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Abstract. Since the stochasticity of the charging of electric vehicles (EVs) may bring impact to the grid, 
there is a high possibility that the demand charge will be applied to charging stations. Therefore, a load-
forecasting-based demand contracting strategy is proposed for charge stations in this paper. A stochastic 
optimization model is established by regarding the maximal demand as a stochastic parameter, and the 
object of the model is to minimize the expectation of demand charge, and the analytic solution is derived. 
To obtain the distribution of actual maximal demand, a Monte-Carlo-based charge load forecasting method 
is proposed. It gives the distribution of the daily maximal demand, based on which the distribution of 
monthly maximal demand is also derived. The case study illustrates the feasibility and the validity of the 
proposed strategy. 

1 Introduction  
In recent years, countries around the world have paid 
attention to environmental pollution including air 
pollution, one of the important sources of which is the 
traditional autos using internal combustion engines. 
Since electric vehicles (EVs) are driven by electric 
energy, no fossil fuels are burned directly to emit 
exhaust gas. Besides, EVs have the advantages of low 
noise, so they are regarded as "clean vehicles" and are 
ideal alternatives to internal combustion engine vehicles. 

The number of electric vehicles has been increasing 
in recent years, which puts forward higher requirements 
for the development of electric vehicle charging facilities. 
Nowadays, "mileage anxiety" is still one of the main 
reasons that restrict people from buying electric vehicles, 
so convenient and fast charging has become an important 
thrust to promote the development of the electric vehicle 
industry. For this reason, many countries are vigorously 
developing the electric vehicle industry and 
infrastructure construction. The Ministry of Industry and 
Information Technology of the People's Republic of 
China proposed that by 2025, the sales ratio of new 
energy vehicles will reach about 25%, and it clearly 
states that it must "improve infrastructure construction" 
and "improve the level of charging infrastructure 
services."[1]. The electric vehicle industry has the same 
phenomenon abroad [2-3]. In 2016, Norway built the 
world's largest electric vehicle fast charging station. 
London has built more than 225 fast charging stations in 
2019. EVgo, which is the electric vehicle charging 
network operator in American is advancing the 
construction of fast charging stations with battery energy 
storage systems. In terms of electricity prices, many 

countries in the world have implemented a segmented 
charging model [4-5]. In 2014, the National Development 
and Reform Commission of China made it clear that 
large-scale industrial electricity prices would be applied 
to the centralized charging facilities, and the basic 
electricity charges would be waived before 2020[6]. 

The basic electricity charge is a form of electricity 
fee charged for large users with a transformer capacity of 
100kVA and above. This kind of users need to 
implement a two-part electricity price, including 
electricity price (charged based on electricity 
consumption) and basic electricity price (charged based 
on maximum power) [7]. The basic electricity charge can 
be charged in two ways: according to the transformer 
capacity or the maximal demand, which can be freely 
selected by users. It is generally believed that charging 
the basic electricity fee based on the maximal demand 
(referred to as the demand charge) is a more reasonable 
method[8]. The main purpose of the basic electricity 
charge is to promote the rational use of electricity and 
limit the short-term load spikes generated by high-power 
users[9]. The charging of electric vehicles is stochastic, 
and there are quite a few studies to point out that large-
scale electric vehicle charging may bring impact to the 
grid[10-15]. Measures need to be taken to limit the short-
term high-power operation of charging stations, which is 
in line with the concept of demand charge. Although 
charging stations are tentatively exempted from the basic 
electricity charge in order to promote the development of 
electric vehicle charging infrastructure, in the 
foreseeable future, they are very likely to become one of 
the charging objects of the basic electricity bill in order 
to promote the safety and stability of the grid. 
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In this context, electricity expenses will be the one of 
the major costs of charging stations, of which demand 
charge will be a significant part. When demand charge is 
charged, the operator should sign a contract with the grid 
company to declare its own "contract demand" (this 
process can be referred to as "demand contracting"), and 
be charged according to the contract demand. However, 
if the actual maximal demand exceeds 5% above the 
contract demand, the excessive part will be charged by 
doubled price. Therefore, a reasonable choice of the 
contract demand will have a significant effect on the cost 
reduction of the charging station. 

Based on the above background, this paper studies 
the demand contracting strategy for charging stations 
and proposes a load-forecasting-based demand 
contracting strategy. This paper establishes a 
mathematical model of the demand charge based on the 
current demand charge rules, and derives the optimal 
solution for the contract demand through mathematical 
analysis. Since the effectiveness of the above demand 
contracting strategy largely depends on whether the 
charging station operator can better obtain the 
distribution of the actual maximal demand, this paper 
proposes a load-forecasting-based demand contracting 
strategy. Furthermore, the method of obtaining the 
distribution of monthly maximal demand is given. 
Finally, the effectiveness of the method proposed in this 
paper is demonstrated through the analysis of a 
numerical study. 

2 Demand contracting strategy for 
charging stations  

According to the current regulations on the demand 
charge, when users calculate the basic electricity charge 
based on the maximal demand, a general formula of the 
basic electricity charge can be written as: 
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where c  presents the demand charge; C  is the 
capacity of the transformer; D  is the actual maximal 
demand of users; x  is the contract demand, obeying 
D x C  ; D is the minimal contract demand limit, 
obeying 0.4D C ; k  is the threshold for charging a 
punitive price, which is 1.05;  1 2,p p  are the price for 
the actual maximal demand within k  times of the 
contract demand (called the basic demand price) and the 
demand price for the part that exceeds k  times of the 
contract demand (called the punitive demand price) 
respectively, obeying 2 1/ 2p p  ; however, the values 
of 1 2,p p vary in different provinces. 

Equation (1) shows that the demand charge is related 
to 1 2, , , , , ,C D D x k p p . For charging station operators, 
the only variable that is fully controllable is the contract 
demand x . Therefore, from the perspective of the 
contract demand, Equation (1) can be rewritten as: 
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It can be seen that the demand contracting strategy 
for charging stations aims to determine the contract 
demand x that can make the basic electricity charge 
minimized. However, the actual maximal demand of the 
charging station is a random parameter, which mainly 
depends on the charging status of the electric vehicle. 
Therefore, a stochastic optimization model is established 
by regarding the maximal demand as a stochastic 
parameter, the object of which is to minimize the 
expectation of demand charge.  

  1 2Min ( ) ( ) ( )d
C

Dk xx
E c x p x p kx f  


        (3) 

s.t.           D x C                 (4) 
where ( )

D
f    presents the probability density function 

of the actual maximal demand D . 
Through derivative analysis of the optimization 

problem expressed by equation (3) and equation (4), the 
analytical solution of the problem can be obtained as: 
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where ( )DF    presents the cumulative distribution 
function of the actual maximal demand D . 

The specific derivation process can be found in 
literature [16]. When the probability that actual maximal 
demand of users is below 0.42C is not less than 0.524, 
the optimal value of the contract demand is equal to the 
minimal contracting limit 0.4D C ; Otherwise, the 
optimal value of the contract demand is equal to 

-1(0.524) /1.05DF . 

3 Demand contracting strategy for 
charging stations  

3.1 NHTS data processing 

From the demand contracting strategy for charging 
stations obtained in Section 1, it can be known that 
whether users can better determine the contract demand 
depends largely on whether the user can predict a better 
distribution of the actual maximal demand. For electric 
vehicle charging stations, the electricity load mainly 
comes from the load of electric vehicles that charging at 
the charging station. Therefore, in order to obtain the 
maximal demand of the charging station in the future, 
the electric vehicle charging load forecast of the 
charging station is extremely important. In this section, 
we propose a Monte Carlo simulation method based on 
the trip chain theory to predict the charging load of the 
charging station. 

The users of public charging stations are mainly 
household EVs and passenger EVs. For these vehicles, 
their service scenarios are usually people's daily travel. 
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The behavior characteristics of this type of vehicles can 
be considered to have similarities with that of private 
cars. Therefore, the use of travel survey data for 
household petrol vehicles has an important value for this 
research. On account of the above considerations, the 
household travel survey data NHTS 2017 led by the US 
Federal Highway Administration is used as the data basis. 

For the travel characteristics of the private car, 
various destinations can usually be divided into 5 
categories according to the purpose of travel: H (home), 
W (work), SE (shopping & errands), SR (social & 
recreation), O (other). The closed loop among the five 
types of destinations and centered on H is called a trip 
chain. Since trip chains with too many midway 
destinations are minority, and usually include temporary 
parking (where charging behavior is usually unlikely to 
occur). Therefore, only trip chains with no more than 2 
midway locations are considered. The classification of 
trip chains is shown in Fig. 1. 

Simple chains

Complex chains

H W

SE/SR/O

H SE

W/SR/O

H SR

W/SE/O

H O

W/SE/SR

H OH SRH SEH W

Fig. 1 Classification of trip chains 

In NHTS 2017 data, about 923500 records of 
household trips with necessary information of each trip 
are recorded.  The following steps are taken to analyse 
the characteristics of household EVs trips. 

Step 1: Read the data of the current travel records. 
Step 2: When all the necessary data for the closed 

trip chains is recorded, add it to the data set of the 
corresponding type of the trip chain. 

Step 3: Accumulate the data of each trip of various 
trip chains in the data set, and use the kernel density 
estimation method to fit the probability density function. 

Through the above data processing process, the 
following probability statistical results related to the 
electric vehicle trip chain can be obtained: 

(1) The Distribution of the starting/ending time, the 
trip duration, the trip length, and average speed in each 
type of trip chains; 

(2) The distribution of staying duration at every 
midway site of every type of trip chains. 

(3) The proportion of each trip chain. 

3.2 Load forecasting method based on Monte 
Carlo simulation 

Based on the data processing of NHTS 2017, a statistical 
feature of trip characteristics is obtained. The whole trip 
chains of EVs are simulated in a way that is designed to 
be close to the real using scenarios. In the simulation, 
necessary parameters are generated according to the 
fitted distribution. 

Specifically, the simulation process can be described 
as the following process: 

Step 1: According to the proportion of various types 
of trip chains, randomly select the type of trip chains 
(travel purpose) for this EV trip. 

Step 2: According to the corresponding type of the 
travel chain, randomly select the end time of the first leg 
of the trip. Considering that the start time of a day’s 
schedule is relatively fixed (such as work time, the time 
appointed by customers or friends), the first moment to 
be generated is set to be the ending time of trip 1. 

Step 3: According to the random distribution of the 
distance and average speed in the current trip chain, 
select the distance and average speed of trip 1. The 
length of each trip is determined by the distance between 
the starting site and the destination, and is the main 
factor influencing power consumption. The average 
velocity, which is affected by factors including weather 
and traffic congestion, is the determinant for trip 
duration when length is fixed. 

Step 4: According to the current type of the trip chain, 
select the staying duration at the midway site. It is 
generally believed that the charging behavior of EVs 
mostly occurs at the midway site. The principle of 
charging is to ensure the usage of EVs. Therefore, the 
EVs are set to be charged when the state of charge (SOC) 
is inadequate for the next trip. Considering a security 
redundancy of 20% SOC remained after the next trip, the 
EV is charged when: 

/ 0.2n nSOC ul c               (6) 
where nSOC  is the SOC when reaching the nth site 

of the trip chain; u  is the power consumption per 
kilometer; nl  is the length of the nth trip of the trip chain; 
c is the battery capacity. 

The EV’s SOC at the nth site can be calculated by 
1 1n n nSOC SOC ul              (7) 

where the initial SOC ( 0SOC ) is set to be 1 if the 
user owns a private charging post, or a random value in 
[0.5, 1] if the user does not. When an EV is charged at a 
site, the charging power of it is added to the charge load 
of this site during the whole charging duration. The 
charging duration at site n is the minimum between 
staying time and the necessary charging time till the EV 
is fully charged. 

   , min , (1 ) /charge n stay nT T SOC c p        (8) 
where p presents the charging power. 
Step 5: If the EV's trip has not ended, repeat steps 3 

and 4 until the EV's trip is completely simulated. Finally, 
the charging power is added on the charging load curve 
at point H. 

The simulation procedure can be expressed as the 
flow chart in Fig. 2. 
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 Fig. 2 Flow chart for Monte Carlo simulation procedure 

After obtaining the day-ahead charging load curve of 
the five types of locations, the day-ahead charging load 
of a specific charging station can be obtained by  
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1
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i

p p r


               (9) 

where ip  is the load of the 5 sites, and ir  is the 
function proportion of the 5 kinds of sites. For instance, 

1 0.04r   means 4% home function of the whole studied 
area is accumulated in the service area of the station. 

4 Obtaining the actual maximum 
demand distribution  
Based on the Monte-Carlo-based charge load forecasting 
method, the charging load curve of the charging station 
within one day can be obtained. Since the charging 
power of EVs accounts for the main part of the power 
used by the charging station (especially for peak 
charging periods), the maximal value of the charging 
load in a day is regarded as the maximal demand of the 
charging station that day. 

0d  presents maximal daily demand predicted by 
Monte Carlo simulation. It meets the condition: 

2
0( , )d N d   . Therefore, the probability density 

function of the maximal daily demand ( )
d

g    can be 
written as: 
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However, the demand charge is charged according to 
monthly maximal demand Therefore, the distribution of 
monthly maximal demand needs to be derived based on 
the distribution of daily maximal demand. It is assumed 
that the daily maximal demand of each day in this month 
is an independent event and obeys the same distribution 
(10). Since the monthly maximal demand is also the 
maximal among the daily maximal demands, when Δ d  
approaches zero, the probability density function of 
monthly maximal demand ( )

D
f   satisfies:

 ( ) ( ) ( )
N N

D d d
f d d G d G d d                         (11) 

where ( )
d

G   presents the cumulative distribution 
function of the daily maximal demand.  

Equation (11) can be rewritten as: 
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It is observed that the right part of equation (12) 
conforms to the definition of derivative. Therefore, it can 
be expressed as: 
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        (13) 

Equation (13) shows that the probability density 
function of monthly maximal demand can be obtained 
through the distribution of daily maximal demand. 

5 Case study 

5.1 Load forecasting results 

In this case study, the meanings and values of input 
parameters are shown in Table 1. To obtain the charging 
load adapted to the actual situation, these input 
parameters can be adjusted. 

Table 1. The parameters of the numerical case 

Parameter Value 

ownp  50% 

EVn  10000 

charingp  60 kW 

EVc  
u  
r  
C   

40 kWh 
0.2 kWh/km 

[0.04 0.1 0.2 0.1 0.1] 
2500kW 

The day-ahead charging load curve of the charging 
station based on the Monte Carlo simulation method is 
shown in Figure 3. 
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 Fig. 3 The charging load of the station 

Fig.3 shows that the maximum of the charging load 
curve is 1020, which is the predicted daily maximal 
demand. 

5.2 Contracting strategy 

The predicted daily maximal demand has been obtained 
in the section 4.1. Assuming that the standard deviation 
of the forecast error meets the condition: 00.1d   , the 
probability density function of the daily maximal 
demand can be expressed as: 

 
2( 1020)

20808( ) 0.003911
d

d
g d e




         (14) 
When the value of N  is 30, the probability density 

function of the monthly maximal demand can be 
calculated through equation (13). Since the distribution 
of monthly maximal demand is complicated, it is not 
specifically listed here. 

According to the demand contracting strategy 
described in (5), the optimal value of the contract 
demand can be obtained. Using the numerical calculation 
tool in MATLAB, it is calculated that: 

 -1(0.524) 1226.793 kWDF          (15) 

which meets the condition: -1(0.524) 0.42DF C . 
Hence, the optimal contract demand in this case study is 

-1(0.524) / 1.05 1168.374kWDF  . That means when the 
contract demand is set to 1168.374kW, the expectation 
of the demand charge will reach the minimum. 

It should be pointed out that if the calculation result 
of equation (15) is less than 0.4 1000kWC  , the 
optimal value of the contract demand will be changed 
into 0.4 1000kWD C  . 

5.3 Comparison of two rules 

Besides charging according to the maximal demand, 
another way of calculating the basic electricity charge is 
according to the transformer capacity. Generally 
speaking, the unit price charged according to the 
transformer capacity is 2/3 times that charged according 
to the maximal demand. For example, the basic 
electricity charge is 28 ¥/kW based on the transformer 
capacity, and 42 ¥/kW based on the maximal demand in 
Shanghai[17]. 

For the charging stations in this case study, the 
basic electricity fee under different methods  are 
compared, which are： 

Method Ι: According to the transformer capacity. 
Method ΙΙ: According to the maximal demand, and 

setting the contract demand to minimal limit. 
Method ΙΙΙ: According to the maximal demand, and 

the contract demand following the demand contracting 
strategy proposed in this paper. 

The results are shown in Table 2. 

Table 2. The basic charge under three methods 

Method Ι/¥ Method ΙΙ/¥ Method ΙΙΙ/¥ 

70000 51943.416 50809.105 

 It can be seen that in this case study, the demand 
charge has a clear advantage in reducing the cost of 
electricity bills compared to the transformer capacity 
method. In addition, following the proposed demand 
contracting strategy can reduce the expectation of the 
demand charge effectively through this case study. 

6 Conclusion 

In this paper, a stochastic optimization model is 
established by regarding the actual maximal demand as a 
stochastic parameter, the object of which is to minimize 
the expectation of demand charge, and the analytic 
solution of the contract demand is derived. 

For the distribution of the actual maximal demand, 
this paper proposes a Monte Carlo simulation method 
based on the trip chain theory to predict the charging 
load of the charging station. This method can obtain the 
distribution of the daily maximal demand combined with 
the actual situation of charging stations. In addition, this 
paper proposes the method of obtaining the monthly 
maximal demand based on the daily maximal demand to 
complete the demand contracting strategy for charging 
stations. It uses a virtual charging station as the case 
study to show the whole process of the demand 
contracting strategy for charging stations. The results of 
the case study illustrate the feasibility of this strategy. 

The most innovative point of this article is that in 
face of the basic demand charge added to the electricity 
cost of charging stations in the future, it proposes the 
demand contracting strategy for charging stations 
correspondingly. Compared with the existing research, 
this strategy is involved in the demand charge that is 
rarely discussed. It has the guiding significance for the 
operators of charging stations to predict the charging 
load and revise the contract demand in time. 

The direction of the future research is to explore the 
relationship between the charging load of charging 
stations with a certain operating history and many factors 
such as time, weather, holidays, special events, etc. In 
this way, a more accurate forecasting distribution of the 
maximal demand can be acquired, and the demand 
contracting strategy can be further improved to reduce 
the electricity cost. 

5

E3S Web of Conferences 194, 03024 (2020)	 https://doi.org/10.1051/e3sconf/202019403024
ICAEER 2020



 

Acknowledgement 
The authors gratefully acknowledge the support from 

the Technology Program of SGCC under Grant 
52094018002P. 

References 
1. Ministry of Industry and Information Technology of 

the People's Republic of China. Public consultation 
on the "New Energy Automobile Industry 
Development Plan (2021-2035)" [EB/OL]. (2019-
12-03)[2020-03-16] (in Chinese). Available: 
http://www.miit.gov.cn/n1278117/n1648113/c75536
23/content.html 

2. BEHEV (2007), Introduction of Electric Vehicle 
Policies in Other Countries (in Chinese) . Available: 
http://www.bjhev.com/ReadNews.asp?NewsID=122
0 

3. H. Chen, J. Jin and J. Chen, "Catching up in new 
energy vehicle industry: Review of its development 
and policies in China," 2008 4th IEEE International 
Conference on Management of Innovation and 
Technology, Bangkok, 2008, 810-814. 

4. Virginia Electric and Power Company. Schedule 6 
Large General Service. [Online]. Available: 
https://www.dom.com/ 

5. Uttar Gujarat VIJ Company Limited. Tariff for 
Supply of Electricity at Low Tension, High Tension 
and Extra High Tension. [Online]. Available: 
http://www.ugvcl.com 

6. The National Development and Reform 
Commission of the People's Republic of China. 
Notice on Issues Concerning Electric Vehicle 
Electricity Price Policy. [EB/OL].  (2014-08-06) 
[2020-03-16] (in Chinese). Available: 
https://www.ndrc.gov.cn/fggz/tzgg/ggkx/201408/t20
140806_1073810.html 

7. The National Development and Reform 
Commission of the People's Republic of China. 
Notice of the National Development and Reform 
Commission on the Implementation Measures for 
the Reform of Printing Electricity Price.[EB/OL].  
(2005-03-28) [2020-03-16] (in Chinese). Available: 
https://www.ndrc.gov.cn/xxgk/zcfb/tz/200506/t2005
0613_965813.html 

8. H. Zhang. Strengthen DSM to implement maximum 
power load demand control[J]. Power Demand Side 
Management, 2005, 7(3):55-56, 63 (in Chinese). 

9. X. Chen. Problems and solutions to bi-lateral 
electricity price in sales side[J]. Power Demand Side 
Management, 2009, 11(5):57-60 (in Chinese). 

10. E. Sortomme and M. A. El-Sharkawi． Optimal 
charging strategies for unidirectional vehicle-to-
grid[J]. IEEE Trans. on Smart Grid，2011，2(1)：
131-138. 

11. K. Clement-Nyns, E. Haesen and J. Driesen. The 
impact of charging plug in hybrid electric vehicles 
on a residential distribution grid[J]. IEEE Trans. on 
Power Systems, 2010, 25(1): 371-380. 

12. T. H. Bradley, C. W. Quinn. Analysis of plug-in 
hybrid electric vehicle utility factors[J]. Journal of 
Power Sources, 2010, 195 (16): 5399-5408. 

13. P. H. Andersen, M. Rask, J. A. Mathews. Integrating 
private transport into renewable energy policy: the 
strategy of creating intelligent recharging grids for 
electric vehicles[J]. Energy Policy, 2009, 37(7): 
2481-2486. 

14. S. W. Hadley, A. Tsvetkova. Potential impacts of 
plug-in hybrid electric vehicles on regional power 
generation[R]. Tennessee : Oak Rige National 
Laboratory, 2008. 

15. O. Marcincin, Z. Medvec and P. Moldrik, "The 
impact of electric vehicles on distribution network," 
2017 18th International Scientific Conference on 
Electric Power Engineering (EPE), Kouty nad 
Desnou, 2017 : 1-5. 

16. Z. Liu, D. Feng, F. Wu, Y.Zhou, C. Fang. Contract 
Demand Decision for Electricity Users with 
Stochastic Photovoltaic Generation. Proceeding of 
the CSEE, 2020, 40(6): 1865-1872(in Chinese). 

17. State Grid Shanghai Electric Power Company. 
Shanghai Electricity Price List [EB/OL]. (2019-05-
31) [2020-03-16] (in Chinese). Available: 
http://www.95598.cn/static/html//person/sas/es//PM
06003001_2352.shtml 

 

 

6

E3S Web of Conferences 194, 03024 (2020)	 https://doi.org/10.1051/e3sconf/202019403024
ICAEER 2020


