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Abstract. The development of renewable energy and Smart Grid leads to the emergence of prosumers or 

power generating consumers, which are involved in the processes of bidirectional exchange of electricity 

and information. The work is devoted to the problem of optimal control of a power generating consumer in 

Smart Grid. The distinctive research features are the solution of the optimal control problem in conditions of 

difficult prediction of wind power plant generation, the usage of Swarm Intelligence algorithms to build a 

system of control rules, and the study of the obtained models on data from two different generating 

consumers: one on about Russky Island, the second on Popov Island (Far East). We selected a list of priority 

rules as a decision-making model and applied Particle Swarm Optimization, Bees Algorithm, and Firefly 

Optimization to build and optimize this model. The computer modeling with the usage of two mounts 

dataset showed that the proposed approach could significantly increase the revenue of the generating 

consumers considered. 

1 Introduction  

The development of renewable energy and Smart Grid 

leads to the emergence of prosumers or power generating 

consumers (GC), which are involved in the processes of 

bidirectional exchange of electricity and information [1, 

2]. GC needs to control not only electrical load but also 

the flow of generated power. It significantly increases 

the complexity of its control tasks [3, 4].  

The problem of the optimal GC control has a number 

of issues that lead to high complexity: 

• GC operates under conditions of stochastic change 

in the generation of electricity by renewable sources and, 

to a lesser extent, of its consumption; 

• the control problem has a high dimensionality of 

the solution search space;  

• the objective function is not an analytical 

expression, is need to be calculated algorithmically. 

Much modern research has been devoted to optimal 

control in Smart Grid networks with distributed 

generation and renewable energy sources. However, the 

optimal control is carried out at the level of a 

supersystem in them, and not individual GC. The 

frameworks to real-time coordinate load scheduling, 

sharing, trading were considered at studies [5, 6]. A.C. 

Luna et al. [7] proposed an energy management system 

for coordinating the operation of distributed household 

prosumers with renewable energy sources. H. Mortaji et 

al. [8] proposed smart-direct load control and load 

shedding based on autoregressive integrated moving 

average time-series prediction model and Internet of 

Things concept. 

A number of articles propose a stochastic game 

approach for the problem of energy trading between 

smart grid prosumer.  L. Ma et al. [6] used the energy 

management model on cooperative game theory. S.R. 

Etesami et al. [9] formulated the interaction among 

prosumers as a stochastic game, in which each prosumer 

seeks to maximize its payoff, in terms of revenues and 

proposed an optimal strategy for utility companies. The 

Stackelberg game approach for Smart Grid Energy 

Management (Energy sharing management) was 

considered at [10, 11]. 

Such management allows taking into account data on 

all participants in the distributed electric power system, 

but there is a risk associated with the high level of 

centralization of the control system. Thus, modern 

studies primarily consider the principles of constructing 

the entire Smart Grid power system and the interaction 

rules for multiple GCs. Out research focuses on 

optimizing the control rules for a single GC with a 

difficult prediction of generation using Swarm 

Intelligence (SI) algorithms. 

The SI algorithms are known to effectively solve 

large-scale nonlinear optimization problems, including 

problems of power systems. The most commonly used 

SI algorithm is Particle Swarm Optimization (PSO); 

paper [12] provides a comprehensive survey on the 

usage PSO for power system applications. Other SI 

algorithms are also applied to different optimization 

problems in power system design and control [13-15]. In 

this research, three SI algorithms: PSO, Bees algorithm 

(BA), and Firefly optimization (FFO).  
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2 The Problem Statement  

2.1 GC Power System  

In this research, we considered two large GC: the power 

system of Russky Island and the power system of Popov 

Island. Both islands are located in Peter the Great Gulf in 

the East Sea (Fig. 1). High wind speed makes it possible 

to create wind power plants up to 16 MW on Russky 

Island and up to 20 MW on Popov Island [16]. 

Russky Island belongs to the territorial composition 

of Vladivostok. It is located about two kilometers from 

the coast in Peter the Great Gulf, which is part of the Sea 

of Japan (the smallest distance between the continental 

part and the island is 800 meters). Russky Island is 

separated from the Muravyov-Amursky Peninsula by the 

East Bosphorus. From the west, the island is washed by 

the waters of the Amur Gulf, and from the east and south 

side by the waters of the Ussuri Gulf. In the southwest, 

the island is separated from the other Popov island by the 

Stark Strait. 

The island is 97.6 km2, its length is about 18 km, and 

its width is about 13 km. The population of the island is 

approximately 25,000 inhabitants. 

Popova Island (named after Admiral A.A. Popova) is 

located in Peter the Great Gulf of the Sea of Japan, 20 

km from Vladivostok and 0.5 km southwest of Russky 

Island. About 3,000 people live on the island, mainly in 

the two villages of Stark and Popova. 

Fig. 2 and Fig 3. show curves of own consumption of 

Russky GC and Popova GC and possible wind power 

generation of GCs according to the estimates of [16]. Fig 

4. shows the results of adding these curves. The 

demonstrated fragment of data corresponds to twenty 

days from 01.06.2017.   

From the charts above it is possible to notice the 

following: 

• the forms of the electricity generation curves are very 

close since both islands are located very close, and their 

wind speeds are also close; 

• the load curves concerning to generation are radically 

different; the Russky GC always has a deficit, the 

Popova GC still has a surplus; 

• in case of consideration of two consumers together, we 

have the third type of load / generation pattern – in 

general, the GC system has a deficit, but sometimes 

there is a surplus. 

Thus, different management strategies may be 

required depending on the characteristics of GC or GC 

hub. 

2.2 Optimal Control 

The task of optimal control is to create a control system 

(subject) that implements a sequence of actions on a 

controlled object in the environment to achieve the best 

possible quality specified by one or more criteria (Fig. 

5); the controlled object is a specific part of the world 

around which the control subject can purposefully 

influence [17]. Control always occurs during a certain 

period of time, while the controlled object passes from 

one state to another. 

 
Fig. 1. Russky and Popova Islands. 

 

 
Fig. 2. Consumption and generation of Russky GC. 

 

 
Fig. 3. Consumption and generation of Popova GC. 

 
Fig. 4. Aggregated consumption and generation of both GC. 

 

The state of the controlled object is characterized by 

a set of parameters that can change over time:  

S(t) = {s1(t), s2(t), ..., sn(t)}.   (1)  

Thus, there is a vector of functions. Each function shows 

the parameter changing over time. These functions in the 
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explicit form are unknown. In addition, there is a control 

system that provides control.  

 
Fig. 5. Interaction between a subject and an object. 

 

The control can also be defined as a vector of 

functions:  

A(t) = {a1(t), a2(t), ..., am(t)}.    (2) 

The notations S from “state” and A from “action” are 

used. 

The optimal control problem, in general, can be 

written as follows: 

    
0

( )

( ) arg min , ,
T

pos

t

opt

A t A t

A t f t S t A t dt


   (3) 

• A
opt

(t) is the required optimal control; it defines values 

of the control parameters at each time moment (in the 

considered task, when and how much GC must sell or 

buy, charge or discharge); 

• A
pos

 is the area of permissible values of control 

parameters;  

• f(t, S(t), A(t)) is a continuous-time cost function, in the 

considered task, it gets GC’s total electricity costs: 

purchases from the own generation + purchases from the 

other GC and an external power system – sale to other 

GC and the external power system. 

• t0 and tT are the period of time considered.  

2.3 GC Optimal Control task 

For GC, the state parameters can be defined as follows: 

• own consumption, MWh (s1); 

• wind power plants generation, MWh (s2); 

• charge level of power storage, MWh (s3). 

Control parameters can be defined as follows: 

• the amount of electricity that is currently exchanged by 

the GC with an external power system (purchase or sale), 

MWh (a1); 

• the amount of electricity that is currently being 

transferred by the GC with the neighboring GC 

(purchase or sale), MWh (a2); 

• the amount of electricity that the GC is currently 

charging or discharging from the power storage, MWh 

(a3). 

The control does not affect the state parameters 

associated with the GC consumption and generation, but 

it directly affects the charge of the power storage. In the 

considered task, the time step is set equal to one hour. 

So, each day contains 24 values of the state parameters 

and 24 values of the control parameters. A daily sample 

is shown in Fig. 6. 

Due to the high complexity of power systems in an 

explicit analytical form, the function f(t, S(t), A(t)) 

cannot usually be obtained, especially integral of this 

function. But it is possible to calculate the function 

algorithmically. In the case of GC control, this function 

is piecewise continuous, since the time step is 1 hour. 

The task (3) can be written without an integral, in the 

form of a sum, and the function f(t, S(t), A(t)) is nothing 

more than the difference between the revenues from the 

sale of electricity of a GC and the costs of its purchase, 

generation, and power storage in all hours into the time 

period. However, even in this case, the analytical 

expression for f(t, S(t), A(t)) is difficult to write, since the 

price of electricity is a piecewise constant function, the 

exchange of electricity with a neighboring GC supply 

depends on its state and controlling them. Thus, the 

calculation of the value of f(t, S(t), A(t)) should be 

performed algorithmically: 

    
0

( )

( ) arg min , ,
pos

T
opt

A t A t t

A t revenue t S t A t
 

   (4) 

 

 
Fig. 6. Sample of daily state-action curves of Russky GC. 

3 The Research Method 

3.1 Heuristic-Rule-based control 

All possible control actions could be described by 

dividing them into four groups. The following 

designation is used: 

• power_wind – GC wind power plant generation at the 

considered hour; 

• power_gc – GC consumption at the considered hour; 

• dif – the difference between the GC generation and 

consumption at the considered hour; 

• storage – the amount of energy that needs to be 

charged (> 0) or discharged (<0) at the considered hour; 

• now_ storage – the energy stored in the power storage 

at the considered hour; 

• max_ storage – the maximum amount of energy that 

can be stored in the power storage (constant, GC 

parameter); 

• max_ storage _h – the maximum amount of energy that 

can be added to the power storage in one hour (constant, 

GC parameter); 

• sale_ storage – coefficient that regulates the balance of 

purchase and charging (parameter should be tuned in the 

optimization process 

• sale_unload – coefficient that regulates the balance of 

sales and use of discharging (parameter should be tuned 

in the optimization process); 
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• sale_buy – the amount of energy that is sold (> 0) or 

purchased (<0) at the considered hour. 

Thus, we have the four cases of possible control 

actions: 

1. Charge_Sell (it’s possible if generation > 

consumption). 

1.1. dif = power_wind - power_gc; 

1.2. storage = min(max_storage – now_storage, 

max_storage_h, dif); 

1.3. storage = storage * sale_storage; 

1.4. now_storage = now_storage + storage; 

1.5. sale_buy = dif – storage. 

2. Charge_Buy: 

2.1. dif = power_wind - power_gc; 

2.2. storage = min(max_storage – now_storage, 

max_storage_hour); 

2.3. storage = storage * buy_storage; 

2.4. now_storage = now_storage + storage; 

2.5 sale_buy = dif – storage. 

3. Discharge_Sell: 

3.1. dif = power_wind - power_gc; 

3.2. storage = now_storage; 

3.3. storage = storage * sale_unload; 

3.4. now_storage = now_storage – storage; 

3.5. sale_buy = dif + storage. 

4. Discharge_Buy (it’s possible if generation < 

consumption): 

4.1. dif = power_wind - power_gc; 

4.2. storage = min(–dif, now_storage); 

4.3. storage = storage * buy_unload; 

4.4. now_storage = now_storage – storage; 

4.5. sale_buy = storage – dif. 

The choice of actions should depend on the state of 

the GC, but it is enough to get answers to two questions. 

The first is connected with determining whether the GC 

is in a state of excess or deficiency of energy? The 

second is also related to the fact that the price of 

electricity changes throughout the day. Although various 

billing schemes are possible, a two-zone tariff is 

considered in this research, the daily tax is from 7 a.m. to 

11 p.m., and at other hours it is a night tax, cheaper one. 

Thus, it’s needed to get answers to the questions: 

1) Excluding accumulation, does the generation of 

the GC wind power plant more than the GC consumption 

(diff> 0)? 

2) Is there a special time period now? 

The GC control takes into account the possibility of 

using two intervals as special periods (from time1 to 

time2 and from time3 to time4), the values of the 

boundaries of the time intervals are parameters adjusted 

during the optimization process. 

As a result, we have four possible cases at each hour: 

• (diff < 0) AND NOT (special_time_period); 

• (diff > 0) AND NOT (special_time_period); 

• (diff < 0) AND (special_time_period); 

• (diff > 0) AND (special_time_period). 

When creating a GC control based on rules, we get 

12 rules of the form IF <condition>, THEN <action> 

The number of rules is 12 since the second and third 

actions can be performed under any of the four 

conditions, and the first and fourth under two conditions 

(2 * 4 + 2 * 2 = 12). In addition, the GC control model 

has four balance factors: buy_unload, sale_unload, 

buy_storage, sale_storage, and four moments as the 

boundaries: time1, time2, time3, time4. 

To control using these rules, we need to determine 

the procedure for their verification and compliance, that 

is, rule priorities. Decision making begins with checking 

of the highest priority rule. If its condition is satisfied, 

then the corresponding action of this rule is 

implemented. Otherwise, the next priority rule is 

checked, and so on until the end of the rule list. The 

conditions are designed in such a way that when you go 

through the list of rules, you will surely find one whose 

condition will be satisfied. As a result, to build a 

controller, it is necessary to determine the order of the 

rules by setting priorities (pri) and the tuned parameters 

specified above: 

Solution = [pr1, …, pr12, buy_unload, sale_unload, 

buy_storage, sale_storage, time1, … , time4] 

3.2 Swarm Intelligence 

It is not always possible to determine the Swarm 

Intelligence algorithm that is most suitable for a solved 

task [15]. Therefore, the use of only one algorithm can 

give a solution whose effectiveness is not satisfactory for 

the optimization criterion. In this case, the researcher 

cannot determine the effectiveness without using other 

algorithms for comparison. Therefore, three Swarm 

Intelligence algorithms were applied: the Particle Swarm 

Optimization (PSO) algorithm, the Firefly Optimization 

(FFO) algorithm, and the Bees algorithm (BA) (not 

Artificial Bee Colony Optimization). Descriptions of the 

algorithms precisely in the form in which they are 

applied in this research are given in. 

3.2.1 Particle Swarm Optimization 

The Particle Swarm Optimization algorithm was first 

proposed by J. Kennedy and R. Eberhart in 1995 [18]. 

Then it was improved by Kennedy, Eberhart, and Shi 

[19]. PSO is based on a bird flocks’ behavior. A flock 

acts coordinated according to a number of simple rules. 

Every bird (called particle) coordinates own movements 

with the movements of whole flocks. In the PSO 

algorithm, every particle is denoted by a position vector, 

a velocity vector, and a value of the criterion. The 

vectors of position and velocity of all particles are 

updated according to a number of rules taking into 

account the best position of a particle, and the best 

position of the whole swarm. Also, the algorithm uses 

inertia weights of the particles, velocities restriction and 

the stochastic deviations. 

According to the scheme of the swarm algorithms 

description [15], the PSO algorithm may be represented 

by a tuple {S, M, A, P, I, O}. 

1. A set of particles (particles) S = {s1, s2,…,s|S| }, |S| 

is number of particles. At j-th iteration i-th particle is 

characterized by the state sij = {Xij,Vij, X
best

ij}, where Xij = 

{x
1
ij, x

2
ij,…, x

l
ij} is the variable parameter vector (particle 

position), Vij = {v
1
ij, v

2
ij,…, v

l
ij} is the velocity vector, 
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X
best

ij = {b
1
ij, b

2
ij,…, b

l
ij} are the best (by value) fitness-

functions of the particle position among all the positions 

it took during the algorithm operation from the 1
st
 to the 

j-th iterations, l is the number of variable parameters. 

2. Means of indirect exchange is vector M = X
best

j is 

the best value of the variable parameters vector derived 

among all particles from the 1
st
 to the j-th iterations of 

the algorithm.  

3. Algorithm A describes the steps of the PSO 

algorithm. 

3.1. Generation of initial population (iteration 

number j = 1): 

Xi1 ← random(0,1), i = 1, …, |S|, 

Vi1 ← random(0, vmax), i = 1,…|S|, 

X
best

i1 ← Xij, i = 1, …|S|, 

where random(0, 1) is the vector of random numbers 

with dimensionality l (dimensionality of solution search 

space) uniformly distributed from 0 to 1. 

3.2. Calculation of fitness- functions. The criterion 

calculation takes place in the mathematical model of the 

problem where Xij vectors are entered from algorithms 

and the results are returned to the algorithm through the 

interface {I, O}. 

X
best

ij ← Xij | f(X
best

ij)<f(Xij), i = 1, …, |S|, 

M ← Xij | f(M) < f(Xij), i = 1, …, |S|, 

3.3 Particles’ movement with respect to the 

tolerance region and to the velocity limitation: 

Vij+1 ← Vijω + α1(X
best

ij - Xij)random(0,1) + α1(M - 

Xij)random(0,1) (i = 1, …, |S|). 

Vij+1 ← β | Vij+1 > vmax ,i = 1, …, |S|. 

Vij+1 ← -β | Vij+1 < -vmax ,i = 1, …, |S|, 

where α1, α2, ω, vmax are algorithm parameters. 

Xij+1 ← Xij + Vij+1 , i = 1, …, |S|. 

Xij+1 ← 1| Xij+1>1 , i = 1, …, |S|. 

Xij+1 ← 0| Xij+1<0 , i = 1, …, |S| 

3.4. If at the j-th iteration a stop-condition is 

satisfied, then the value M is transmitted to output O, or 

the transition to iteration 3.2 takes place. 

4. Vector P = {α1, α2, ω, β} comprises the 

coefficients of algorithm А, which influences the 

particles’ movement in the search space. Coefficients α1 

and α2 define the degree of accounting the individual and 

group experience of the particles, respectively. 

Coefficient ω characterizes inertial properties of the 

particles, and coefficient vmax defines limitations for the 

maximum velocity. 

5. Identifiers I and O are input and output of the 

PSO algorithm for interaction with the problem 

considered. 

3.2.2 Bees Algorithm 

The Bees Algorithm Bee Colony Optimization algorithm 

was researched and developed by a number of authors in 

2005 [20]. It is based on the simulation of the behaviour 

of bees in their searching for nectar and the indirect 

exchange of information between bees. Bee swarm sends 

several scouts in random directions to search for nectar. 

Returning, scouts report on the areas found in the field 

with flowers containing nectar, and on them fly out the 

other bees. In this case, the more on the site of nectar, 

the more bees go to it. However, the bees can randomly 

deviate from the chosen direction. After the return of all 

the bees in the hive, information exchange and sending 

of bees again.  

According to the description scheme of swarm 

algorithms, the BA algorithm may be represented by a 

tuple {S, M, A, P, I, O}. 

1. A set of particles (bees) S = {s1, s2, …, s|S|}. At the 

j-th iteration the i-th particle is characterized by the state 

sij = {Xij}, where Xij= {x
1
ij, x

2
ij, …, x

l
ij,}is the variable 

parameters vector (the particle position), l is the 

dimensionality of the solution search space. 

2. Means of indirect exchange M is a list of the best 

and perspective positions found in the j-th iteration, M = 

{Nij
b
, Nkj

g
}, i = 1, ..., n

b
, k = 1, ..., n

g
. 

3. Algorithm A describes the steps of the BA 

algorithm. 

3.1. Generation of initial population (j=1) is fulfilled 

only for a subset of particles termed scouts:  

Xi1 ← random(0,1), i = 1, …, n
s
, 

where n
s
 is the number of scout particles. Other 

particles are considered as inactive this time (only at the 

first iteration). 

3.2. Calculation of fitness-functions. The criterion 

calculation takes place in the mathematical model of the 

problem where Xij vectors are entered from algorithms 

and the results are returned to the algorithm through the 

interface {I, O}. 

X
best

ij ← Xij | f(X
best

ij)<f(Xij), i = 1, …, |S|, 

3.3. Particles’ movement. Among all particles n
b
 

particles with the best values of target function are 

chosen, and then, in the rest of the set, n
g
 particles with 

the best values are chosen. On the basis of this positions, 

the lists of the best and perspective positions M = (Nij
b
, 

Nkj
g
) are generated, found at the (j–1)-th iteration. 

Herewith, the distance between any two positions in M 

over each coordinate in the solution search space must 

be not less than the values of parameter rx. Worker 

particles are sent to the vicinity of these positions. c
b 

of 

particles are sent to the vicinity
 
of each best position and 

c
g 

are sent to the vicinity of each perspective position. 

Thus, the positions of all worker particles are determined 

as follows: 

X(i-1)cb+k j ← N
b
ij-1 + random(-1, 1)∙rad, i = 1,…, n

b
, 

k= 1,…, c
b
, 

Xnb∙cb+(i-1)cg + k j ← N
b
ij-1 + random(-1, 1)∙rad, i = 1,…, 

n
g
, k= 1,…, c

g
, 

where n
s
, n

b
, n

g
, с

b
, c

g
, rad are the parameters of the 

algorithm.  

In this case, scout particles are sent to random 

positions the coordinates of which are random values 

uniformly distributed in the tolerance range:  

Xnb∙cb+ng∙cg + i j ← random(-1, 1)∙rad, i = 1,…, n
s 

3.4. If at the j-th iteration a stop-condition is 

satisfied, then the value X
best

i is transmitted to output O, 

or the transition to iteration 3.2 takes place. 

4. Algorithm parameters used in this description 

form vector P = {n
s
, n

b
, n

g
, с

b
, c

g
, rad, rx}. The 

coefficient rad defines particle scattering in sending to 

the best and prospective positions, coefficient rx defines 

minimum possible distances between these positions. 

The value for the expression n
s
 + n

b
с

b
 + n

g
с

g
 is equal to 
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the total number of the swarm particles (|S| = n
s
 + n

b
с

b
 + 

n
g
с

g
). The selection of the algorithm parameters heavily 

affects the quality of derived solutions, so in order to 

increase the algorithm efficiency it is necessary to adapt 

parameters. 

3.2.3 Firefly Optimization 

Firefly Optimization was proposed by Xin-She Yang in 

2010 [21]. This algorithm as all Swarm Intelligence 

algorithms is based on the particles (fireflies) movement 

in the search searching space. Let’s consider the 

objective function minimum problem of the following 

type f(X), where X is a vector of varied parameters which 

can get the values from some D area. Each particle is 

specified by the value of X parameter and value of an 

optimized function f(X). Thus, the particle is a feasible 

solution of the considered optimization problem.  

As the algorithm is based on watching for fly’s 

behavior, each particle is considered to see the “light” 

from their neighbors, but the brightness of the “light” 

depends on the distance between particles. For the 

process of solution finding to be converged to the 

optimum, each particle in its movement takes into 

account only those neighbors having a better value of 

f(X) criterion. But for the algorithm not to degenerate 

into greedy heuristics, it is necessary to have particles’ 

stochastic movement.  

According to the description scheme of swarm 

algorithms, the FFO algorithm may be represented by a 

tuple {S, M, A, P, I, O}. 

1. Set of particles (fire-flies). S = {s1, s2, …, s|S|}, |S| 

is a number of particles. At iteration j the i
th

 particle is 

specified by the state sij = {Xij}, where Xij = {x1ij, x2ij, …, 

xlij} is a vector of the varied parameters (particle’s 

position), l is a number of the varied parameters. 

2. Means of indirect exchange is vector M is 

particles’ brightness. 

M = {f(X1j), f(X2j), f(X|s|j)} 

Brightness is determined by the optimality criterion. 

This vector ensures the indirect experience exchange 

among particles.  

3. Algorithm A describes the steps of the ACO 

algorithm. 

3.1. Generation of initial population (iteration 

number j = 1): 

Xi1 ← random(G(X)), i = 1, …, |S|, 

where random(G(X)) is a vector of equally 

distributed random variables meeting the restrictions of 

searching space.  

3.2. Calculation of fitness-functions. The criterion 

calculation takes place in the mathematical model of the 

problem where Xij vectors are entered from algorithms 

and the results are returned to the algorithm through the 

interface {I, O}. 

mij ← f(Xij), i = 1, …, |S| 

Xj
best

 ← Xij | f(Xij) ≤ f(Xj
best

) 

3.3 Particles’ movement: 

Xij+1 ← Xij + v(Xij, Xkj) · (Xij – Xkj) + α·random(0, 1) | 

mkj ≤ mij , i, k = 1, …, |S|, i ≠ k, 

if G(Xij+1) = 0, Xij+1 ← Xij , i = 1, …, |S|, 

Where random ∈ [0, 1], and G(X) is used in this case 

as the predicate showing if X belongs the area of 

admissible solutions. 

The function v(Xij, Xkj) defines the attractiveness of k 

particle for i particle with j algorithm iteration: 

v(Xij, Xkj) ← β·(1 + γ·r(Xij, Xkj))
-1

 

 where r(Xij, Xkj) is Cartesian distance between 

particles. 

3.4. If at the j-th iteration a stop-condition is 

satisfied, then the value X
best

i is transmitted to output O, 

or the transition to iteration 3.2 takes place. 

4. Vector P = {α, β, γ} are coefficients of the 

algorithm. Coefficient α determines the influence degree 

of stochastic algorithm nature. Coefficient β sets the 

degree of attraction between particles with zero distance 

between them i.e. defines the particle’s mutual influence. 

Coefficient γ controls the dependence of attraction on the 

distance between particles.  

3.3 Application the Swarm Intelligence 
Algorithm for GC optimal control 

For applying SI algorithms, it is necessary to determine 

the mapping of the particle coordinate (X) in the search 

space solution to the solutions of the solved task. In this 

case, the solution is the control actions A(t), as shown in 

expression (1). Each element of the vector X is bounded 

from 0 to 1 [15]. The priorities are real numbers from 0.0 

to 1.0, so pri = xi, i = 1, ..., 12. The parameters 

buy_unload, sale_unload, buy_storage, sale_storage 

also take values from 0.0 to 1.0, so they are mapped in 

the same way. To set values of time1, ..., time4, we use 

rounded down values of 24x17, …, 24x20.  

The FFO algorithm requires comparing each particle 

to each other, so the number of operations quadratically 

depends on the number of particles. The PSO and BA 

have a linear relationship. We reduce the number of FFO 

particles to equalize the calculation time. At the same 

time, we increase the number of iterations of the FFO 

algorithm to equalize the number of calculations of the 

objective function. As a result, the number of particles is 

reduced four times, and the number of iterations is 

increased four times compared to the PSO algorithm and 

the BA. The parameters of the SI algorithms are given in 

Table 1. 

Table 1. Parameters of the SI algorithms 

Alg. Particles Iteration Heuristic coefficients 

PSO 200 500 
α1 = 1.5 α2 = 1.5,  

ω = 0.7, β = 0.5 

BA 200 500 

ns = 60, nb = 6, ng = 1,  

сb = 20, cg = 20,  

rad = 0.01, rx = 0.05 

FFO 50 2000 α = 0.05, β = 1, γ = 0.5 
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4 Results and Discussion 

4.1 Computational Experiment 

Computational experiments were carried out while 

considering the GC of Russky and Popov Islands (GCR, 

GCP, respectively). Table 2 shows the prices used in the 

simulation. 

Table 2. Prices used in the simulation 

Power flow 
Price,  

rubel / MWh 

Price,  

$ / MWh 

Wind generation 500 6,67 

Power storage 

discharging 
100 1,33 

Sale (daily rate) 3200 42,7 

Sale (daily rate) 1400 18,67 

Buy (daily rate) 2700 36,00 

Buy (daily rate) 900 12,00 

 

To evaluate the effectiveness of the rule-based 

control model built by the Swarm algorithms, we 

compared them with a base constructed manually by an 

expert. The main advantage of using SI is an automatic 

adaptation to the profiles of production and consumption 

of each GC. Therefore, the expert rules were constructed 

one time for the general case. 

Obviously, in the problem under consideration, 

control is impossible without power storage. Because 

without it, GC has to sell electricity at times of excess 

and buy at times of shortage, and there are no other 

options. Therefore, control efficiency is limited by the 

capacity of the power storage. Due to the limitation of 

capacity and the use of tariff simulation with only two 

rates (day, night), the reduction in energy consumption 

or the increase in income (this is the same thing) is not 

very large. Thus, for results clarification, we did not 

compare the absolute values of the cost of electricity 

according to criterion (4), but the benefits that control 

gives regarding the situation without power storage. 

In section 2.1, three cases are considered: the control 

of a GC of Russky Island, GC of Popova Island, and an 

integrated system of both GCs. For each situation and 

each algorithm, modeling was performed on data for two 

summer months (Fig. 2-4). 

4.2 Simulation results 

Table 3 shows the results. Each SI algorithm was 

launched 20 times, and in 17-18 launches out of 20 gave 

the same result. This result is used as a summary. The 

results without the use of power storage are shown in 

rows with the label "No" in the "Algorithm" column, and 

the results of control using the expert rules are labeled as 

"Expert". Also, Fig. 7 visualizes the benefits of using the 

rule-based model optimized by the SI. 

It can be seen that the difference varies greatly 

depending on the profile of production and consumption. 

For the GC of Russky Island, there is a situation of 

electricity shortage, so control does not make a large 

contribution. For the Popova Island GC, on the contrary, 

there is an excess of electricity; therefore, it is necessary 

to determine the best moments for the sale of electricity 

and the balance between sale and accumulation. 

The most interesting situation is when a joint system 

of two GCs is controlled together. First, in this case, the 

profile is more complicated (Fig. 4), since there are 

moments of both excess and shortage of electricity. 

Secondly, the power storage capacity is two times higher 

due to the combination of storages of both GC in a single 

power system. Thirdly, the combined GC has a higher 

generation and consumption, since, it is evident that all 

quantitative indicators will be more top. 

The results of all applied SI algorithms are very 

close, even without adjusting the heuristic parameters. It 

can be explained by the relatively low complexity of the 

task from the point of view of optimization theory since 

there are not many control options. 

 

 

 
 
Fig. 7. Algorithms’ results. The histogram shows the monthly 

profit ($) of power storage usage with the different algorithms 

of optimize control rule-based model. Left 4 bars shows results 

for GCR, central 4 bars – for GCP, right 4 bars – for GCR+P.   

 

Table 3. Algorithms’ results  

Case Algorithm 
Cost, 

thousands $ 

Monthly Profit, 

thousands $  

GCR No 580.3 - 

GCR Expert 579.8 0.241 

GCR PSO 579.4 0.43 

GCR BA 579.5 0.43 

GCR FFO 579.5 0.43 

GCP No -41.6 - 

GCP Expert -41.5 0 

GCP PSO -42.8 0.6 

GCP BA -42,8 0.59 

GCP FFO -42,8 0.59 

GCR+P No 452,0 - 

GCR+P Expert 450,4 0.57 

GCR+P PSO 447,3 2.33 

GCR+P BA 447,3 2.33 

GCR+P FFO 447,3 2.33 
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5 Conclusion 

In this research, we have applied Swarm Intelligence 

algorithms to optimize the heuristic-rule-based control 

model (optimize priorities of rules and numerical values 

of the model coefficients) for optimal control of 

generating consumers with wind power plants. The 

computer simulation showed that SI allowed to increase 

the profit of power storage usage 1.8–4.1 times 

compared with the rules build by experts. The simulation 

results confirmed that it is appropriate to apply the SI 

algorithms to increase accuracy of heuristic-rule-based 

model, and perform adaptation to a given generating 

consumer. 

The proposed control model allows to get the robust 

control in a particular situation, which can be easily 

transferred to other climatic conditions and GC features. 

For future work, we plan: firstly, to complicate a GC 

model and a model of GCs interaction; secondly, to 

apply the Q-learning method for the optimal control of 

GC; thirdly, make comparisons with existing methods 

using larger dataset.  

 
This work is supported the Novosibirsk State Technical 

University Development Program through the Project C20-20. 
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