

).(
||
||)(

||
||),(2

2
1

1 







 GiniGiniAGini

Starting from the root node, we try different factors to
calculate the split Gini index and choose the factor that
minimizes the Gini index to construct the decision tree.
Not until the Gini index after a node split is less than the
given threshold, we stop recursion to get a complete
decision tree that can be used for classification prediction.

It is worth noting that if the importance of factors to
the algorithm needs to be considered, we should use the
following method:


i

iiii ADASAGiniGiniAD)()(),,()()(

where)(ADi
 represents the decreasing value of the Gini

index after the node i splits into two sub-nodes according
to the factor A , and)(AS represents the total decreasing
value of the Gini index caused by the factor A at all nodes,
reflecting the contribution of the factor to the construction
of the classifier .

Finally, we use pruning to reduce the complexity of
the decision tree, thereby reducing the risk of overfitting.

4.2 Random Forest Algorithm

Figure 3. Flow Chart of Random Forest Algorithm

As shown in Fig. 3, we generate M Bootstrap datasets
from the original data, train a weak classifier for each
Booster dataset, and finally use voting and averaging
methods for classification and regression.

3

E3S Web of Conferences 214, 02047 (2020)	 https://doi.org/10.1051/e3sconf/202021402047
EBLDM 2020

4.3 Application in Stock Selection

1) Data Preprocessing: First, we find the median of
all stocks corresponding to each factor, and remove
extreme data (extremely large or extremely small) based
on the median. Then normalize all data to obtain a
uniformly distributed sequence on (0,1].

2) Algorithm Application: By section data at the end
of each quarter, we select the top 10% stocks with the
best performance in the next quarter as strong buy stocks,
which are recorded as ＋ 1. Similarly, the worst
performing 10% stocks are selected as the strong sell
stock, which is recorded as －1.

Using the interactive verification method, 90% of the
samples are randomly selected as the training set each
time, and the other 10% of the samples are used as the
validation set.

Then use the random forest algorithm to train the
training set, and repeat the training for different training
sets in each time interval. After the training is completed,
the obtained model is used to predict the cross-validation
set. In this stage, we use linear regression model for
comparison.

3) Algorithm Evaluation: On the one hand, we test
the validity of the model, that is, the accuracy rate of the
test set, AUC and other indicators; on the other hand, we
construct a long position portfolio strategy and compare
it with the performance of ETF500, the specific results
will be shown in Part Ⅵ.

5 SUPPORT VECTOR MACHINE ALGORITHM
As one of the most widely used machine learning
algorithms, support vector machine was first proposed in
the 1990s. Support vector machine have a good
performance on linear and nonlinear classification
problems [7], which can be divided into linear support
vector machines and kernel support vector machines.
Since multiple linear regression model has an outstanding
performance in stock selection, we will only introduce
linear support vector machine below.

Assuming that n candidate factors are considered for
each stock, we want to use an n － 1 dimensional
hyperplane to separate outstanding stocks from poor
stocks. As in the past, we select the top 10% of stocks
with cross-sectional returns as ＋1, and the worst 10% of
stocks as －1.

Based on the principle of maximum distance
separation, we try to find the maximum margin
hyperplane.

In fact, unfortunately, we cannot find a hyperplane
that can completely separate the two parts mentioned
above. Instead, we can construct a hyperplane that almost
completely separates the two and is denoted as:

0 bxwT

where RbRw n   ,1 .

Next, we introduce the concept of slack variable to
punish misclassified or fuzzy classified stocks.

Figure 4. A simple example of linear support vector machine

algorithm

As shown in Fig. 4, for those correctly classified
points, we assign a value of 0 to the slack variable; for the
sample points that are completely misclassified, we assign
the value of the slack variable to 1. For the sample points
of fuzzy classification, that is, between the solid line and
dotted line in the figure, we assign a certain number
between 0 and 1 to the slack variable based on the
distance between the sample point and the hyperplane.
According to the slack variable defined above, we can
transform the problem of solving the linear support vector
machine into the following extreme value problem:

0,1)(.,.

)(min
1,, i



 


iii
T

i

N

i
i

p

bw

bxwyts

Cw






where pw is reciprocal of a measure of the distance
between the sample point and the n－ 1 dimensional
hyperplane in the sense of p-norm, and N is the total
number of sample points, C is the punishment coefficient,
and i is the value of the slack variable corresponding to
each sample point.

It is worth noting that we should give the punishment
coefficient C in advance. In general, we need to find the
appropriate C through multiple numerical simulations to
achieve the balance of bias and variance. Once the
punishment coefficient C is given, we can use Lagrange
multiplier method and duality principle to solve the
optimization problem above.

6 DATA ANALYSIS
In addition to using the multivariable linear regression,
adaboost, random forest and support vector machine
algorithms described above, we also use XGBoost and
gradient boosting algorithms to select stocks. We buy
stocks with a predicted return of the top 10% with equal
weight every three months, and calculate the abnormal
return and cumulative function of each time. In this
process, ETF500 index will be used to reflect market
performance. Cumulative functions corresponding to the
strategies obtained by different machine learning
algorithms are shown in the following figures:

4

E3S Web of Conferences 214, 02047 (2020)	 https://doi.org/10.1051/e3sconf/202021402047
EBLDM 2020

Figure 5. Back-testing result of Linear Regression Model

Figure6. Back-testing result of Adaptive Boosting Algorithm

Figure7.Back-testing result of Random Forest Algorithm

Figure8. Back-testing result of SVM Algorithm

Figure9.Back-testing result of Gradient Boosting Algorithm

Figure10.Back-testing result of XGBoost Algorithm

TABLE III. ABNORMAL RETURNS OF THE FIRST SIX STOCK
SELECTIONS WITH DIFFERENT ALGORITHMS

 LR SVM ABR GBR RFR XGBR

2015/9/30 6.705% 6.163% 0.507% 1.268% 2.510% 4.132%

2015/12/31 11.966% -12.547% 4.920% 17.550% 15.909% 9.294%
2016/3/31 4.619% 8.395% 7.712% 8.470% 6.307% 11.901%
2016/6/30 4.314% 6.061% 2.273% -2.816% 10.986% 6.865%
2016/9/30 1.289% -2.427% -0.818% 2.567% 4.918% 1.696%

2016/12/30 6.954% 8.315% 6.999% 4.471% 1.956% 0.755%

We select the first six stock selections of different

algorithms and calculate abnormal returns. Compared
with the ETF500, from TABLE Ⅲ, there are much more
positive terms than negative terms, which implies
machine learning algorithms do have a better performance
in stock selection.

From Fig. 5, 7, 9 and 10, the linear regression model,
random forest, gradient boosting and XGBoost algorithm
has stable and significant returns compared to ETF500,
while from Fig. 6, the back-testing result of the adaboost
algorithm is generally the same as ETF500. From Fig. 8,
SVM obtains a certain return with a slight advantage, but
still lacks stability.

The reason for linear regression model performs well
is that we only use a small number of factors. If we
increase the number of factors, other machine learning
algorithms will perform better. Adaboost performs
mediocrely because each time we only use one single
factor to develop a weak classifier. As the algorithm with
the highest complexity, random forest performs best. The
lack of stability of SVM is because, when we assign
values to the slack variables, those misclassified sample
points are all assigned as 1. The distance of the sample
points from the hyperplane is not considered, that is, the
degree of misclassification. This will increase the
probability of extreme values, as shown in TABLE Ⅲ for
the second selection, the return of selected stocks is 12%
lower than that of ETF500. As an improved algorithm of
ababoost, gradient boosting [8] and XGBoost [9] perform
better and more stable.

7 CONCLUSIONS
This article uses six traditional machine learning
algorithms for stock selection, taking CSI 500 as an
example, and back-tests each selection strategy. We
introduce linear regression, adaboost, random forest and
SVM in detail. Most algorithms have good performances.

5

E3S Web of Conferences 214, 02047 (2020)	 https://doi.org/10.1051/e3sconf/202021402047
EBLDM 2020

These algorithms could be further extended by using
multiple factors to develop weak classifiers of adaboost,
or giving a more realistic loss function to SVM to reduce
uncertainty.

REFERENCES
1. Yuh-Jen Chen, 2013, “A Fundamental Analysis-

based Method for Stock Market Forecasting”, Fourth
International Conference on Intelligent Control and
Information Processing (ICICIP), 2013, Beijing,
China.

2. Ghezzi Luca Luigi, Peccati Lorenzo. Qualitative
analysis of a nonlinear stock price model [J].
Elsevier, 1994, 63 (2-3).

3. Hua Li, Shuanghong Qu, Hua Zhu. PROMETHEE: a
Fuzzy Algorithm for Decision Making in Stock
Market Value Investing. 2013, 1(1):75-80.

4. Cheng, Shou Hsiung. “A Hybrid Predicting Stock Re
turn Model Based on Logistic Stepwise Regression a
nd CART Algorithm.” Asian Conference on Intellige
nt Information & Database Systems Springer Interna
tional Publishing, 2015.

5. Freund, Yoav, and R.E. Schapire. “A decision-
theoretic genea generalization of on-line learning
and an application to boosting." Proceedings of the
Second European Conference on Computational
Learning Theory Springer-Verlag, 1995.

6. Breiman, L. Random forests. Machine Learning 45
(1): 5-32, Web of Science, 2001.

7. Cortes C, Vapnik V N. Support vector networks [J].
Machine Learning, 1995, 20(3):273-297.

8. Friedman J H. Stochastic gradient boosting [J].
Computational Statistics & Data Analysis, 2002, 38.

9. Chen, Tianqi, Guestrin, Carlos. XGBoost: A
Scalable Tree Boosting System [J]. 2016.

6

E3S Web of Conferences 214, 02047 (2020)	 https://doi.org/10.1051/e3sconf/202021402047
EBLDM 2020

