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Abstract. A stochastic approach has been implemented to account for multimodality to optimize the 

operating conditions of electrical systems. On the basis of the algorithm for optimization of the instantaneous 

mode and the stochastic model of the load graphs, a mathematical model of the generalized reduced 

gradient was obtained. The practical implementation of the algorithm was carried out due to its low labor 

intensity. 
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1. Introduction  

Optimal reactive load compensation (RLC) in the grids of 

electrical systems (ES) can significantly increase the 

efficiency of their functioning. The problem solving here 

requires taking into account the aggregate of steady-state 

modes (multimoding), obtaining and analyzing the integral 

parameters of this aggregate, such as energy loss in the 

system, ranges and diagrams of voltages and reactive 

power changes in its nodes. Direct optimization of each 

mode separately, generalization and analysis of economic 

and mode characteristics of the aggregate of modes 

dramatically complicates the problem at hand, making it 

excessively cumbersome and time-consuming. Against 

this background, the most productive is the gradient 

methods, proved themselves in operational problems, 

using the probabilistic-statistical (stochastic) approach, 

which allows solving problems more strictly than 

deterministic approaches [1]. A statistical model for 

accounting the set of steady-state modes [2, 3] combined 

with a generalized reduced gradient (GRG) method [4, 5] 

are the basis of the developed optimization method. The 

basic principles for solving the problem of optimal RLC in 

terms of the minimum loss of electric energy (EE) is given 

below. 

2. Statistical Model of Electrical Loads 

The optimal RLC is formulated as a nonlinear 

mathematical programming problem [4]; it belongs to the 

stochastic optimization since loads of the ES nodes are 

random variables. The stochastic approach of 

taking into account multimoding [2, 3], caused by the 

change in electric loads, is implemented based on an 

analytical model of load changes which is obtained 

through factor (component) analysis [6, 7]. Electrical loads 

modelling on the basis of factor analysis allows identifying 

common and most stable patterns of changing the 

configuration of load curves, compressing the information 

regarding the multimoding through a small number of 

generalizing factors with their subsequent application of 

them when calculating the EE losses and other integral 

parameters.   

The load diagrams modelling using the principal 

component analysis is as follows. Based on a 

representative sample N of initial load diagrams, we 

determine a moment correlation matrix (MCM) and select 

М of maximum eigenvalues i and their corresponding 

eigenvectors i . These values determine the main factors 

– generalized (orthogonal) load diagrams (GLD): 
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where: ki , ki  are the components of  eigenvector k  

of MCM; ijP , ijQ  are  components  j of the centered 

diagrams of active iP  and reactive iQ   of the loads of 

node  i   with d intervals of constancy. 

The modelling GLDs are a set of statistically 

independent basis vectors oriented so that each of them 

reflects most of the connection of the initial aggregate of 

load diagrams and contributes most to the variance of the 

initial variables. Like eigenvectors, GLDs are orthogonal 

(statistically independent), uncorrelated (unrelated) 

quantities. They attribute the properties of linearity and 

additivity to the models, the statistical method, and the 

whole process of multimoding modelling. Analysis of the 

GLD configurations for various realizations of the random 
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process of changing the loads showed the presence of 

statistical stability of these factor models, i.e. proximity of 

the numerical characteristics of the corresponding GLDs 

of various samples of the original diagrams. 

This statistical transformation of MCM helps simulate 

fairly accurately the original curves of electrical loads ijP  

and ijQ   using known mathematical expectations iMP  

and iMQ  and simulated deviations of loads from 

mathematical expectations in the form of M-linear 

combinations of statistically stable GLD:  
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Such a representation of the loads turned out to be 

effective since obtaining model (2) of acceptable accuracy 

needs only to take into account up to the first three or four 

GLDs (М << N), which reflect up to 85–95% of the total 

variance of the initial loads. The modelling error for the 

interval values of unknown load curves by models (2), 

being in the range of ± (2–15) %, is not a crucial factor for 

determining the integral characteristics since its influence 

decreases as a result of stepwise (iterative) refinement of 

pseudo-average loads and, accordingly, load diagrams 

models in the combined algorithm for determining these 

parameters. 

The solution for optimal RLC is based on taking into 

account the entire set of modes in the form of their integral 

characteristics, primarily EE losses, which are a target 

criterion for solving the operational problem with 

determining the optimal load of existing reactive power 

sources. 

  

3. Statistical modelling of the set of 
steady-state modes [2, 3]  

The general expression of the EE load losses in the ES 

with m-branches is basically determined by accurate 

summing (integrating) of power losses Р  at all time 

intervals t  (in all modes) of calculated period  Т  

according to the classical expressions: 
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The EE load losses are the sum of the main component 

М𝜟𝑬 determined for the average loads mode, and the 

variance component 𝝈𝜟𝑬 which takes into account the 

deviation of the loads from the average values: 
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where  )δ,( MVMP , )( jiVVk , )δ( jiVk , )δδ( jik  are 

power losses, correlation moments calculated for moduli 

MV and phases Mδ of the voltages at the point 

corresponding to the mathematical expectations of the 

loads; 
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 – second derivatives of 

the expression of power losses with respect to the 

corresponding variables, they have been calculated 

relevantly to the same point; N – the number of nods in the 

circuit without a slack bus. 

The main component of EE losses is determined by 

calculating the steady-state mode (SSM) for average loads 

with high reliability. The greatest difficulty is a complete 

and simple calculation of the multimoding when 

calculating the variance component, which is a critical 

factor in the EE loss analysis in general. 

   The EE loss expression (4) is featured by the 

correlation moments of moduli V and phases δ of the 

voltages, which form the MCM of the voltages, which are 

obtained on the basis of a system of equations written 

similarly to the linearized equations of nodal voltages 

(NVEs):                              
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where ΔРi, ΔQi, ΔVi, Δδi – deviations of active, reactive 

powers, moduli, phases of nodal voltages from their 

mathematical expectations. 

         Since the deviations of the voltages and wattages 

from their mathematical expectations are approximately 

related by the NVE system (5), the centered random 

parameters (variations of the voltage phases and moduli)

i ,
iV , same as 

iP , 
iQ , similarly to (2) are 

formulated by linear combinations of GLD: 
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 After substituting deviation of the mode parameters 

from expressions (2) and (6) into the system (5), 

coefficients kiki γ,γ  , modeling the deviations of the 

phases and voltage moduli from the average values are 

calculated from equations equivalent to the system of 

linearized NVEs: 
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where 
ki ki   , ,ki ki    are determined with initial 

(reconstructed) load diagrams and GLD according to (2) as: 

1

1
G

d

ki kj ij

j

P
d




   ; 

1

1
G

d

ki kj ij

j

Q
d




   , Mk ,1 , Ni ,1 .  (8) 

E3S Web of Conferences 209, 02033 (2020)
ENERGY-21

https://doi.org/10.1051/e3sconf/202020902033

2



The stochastic model of load diagrams (1)-(2), (6)-(8) 

allows expressing the MCM elements of voltages and 

wattages with modeling coefficients 
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Similar to (9) for the elements, MCMs of wattages are: 
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Considering the correlation moments for moduli and 

phases of voltages (9), the EE load losses (4) are: 
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Analysis of the accuracy of calculating the EE losses 

by the statistical testing with  2-4 GLD made for samples 

of test circuits of power grids with 35, 110, 220 kV, a small 

number of nods (up to 10), and real-world 6–220 kV 

circuits of power grids within the Krasnoyarsk energy 

system with up to 25 nods, resulted in finding that these 

expressions allow to compute load losses with acceptable 

accuracy: considering significance level of 0.95 for the 

samples, the average error in calculating EE losses for test 

circuits was 𝜹𝒂𝒗 = –(1,2÷1,7) % with σ2 scattering up to 

0.70, and 𝜹𝒂𝒗 ±(0,25÷0,45) % with σ2 scattering up to 0.64 

for real-world circuits. 

EE losses of idle running   TN  of transformers with 

T

ig  conduction are specified in the initial and optimal 

modes in accordance with the obtained voltage diagrams  

(6): 
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Linear system of equations in SSM (5), factor 

transforming (1), load model (2) and relations (6) – (12), 

expressing deviations of dependent variables (δ, V) and 

their second moments through the corresponding 

characteristics of independent variables (P, Q), 

collectively form a statistical model for the SSM analysis 

and ES multimolding analysis.  

Finding the integral characteristics through the 

stochastic method (7) - (12) does not require interval 

calculations of the modes; it comes down to one 

calculation of the SSM of the electrical system for average 

loads and an additional solution of three to four systems of 

linear equations (7) with the implacable Jacobian matrix, 

which drastically simplifies calculations of multimoding 

and EE losses in general, in comparison with direct d-

calculations of the SSM (3) over the intervals for averaging 

the electrical load diagrams. The method allows to 

calculate electric power losses and other integral 

characteristics with accuracy and reliability sufficient for 

practice. Moreover, in comparison with the deterministic 

methods, the tolerance to random errors increases. EE load 

losses can be calculated via any algorithm computing the 

SSM which can be supplemented by blocks for 

determining (7), (8) of the modulating coefficients

, ,ki ki    and kiki γ,γ   , which usually make the analysis 

only,
 
20 – 40 %  more laborious. 

4. Mathematical model for stochastic 
optimization of modes 

The basis of the model is the multimode-based GRG 

constructing apparatus with the statistical accounting of 

multimoding [8, 9]. While solving the operational 

problem, we define the minimum of the objective function 

of the total EE losses (11), (12) under the balance nonlinear 

equality constraints (NVEs) for the mathematical 

expectation of mode parameters, and simple inequality 

constraints  
maxmin
iii QQQ  , Gi ,1 ;  maxmin

iii VVV  , Ni ,1 ,  (13) 

where G is a number of nods with sources of reactive 

power (RP).    

Еру constraints (13) all be applied to the entire time 

interval, i.e. for each mode, which should be controlled in 

two ways:  

1) modelling with GLD for RP (2) and voltages (6) at 

each optimization step and checking compliance with the 

constraints (13);  

2) calculating of design ranges for variation of the 

considered parameters, which, considering variances (9), 

(10), are determined by Chebyshev's inequalities: 
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Considering antisymmetric (biased) function of 

distribution density of Vi, Qi , the values of kβ, ensuring the 

minimum error of the interval analysis on average up to 5–

10 %, is justified for the range: 55,145,1min k ,  

65,155,1max k  with a significance level of β= 

0,90. 

 Dependent (basic) X  and independent regulated)

Y  variables that make up the general vector are the key 

parameters for forming array expression for determining 

the reduced gradient, and the expectations of mode 
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parameters and active constraints (13) are as 

follows:

 {
(𝑽𝟏𝒊, 𝑸𝟐𝒋) ∈ 𝒀 → 𝑽𝟏𝒊 ∈ 𝑽marg, 𝑸𝟐𝒋 ∈ 𝑸perm; 𝒊 = 𝟏, 𝒑; 𝒋 = 𝟏, 𝒒; 𝒑 + 𝒒 = 𝑮; 𝒊 ≠ 𝒋;

(𝑽𝟐𝒊, 𝜹𝒋, 𝑸𝟏𝒍) ∈ 𝑿 → 𝒊 = 𝟏, 𝑵 − 𝒑; 𝒋 = 𝟏, 𝑵; 𝒍 = 𝟏, 𝒑,
}   

                                                                                   (15) 

where 𝑽marg, 𝑸perm  are a set of marginal voltages and 

admitted values of RM sources respectively; 1 and 2 are 

the indices of dependent and independent variables; p, q 

are the number of independent variables within V, Q. 

If simple constraints (13) are violated, the basic set 

changes. This means exchanging corresponding 

components between vectors 𝑿 and 𝒀.  

The following separation of variables is proposed for 

the components of eigenvectors and modeling coefficients: 
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In this case, a basic set change is provided only for           

the variables reflecting multimoding with the first GLD    

(М = 1). 

Using the matrixed linearized system (5), provided the 

mode is balanced for the active power (ΔРi = 0), following 

the illustrated separation of variables (16), with the 

subsequent grouping of the vectors of the dependent and 

independent variables, we obtain the system of equations 

reflecting the parameters of SSM corresponding to the 

loads expectations: 
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When constraints are inactive in (13), equations (17) 

are reduced to equations with identity matrix 
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In systems (17), (18), the following matrices are used 

to relate the dependent and independent mode parameters 
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Following the separation of variables (16), on the basis 

of expressions (2) and (5) – (7), considering pairwise 

equivalence of variables   and δ,    and V,   and Q, 

equality constraints (NVEs) taking into account 

multimolding are the most completely simulated by the 

system of equations (17) representing mathematical 

expectations of the parameters being optimized, and the 

following systems of equations considering deviations of 

parameters from mathematical expectations: 
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1k ;                                                                            (20) 
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
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k
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,    Mk ,2 .  (21) 

When inserting dependent variables (Δδ, ΔQ1, ΔV2 and 

𝜸′, 𝝊𝟏
″, 𝜸𝟐

″) into (17), (20) through independent variables 

(ΔV1, ΔQ2 and 𝜸𝟏
″, 𝝊𝟐

″) considering objective function F 

(11) and component (12) upon transition to infinitesimal 

increments of the variables, the expression of reduced 

gradient simulating loads only with the first actively 

constrained GLD (13), will be: 

𝜵п

𝒕
= [𝜵𝑽𝟏

𝒕
𝑭𝜵𝑸𝟐

𝒕
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″
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″
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𝒕
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𝒕
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″

𝒕
𝑭] × 
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(22) 

 where 𝜵п

𝒕
 is a G(1 + M)-dimensional reduced gradient 

vector with components; 𝜵𝑽𝟏

𝒕
𝑭𝜵𝑸𝟐

𝒕
𝑭 and 𝜵𝜸𝟏

″
𝒕

𝑭𝜵𝝊𝟐
″

𝒕
𝑭 are 

vector-rows [𝝏𝑭/𝝏𝒀], each being of total size G; 𝜵𝜹

𝒕
𝑭 and 

𝜵𝜸′
𝒕

𝑭 are N-dimensional vector-rows [𝝏𝑭/𝝏𝑿]; 

𝜵𝑸𝟏

𝒕
𝑭𝜵𝑽𝟐

𝒕
𝑭 and 𝜵𝝊𝟏

″
𝒕

𝑭𝜵𝜸𝟐
″

𝒕
𝑭 are vector-rows [𝝏𝑭/𝝏𝑿], each 

of total size N. In expression (22), 2N(1 + M)-dimensional 

square matrix [𝝏𝑾/𝝏𝑿]−𝟏 and 2N(1 + M)×G(1 + M)- 

dimensional matrix [𝝏𝑾/𝝏𝒀] are used. 

The modified model based on GRG method (22) allows 

stochastic optimization of the objective function F in the 

space of expectations of the modes parameters, 

eigenvectors of wattage MCM and modeling coefficients 

( , , , , , )i i i ki ki kif Q VF        , taking into account the ES 

multimoding in a concise form. 

   

5. Multimode-based optimal choice of 
loading RP sources  

An objective function of the total EE losses (11), (12) is 

determined by the mathematical expectations of the mode 

parameters, the components of the eigenvectors and 
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modeling coefficients: ( , , , , , )i i i ki ki kiF f Q V      . 

It can be minimized by means of modifying GRG method 

(13) – (22) based on the stochastic model of loads and the 

set of modes (1), (2), (6) – (10) specifying the active 

resistance of overhead and cable lines in (11) by the 

average values of current loads and ambient temperatures 

for the period under consideration. An optimization step is 

calculated as a minimum of the values determined from the 

condition for observing the constraints in the form of 

simple inequalities for the mode parameters O and V and 

by the parabolic interpolation method, provided that the EE 

loss function passes through its minimum inside the 

constraints. The mode dependent parameters enter the 

possible domain of mathematical expectations (obtaining a 

possible point of the optimization trajectory) by means of 

solving the SSM nonlinear equations through Newton's 

method. Corrections of dependent variables for average 

loads are determined from solving the systems of (17), 

(18), and variables  , 1 , 2  , which model the 

deviations of the optimized variables from the average can 

be found from the solution of linear systems (20), (21). 

The variables found during the optimization allow 

obtaining: 

1.  A criterion (objective) function of total EE losses 

and its components (the value of EE load losses (11) and 

idle running (12) in the initial and optimal states). 

2. Ranges of alteration of the optimized mode 

parameters (14) taking into account expressions (9) and 

(10) for variances. 

3. Diagrams (curves) of loading of the RP sources (2) 

and voltages (6) in the system nodes in the given time 

interval. 

 

6. The main stages of the algorithm for 
optimal compensation of reactive loads 
are as follows   

The initial data in the optimization problem are simulated 

(or initial) curves of the active and reactive powers of the 

nodes (2), presented through average loads using GLD (1). 

Reactive powers for G set of RP sources (including 

compensating devices) are the main independent variables, 

determined during the solution process and written in the 

same form in which the initial diagrams are given (2): 

       



K

k

kjklllj MQQ
1

Г ,   Gl ,1 ,  dj ,1 .          (23) 

Expressions (23) differ from similar expressions (2) in 

the fact that the diagrams (curves) ljQ  of RP generation and, 

accordingly, expectations lMQ  and coefficients kl   are 

not specified, but they are determined in the process of 

solving the optimization problem.  

The greatest optimal power of compensation at node i 

of G taking into account (14) shall be  

        iii QkMQQ 
maxnc  .                       (24) 

GRG-based algorithm for optimal compensation of 

reactive loads starts to work and performs each subsequent 

optimization step from a possible point ),( XYZ   in 

accordance with the following steps: 

1. Determines a possible vector of the parameters of 

the basic electric mode corresponding to the load 

expectations for the initial (starting) point of the 

optimization search.  

2. Computes the objective function and a number of 

derivatives of the objective function and imbalance 

functions of ZФ/ , Ф/ , ZW/  to model the 

constraints and form the expression of the reduced gradient 

and other calculated expressions.  

3. Determines the vectors: of the reduced gradient

r , the permissible directions of the optimization descent 

),( XY   with respect to the independent and 

dependent variables, and the step size   of external 

iterations in the selected optimization direction.  

4. Calculates a new vector of the variables as 

),(
~ )1()()1()()1(  

k

X

kk

Y

kk XYZ   at (k + 1) 

external step, which in  general is infeasible since it is 

determined by linear translation along   vector 

relatively to nonlinear constraints of the form of SSM 

equations.  

5. Adjusts the dependent parameters V ,  ,   to 

obtain a valid vector of variables
)1( kZ . The main part of 

this procedure is the solution of the equations of balance 

constraints as in (17) for fixed values of the RP sources and 

the further analysis of the parameters of the basic steady-

state mode with subsequent verification of interval 

constraints (13). If the resulting voltages do not satisfy the 

controlled constraints (13), it is necessary to obtain new 

values of the controlled variables (RP sources) by 

decreasing   step or by means of fixing the violated 

limits on the limit values (change of basis), and then re-

determine the dependent variables.  

 6. Controls of the decline of the objective function at 

(k + 1) iterative step and the fulfillment of the criteria for 

the termination of the optimization search.  

The calculation cycles for 2–6 are iterated until the 

optimum condition is satisfied i.e. the minimum of the 

objective function of the total EE losses. 

Software for optimization algorithms. These 

algorithms form the basis of ORESА stochastic 

optimization software [10] based on algorithms and 

OPRES instant mode optimization software [11].  ORESА 

is intended for optimal distributing of reactive loads of 

existing RP sources over a time interval according to the 

criterion of minimum EE losses and aims to solve the 

problems of ES optimal functioning in various mode 

planning cycles. 

 

Conclusions 

We implemented the proposed modification of the 

generalized reduced gradient method for stochastic 
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modeling of multimode-based electrical systems. The 

program provides ranges and diagrams of loadings for RP 

and voltages changes of RP sources and other ES nodes, 

EE losses in the initial and optimal states avoiding 

analyzing and optimizing of the modes at each load 

stationarity interval. The accuracy of ORESA was assessed 

via statistical tests as a result of direct reproduction of the 

totality of typical optimal modes on a variety of circuits of 

35–220 kV electrical grids and systems: the accuracy 

achieved for solving this particular operational problem 

was sufficient for actual practices. 
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