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Abstract. The current paper aims to present a comparison between soil-water characteristic curves based 
on the filter paper method and on a volume-mass estimation. Additionally, this research consists in 
comparing grain size distributions by sieving/hydrometer and by sieving/Cilas (particle-size analyser model 
1092), when it comes to determining the soil-water characteristic curves by a volume-mass prediction on the 
Soil Vision software. As materials, were used two sets of colluvial soils sampled at the Campus Quinta do 
Paraiso - Centro Universitário Serra dos Órgãos (UNIFESO), Teresópolis – Brazil. The results showed that 
the soil-water characteristic curves related to the filter paper method or grain size distribution estimation are 
different. However, the tests performed by sieving/Cilas are more efficient than the results based on 
sieving/hydrometer, concerning its uses as input data for soil-water characteristic curves estimations. In 
conclusion, even considering the estimation method was not able to depict the same results such as obtained 
by the filter paper method, the use of Cilas is a procedure that can improve the quality of the predicted soil-
water characteristic curve. 

1 Introduction  

When it comes to analysing unsaturated soils, the 
knowledge of drying (desorption) and wetting (sorption) 
processes [1] is considered a key factor for slope 
stability, flow, soil irrigation, and further analysis.  

The effects of the non-saturation can be observed on 
the hydraulic conductivity [2-4], soil volumetric 
variation [5,6], and shear strength [7,8] emphasising its 
remarkable use for geotechnical engineering. 

One of the most important approaches is related to 
the soil-water characteristic curve (SWCC). Since it is 
assumed [Williams (1982) ccc] as the relationship 
between water content and suction for a given soil, the 
SWCC is established by constitutive models [9]. 
However, the suction of soil under a given water content 
depends on its history of wetting and drying, and it is 
difficult to point out. 

In order to determine the SWCC, the most common 
standard test method is based on filter paper [10]. The 
procedure is related to the suction equilibrium principle, 
in which two porous materials, when placed in contact, 
will lose and absorb water until the equilibrium of 
suction.  

Even being a standardised method [11], the filter 
paper’s based procedures have the equilibrium of suction 
as the major factor responsible for its time-consuming 
characteristic since its stabilisation time varies according 

to the level of suction measured and may vary from 7 to 
30 days [12-13]. In this way, it is considered a high time-
consuming and because of this; The method is under-
used in comparison with the benefits it could input in the 
unsaturated analysis. 

Thus, prediction models based on grain-size 
distributions are revealed as feasible options to obtain 
the SWCC in a reduced time. An advantage of this 
technique is that measuring soil grain-size distribution is 
much more practical and usual than techniques such as 
the filter paper method. They are easier to perform, and 
the results are obtained faster as the suction equilibrium 
time is avoided. 

Because of this, the current research is focused on the 
comparison of a predicted SWCC (based on grain-size 
distribution - GSD) and the filter paper standard method. 
Further, it is tested the use of grain-size based on 
sieving/hydrometer or based on sieving/Cilas particle 
size analyser as input data for the soil-water 
characteristic curves estimated by using the Soil Vision 
software. 

1.1. Theoretical background  

Fredlund et al. (2012) [1] summarised information about 
developments in the SWCC in soil physics and presented 
the early equipment and conceptual models of flow in 
unsaturated soils. Further, it was emphasised that the 
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nonlinear soil properties require several tests for the 
same specimen in order to depict reliable results. One 
additional obstacle hindering the determination of soil-
water characteristic curves is that the same suction might 
be related to different water content. It happens because 
the drying path is generally greater than the wetting, 
showing that there is hysteresis. Thus, it is noteworthy 
that there are several curves for a given soil, depending 
on the wetting/drying path. 

A vast amount of empirical equations has been 
proposed to fit experimental data for soil-water 
characteristic curves (Fredlund, 2012 p.201 [1]). Even 
though numerous unimodal equations are exposed in the 
literature, there are an increasing number of equations 
that reveal a bimodal behaviour in the shape of SWCCs 
(Qi & Vanapali, 2015[14]). 

The unimodal curves present only one desaturation 
branch (Figure 1). In the same figure, it is possible to 
observe the effect of hysteresis since the adsorption is 
lower than the sorption. 
 

 

Fig. 1. A typical unimodal SWCC [15]. 

 
In the matter of bimodal soil-water characteristic 

curves, it is composed of two desaturation branches 
(Figure 2). This type of curve presents two air-entry 
values (AEVs) related to macro (1st AEV) and micro-
pores (2st AEV).  
 

 

Fig. 2. A typical bimodal SWCC [Adapted from 14]. 

 

Besides experimental procedures (here, essentially 
comprised by filter paper method), indirect pedo-transfer 
functions (PTFs) [16] have been considered an 
alternative method when it comes to estimating of the 
soil-water characteristic curve. A PTF is a function that 
has its basis on elementary soil data such as the grain-
size distribution (Fredlund et al. 2002 [1]).  Some of the 
most useful PTFs are the researches presented by 
Fredlund & Wilson PTF (2002) [17] and Arya & Paris 
PTF (1981) [18]. 

2 Materials 

The colluvial soils used in the tests have been sampled 
from two depths (Pt 01 – 25 cm and Pt 02 – 75 cm) 
located at Campus Quinta do Paraiso - UNIFESO 
(geographic coordinates 22°23'35.02" south and 
42°57'40.78" west).  
The sampling point belongs to the Serra dos Órgãos, 
which is the local description for Serra do Mar. In the 
geological survey, the area comprises granite 
(monzogranite) and gneiss rocks. The rocks are 
constituted by a wide range of minerals such as quartz, 
muscovite, migmatites [19,20]. Further, regional and 
local faults are observed as consequence of 
geomorphological processes. 

The soil characterisation was performed according to 
standard methods NBR-6457 and NBR-6508 [21-22].  

Table 1. Physic characterisation of the soils. 

Sample Pt 01 Pt 02 

Specific Gravity 2.65 2.67 

�t (kN/m³) 17.5 18.5 

Liquid Limit (%) 47.2 54 

Plastic Limit (%) 35.9 27.8 

Plasticity Index (%) 11.3 26.2 

 
Regarding the grain-size distribution, it was 

accomplished by sieving and hydrometer, such as 
preconised by NBR-7181 [23]. For the soil 
classification, was used the Unified Soil Classification 
System (USCS) [24]. Pt 01: Colluvial, silty-sand (SM); 
Pt 02: Colluvial, clayey-sand (SC). 

3 Methods 

The method used consists of determining grain-size 
distribution curves by the standard method and the GSD 
revealed by the particle size analyser. Afterward, the 
soil-water characteristic curves were performed based on 
the filter paper. Additionally, the Soil Vision software 
was used to fit the GSD according to the experimental 
values. Further, it was also used to estimate the SWCCs 
based on grain-size distribution. 

3.1. GSD based on particle-size analyser  
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Fig. 3. Cilas 1190 particle size analyser. 
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Fig. 9. Fitting - Soils water characteristic curve (Pt 01) using 
Arya and Paris and Fredlund bimodal fit. Standard GSD (a); 
Sieving/Cilas (b). 

 

 

 
Fig. 10.  Fitting - Soils water characteristic curve (Pt 02) using 
Arya and Paris and Fredlund bimodal fit. Standard GSD (a); 
Sieving/Cilas (b). 

5 Conclusion  

The grain size distribution revealed a bimodal geometry 
for the Cilas coupled method, and it was not clear for the 
GSD results obtained by the standard method. It suggests 
accordance with (Qi et al. 2009 [14]), in which 
highlights “there appears to be greater difficulty in 
estimating the SWCC for silt-clay soils, silt-clay-loam 
soils, and silt-loam soils for both PTFs, although the 
predicted SWCCs look similar to the measured results”  

In a comparison of Arya-Paris (1981) [17] with 
Fredlund et al. (2002) [18], pedo-transfer functions, the 
solution based on Fredlund et al. (2002) [1] PTF 
performed slightly better than the Arya-Paris (1981) PTF 
for both soils. 

Finally, Cilas particle-size analyser provides a better 
knowledge of the particle-size distribution of the soils, 
contributing to generate refined soil-water characteristic 
curves by using the prediction method on Soil Vision 
software. 
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